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Constructions of singular measures with
remarkable convolution properties

by

LOUIS PIGNO (Manhattan, Xans) and SADAHIRO SAEKI (Tokyo)

Abstract. We prove for every I-group there is a probability measuwre g with p?
singular and w* % absolutely continnous. We also prove for all nondiserete LOA groups
the existence of a nontrivial singular measure » sueh that || is the Fourier tragsform of
an absolutely continuous measure. Our vesults extend some work of Comnolly and
‘Williamson who obtained the above results for the real line.

Let G be a nondiscrete LOA group with dual I" and let M (G) be the
convolution measure algebra of @ (cf. [6]). Given a measure u in M(G),
we denote by g the Fourier transform of u and by z the measure defined
by the requirement that z(B) = x(—B) for all Borel sets B in G.

For the real line R, D.M. Connolly and J.H. Williamson [1] construct
a probability measure u with the remarkable property that u? = p=u
i% singnlar and g+ is absolutely continuous (with respect to Hlaar measure).
(Xn this connection, see also [5] and [9].) As an immediate consequence of
this result, they prove the existence of a nonzero singular measure » such
that [v] is the Fourier transform of an absolutely continuous measure.
In the present paper we shall prove that their first result holds for all
I-groups, and that their second result holds for all nondiscrete groups.
Recall that @ is an I-group if every nonempty open set in G+ contains an
element of infinite order.

Tumore 1. If G i an I-group, then there exisis a probability measure
@ i M (G) such that 2 is singulor and psi is absolutely continuous.

TusorEM 2. Suppose that G is a nondiscrele LCA group. Then there
ewists o nonzero singular measure v in M(G) such that 9] is the Hourier
transform of an absolutely continuous measure.

In order to prove the above results; we need several lemmas. They
will be stated in a generality greater than actually needed in the present
paper. This is because we hope that they may be useful in some future
study of the subject. Now let us introduce some mnotation. Lebt 1 = g
denote the IMaar measure of the nondiscrete LOA group ¢. When G is
compact, we shall always normalize 2 5o that A(G) = 1. Define M, = M (GF)
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and M, = M (G) to be the set of all absolutely contintnous meagures and
the set of all singular meagures in. M (@), respectively, We shall often identi-
fy L'(@) with M,(G) through the map S=+fA, and define [|f - ull == ||f4 -+ ul]
for fin LM(@) and p in M (). Let T = R(mod2x) denote the circle group,
and Z the group of integers identified with the dual of 7. For a natural
number 7 2= 2, let T'(r) denote the cyelic subgroup of T of order ». Thus
the dual of T'(r) is (isomorphic to) Z(r) = Z(mods). Tt is casy to see that
the results of [1] continue to hold for 7.

Though our first lemma seems to be wc]l-klwwil, we do not know
any appropriate references, and so, we give a complete proof.

Lmvna 1. Let H be a closed subgroup of G whose annihilator A is @ dis-
orete subgroup of I'. Let © be a probability measure in MA(@) such that ANS
= {0} and AN(8—8) is a finite set, where 8 = {yel T(y) + 0} Then
there exists @ unique linear map J from M (G[H ) into M (G) such that

(1) w)" () = Y plafp(y—a)  (ue M(GH), ye (At 8y,
asAd

where T denotes the interior of I'N(A-+ 8). Moreover, J is an isometry,
and preserves the positivity and singularity of measures. I fy in addition, ©
@8 in M (@), then J also preserves the absolule comtinuity of measures.

Proof. The uniqueness of J is obvious since (A-+8)uT iy dense in
I'. Notice also that the right-hand side of (1) is actually o finite swm for
each u in M(@) and each y in I, since AN (8 — §) iy a finite set, and that
its rvestriction to 4 is equal to g, since AN = {0} and 7(0) = 1. Now
let 1y denote the Haar measure of the compact quotient group G/ of
norm one, and let #->% denote the quotient map of G onto G /H . We normal-
ize the Haar meagsures Ay and Az 80 that

(1 Gf fadg = [ @2g(@) [flo4t)drgt)
b4

i
holds for all f in L3(G) (cf. 2.7.3 of [6]). ‘

We first d}eal with the ease where 7 is in M, (). Let w e L% (@) denote
the Radon—Nikodym derivative of + with respect to Ag. Then we have
@) [w(@+t)dng (1) =1 (Ag-a.a. & e G/H),

b2
since w(0) =7(0) =1 and AnS = {0}. Given fin ZNG/H), let ug now
define (Jf) (x) = f(%)w(2). Then (1) and (2) yield

17 =Gf @l (@) drgle) = [ 11@ldrg (@ = 7).

. GIH
Moreover, we claim that

(3) ) () = Yf @)y ~a) (yel).

aeAd - .
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In faet, this is obvious when fis a trigonometrie polynomial. For a general
fin I'(G[H), take a sequence (f,) of trigonometric polynomials on G/H
such that [|f, —fll=0. Then we have |f, —fllo—0 and

ITFn) " = (TF) " oo < I (fu—F)I=>0.

Since for cach fixed y € I'the index o in the right-hand side of (3) essentially
ranges over a finite set independent of f, it follows that (Jf,)” converges
to the sum in the right-hand side of (3). This establishes our elaim. By
a4 woeak™ argument, it is now casy to show that J extends to a norm-de-
creasing linear map from M (G/H) into M (&) for whieh (i) holds for all u
in M(@/H) and all y in I'. (Notice that T vanishes at infinity; henece the
sum in the right-hand side of (i) defines a continnous function on I" when-
ever ji is a bounded function on A.)

We now remove the assumption that 7 is in M (G). Take a net (z;)
of probability measures in 3,(G) such that |7, < |7| on I'for all ¢ and such
that 7,-»7 uniformly on compact subsets of I'. For each 4, let J; denote
the norm-decreasing linear map from M (G/H) into M (&) induced by =;
a8 in the preceeding paragraph. Then one can easily check that given x in
M (G[H), the net ((J;4)"} converges uniformly on compach subsets of
(A4 8YUT. Since |, pll < x| for all ¢ and since (A4 8)uT is a dense open
subset of I, it follows at once that the met (J;u) converges weal” Ato a
meagure Ju in M (@) of norm < |lgf, and that (i) holds. Since (Ju) = u
on A and |Jul < |lul, J is an isometry and preserves the positivity of
measnres. It only remains to show that J maps M, (G [H) into M (G). Sup-
pose by. way of contradiction that Ju ¢ M (G) for some u e M (G/H).
Then there exists a measure » in M, (@) such that ||Ju—| < WJul = il
and supp? is compact. Let P be the trigonometric polynomial on GIH

with P = on A. Then (u—P)" = (Ju—»)" on 4, so that

~

lp—Pl < W~ < [l

Sinco p is in M, (G/H), this yields the desired contradiction. The proof
is complete.

TEMMA 2. Let H < G and A < I' be as in Lemma 1 and let o € M (G).
Suppose that there are two non-negative measures v, and T, 'fn M(Q), as in
Lemma 1, such that Za(y)—Tuly) = 1 whenever y € I' and o(y) # 0. Then
theve exists a unique linear map K from M(G[H) into M(G) such that

(i) ()" (y) = D i) oly—a) (v e(4+8)uT),
. acA
where § = {y e I't g(p) # 0} and T is the interior of I'\ (A + 8). Moreover,

we have
(ii) K] < 2 el (llzall + llzall) -
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Proof. Notice that the condition flz;]l == 1 is not assumed. Applying
the Hahn decomposition theorem to Rep and Imp, we can write

. @ = 01190y — @3 —~%g,, Where the g, are nonnegative measures in M (@)
with fleill+ ... +llogl < 21lell. Let Iy, be the map induced by e, as
in Lemma 1, so that 1Tl = Nzl llgpll for all § = 1,2 and & = 1,2,3,4.
Then the reguired map K may be defined by

2 4
K= D=1,
J=1 k=1
It is easy to confirm (i) and (ii), and the proof is completo,

Lemva 3. Suppose that n is a natural number and that there owists
a probobility measure o in M(G) such that o"e My and gxpe M,. Let
Fell(@), Ifl =1, and e> 0. Then there emists a probabilily measure u

in M(Q), with p™** e M,, such that

[un € 'ZIIS, /4*/’2 € Jl[a: and Hf*f—ﬂ’lﬁll <e,

Proof. Notice that 7 is defined by §(x) = g(—) for all # in @. Choose
& neighborhood V of 0 in & so that "

(1) If#f— oxf il < o2

holds for every probability measure o in M (@) concentrated on V. Let
W be any symmetric neighborhood of 0 such that W 4W < V. By consider-
ing an appropriate tranglate of ¢, we may agsume that ¢ (W) > 0. Therefore,

replacing ¢ by o(W) ig| W, we may also assume that ¢ is concentrated
on W. Then (1) implies

@) If4f — oxg sfsfil < e/2.
‘We now apply Theorem 2.4, its proof and Lemma 3.1 of [8] to find a prob-
ability measure » € M, (@) such that »! e M,, ¢"xv" e M,, and

(8) ]]g*@*fﬂef» oxpRvEd| < 82,

(Notice that gxp is in M, by hypothesis.) Setting y = o¥vy, Wwoe sce that u
hag all the required properties.

LeMMA. 4. Let n be a natural number such that " e M, and o g € M,
for some probability measwre o in M (T). Then, to each & > 0, there corresponds
a natural number v, with the following property:

For every natural number r > Toy there emist two
nomials P and Q on the eyclic group T (27 +1) such that

(8) P=>0,P(0) =1, and [1—PuP| < ¢
(b) B(m) = G(m)=0 for all m — ek (re41), .oy 7 € Z(20 1)

trigonometric poly-

)
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(©) Qo<1 and @(0) = 0;
(d) f Q-PWap>1—s,

T(2r+1)

where P™ = Px ... =P (n limes).

Proof. Let ¢ > 0 be given. By Lemma 3, we may assume that the
measure o satisfies

(1)

Since " i a singular probability measure, there exists a trigonometric
polynomial @, on T such that

@) [@dg">1—e,
T

1~ gxgl < /6.

(3) Qo<1 and ,(0) = 0.

To find such a @, it suffices to apply Doss’ result in [2]. Gf)nvolu.ting I3
with an appropriate trigonometric polynomial, we then obtain a trigono-
metric polynomial P, on T’ such that

(4)
(5)

Py>0, P(0) =1, and [L—PyP<ef6,

[ -PParp>1—-.
T

We define 7, to be any even integer such that

Qs (k) = Py(k) =0

Now let # be a given natural number >r,. We apply Lemma 1 with
A = (2r+1)Z to find a probability measure ¢ in M (T) such that

(6) (keZ; |k >r,/2).

S@r+L)m+k) =P(k)  (m,keZ; [k <r).

(7)
Notice that (7) implies that ¢ is concentrated on jﬁhfz subgroup T'(2r+1)
of ', In. fact, we have o = P4, where P is the restriction of Py to T(2r+1)
and 1 is the Haar measure of T'(2r4-1) regarded as an elementj of M (T). It
is obvious that P > 0 and f’(()) = 1. To confirm that |]1.—P*P|t < eglet K,
be the mth Fejer kernel on T (m =0,1,...). Setting 7, = K, », and
7, = 2K, , we see that 7,(k)—7.(k) =1 for all kb =0, £ 1,..., & /2.
It follows from (4), (6), (7) and Lemma 2 that

L —PxP) < 2t — Pyl (sl + sl < e
This establishes part (a). Now define @ to be the restriction of ¢, to T'(2r +1).
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Then (b) and (e) follow from (3), (6) and (7). Finally we have

r

Qrmas = [ Qdo Z (—T) 5" (%)
T(2r1) T(2r1) jram—y
S’ Qu(— )P () = = [Q P dhy > 1 —e
k:—-co T

by (8), (8) and (7). This establishes part (d) and the proof is complete.

LeMMA 5. Let @ be a compact abelian group of unbounded order, and
let n be a natural number, as in Lemma 4. Then there ewists o probability
measure u in M (@) such that u* e M, and i € M,.

Proof. By induction, we shall construct two sequences (P,,) and (@,,)
of trigonometric polynomials on & as follows. Set P, =1 and @, = 0,
and assume that Py, Qg ...y Ppoy, Qm_l have been defined for some natural
number m. Let 8,_, = {y eIt R,,_;(y) 0}, where R,_, = PP, ...
...Py_;, and let », be any sufficiently large natural number. Since ¢
is of unbounded order and since S,,_, is a finite set, there exists an element
0,, of I' such that

(1) (0 § = 1, &2, .0y 233Ny —Bpp) =B,

By Lemma 4 (and its proof), there exist two trigonometrie polynomials
P,,, @, on @ subject to the following conditions:

(2) P,=20,P,0) =1, and l[l—-]?m*l;m[l < 27" NB - 1lleos
(3) SUDD (1Pl 4 G) & {02 § = 0, 1, 1.y 7}
(4) 1@l <1 and  §n(0) = 0;
(5) [@uPRarg > 127,
G

This completes the induction,

Notice that every R,, is non-negative by (2), that (1), (2) and (3)
imply
(6) Ryt oo o) = Poyo) o Prlym)  (m < )

whenever y, € s11pp130, ceey Vi € suppf’m, and that
(7 I;TN =0 on ]’\(suppf’(, +...

It follows that the sequence (R,)
measure x in M(G) such that

(6), ﬁ()’o‘i‘ +ym) “P (70

+ suppPy).

converges weak™ to a probability

P, (vm)

icm
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for all y,e suppﬁo yeeey Y € suppﬁ',n (m=0,1,...) and such that

7y =0 on ]’\U(suppf’ﬁ- A suppf’m).
m=0

Thus x is a kind of Riesz product (cf. [4]).

In order to prove that u” is in M, take any finite set I in I'. Then
{j0,,2 5 = £1,..., &r,} is disjoint from K whenever m is large enough
Moreover, (3), (6 ) and (b) yield

f Qi = Y’Qm( g

f@m 13)(lAG> 1-—

for all m. It follows from (3), (4) and Doss’ theorem [2] that u” is a singular
neasure.
To confirm that gy is in M,, notice that

Rm*ﬁm = (—Pn*ﬁﬂ) rene (Pm*ism)

by (1) and (3). It follows from (2) that
HR7 —I*RNm—l —"Rm*R:nH )
S =Py Pyll | R 4B oo < 277

(m > 0)

(m=1).

Therefore the sequence (Rm*fim) converges in norm to some feL'(@).
Since
Fo) =m B, () = 1AM (yel),
. . ] . .

we conclude that s+ u is absolutely continuous. This complefes the proof.

Proofs of Theorems 1 and 2. Let G be a nondiscrete LCA group.
To prove the required results, we may replace G by any open subgroup
of G. Thus, by the well-known structure theorem [6], we may also assume
that ¢ has the form R™ xK for some integer m > 0 and some compact
abelian group K. If m > 1, then our results follow easily from the results
in [1]. So assume that G is compact. If G is also an I-group, then ¢ must
be of unbounded order. In the last case, Lemma 5 with n = 2 yields both
Theorems 1 and 2. Consequently it will suffice to prove that the con-
clusion of Theorem 2 holds for every infinite compact abelian group of
pounded order. Let G bea such group. Then G has the form G = [] G,

=1
where every @, is an infinite compact abelian group (see (A.25) of [3]).
By Theorem 2.4 of [8] and its proof, there exist two symimetric
plobabxllty measures i, v, in M (Gn) such that u,s, € M, u e M,,
vie M,, and

) gl <2

4 — Studia Mathematica. 69.2
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Setting 4,, = (1+%)" (@, +,), we then have

@) B = v+ (26) 7 =3,

3) Apsly, =27 (pn A7)

Now define o, € M (G) by setting N

(4) o =A% e xBx [ (mom) (0 =1,2,..).
=41

It follows from (1) and (2) that the sequence (g,) converges in norm to
a complex measure » € M (@), Since every g, is a singular measure, so
is ». Moreover, (3) and (4) imply that

51 =[] 2 wa+n)]
=1
Tt follows at onee that [v]is in (M,)". This completes the proof.

Remarks. (a) Applying the method in Section 6 of [8], we can gen-
eralize Theorem 1 as follows. Let G be an I-group and let » be a natural
numper. Then there exist » probability measures py, ..., 4, in M(G)
such that

‘ ik ki, € Mo (G),
and such that \
pe L xpgr € M (G)
for every r-tuple (n,, ..., n,) of non-negative integers with min{n;: 1 <j
<rp<2.

(b) Suppose that G contains an open subgroup isomorphic to Z(2)”
for some infinite cardinal . Then it is easy to show that there exists no
probability measure in M (@) as in the conclusion of Theorem 1.

(e) Let X, denote the set of all symmetric complex homomorphisms
of M(@). Then y e M(G) with us i € M, has Gelfand transform vanighing
on Zg\TI'. Moreover, it is not difficult to prove that if & is a group as in
(b) and if p e M(G) has Gelfand transform vanishing on Zz\TI", then |ju™ -+
+ M, = o(1) as n>oo (cf. Problem (ii) on p. 253 of [7]). Oonsequently,
for any group & as in (b), there exists no nonzero measure g in M (G)
such that uxu € M, and u® € M, for all n > 1.

(d) Does there exist a sequence (P,) of non-negative trigonometric
polynomials on 7' such that l;,,(O) =1 for all n,

DIP#P,~1< o and limsup|P®—1]/" > 09

n=1

If such a sequence exists, we can prove that every I-group has a prob-
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ability measure p such that uxi e M, and u™ e M for all natural numbers
n. In view of the fact stated in (c), we feel that such a 4 can not exist, and
therefore that the eonclusion of Lemma 5 must fail to hold for some % > 0.
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