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Inequalities between absolutely (p, ¢)-summing norms

by
B. CARL (Jena)

Abstract. Let E, be an n-dimensional Banach space and let F be an arbitrary
Banach space. By ny,,q) we denote the absolutely (p, ¢)-summing norm. Then

Ty, (82 Bp—>TF) < nax@2.0(a=18)p, o (S: By—T)
for 1< g8 oo and 1/g—1/p = 1fs—1/r.
Similar inequalitics between p-integral and abselutely r-summing norms are
established. We also obtain that there is a projection P from a Banach space & onto

an n-dimensional subspace H, such that for the p-integral norm the following esti-
mato holds:

(p(P: Hly) < amosap1R), 1< p < oo

The regults obtained here are related to those in [8] and [6]. We re-
call some basic definitions. The Banach space of all (bounded linear)
operators from a Banach space E into a Banach space F is denoted by
Z (B, ). The identity operator on an n-dimensional Banach space ¥,
is denoted by I,. We refer to [10] for definitions and fundamental proper-
ties of the operator ideals [#, 45 7y, ] and [ 4] of absolutely (p, q)-
summing and s-integral operators, respectively. For p = ¢ we have the
operator ideals [#,; m,] of absolutely p-summing operators.

1. The operator ideals [, ,; #4,]- Let us recall that an oper-
ator § e Z (B, F)is called (s, g)-mixing, L < ¢ < 8 < oo, if there is a constant
o> 0 such that

(ﬁ(j | (S, B> is)q/,,)lr"l < dflrpl(ﬁ:‘ <®;, 0:>\8)1i8 (lj ||b;.»1|")1/q
202 all<1 ‘= b=1

for all finite families of elements #, ..., #,, € I and functionals by, ..., b,
e I,

The phrase “(s, ¢)-mixing” is derived from the fact that these oper-
ators are eharacterized by the following property : Every weakly g-summable
sequence (x,) is mapped into a sequence (y,) which can be written as
g product of an 7-summable scalare sequence (£,) and a weakly s-summable
sequence (yn). Here 1/r+1/s = 1/g. Putting

.u(s,q)(é') 1= infe,
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then the class of all (s, ¢)-mixing- operators forms a normed operator
ideal denoted by [My,q; Kis,gl- These operator ideals were extensively
investigated by A. Pietsch in [10]. There one can also find the following
properties of these operator ideals:

Let 1<g<s< oo and Ljg—1[p = 1[s—1jr. Then
1) [Z4,9)3 T 10 (M3 o] S [Pio,0)i Toin)]y
@) [Deo,t)5 Hiooy] = [Pg5 7],
[DMg,q5 ] =[5 111
Let1 <8y <8y << oo, Then
(3) [m(so,qﬁ ﬂ(so,q)] = [fm(sl,q)i M(sl,q)]-
Lot 1<s; <8< o0 and 1/s = (1—0)/s,+0/s,,0 < 0 < 1. Then
(4) Hi,0(8) < mi(8) wls,,0(8) Jor 8 & Mgy, (B, F).

2. Inequalities between absolutely (p, ¢)-summing norms. In order to
prove our main result we need the following elementary

LevmA L Letl<g<s<ooamdn =1,2,... Then
F(s,q( ) [" ( n)]l—q/s'
Proof. Using (4) and (2) we get
! ”(s,q)(In) < ”(Ia:,aq)(In> "((]ﬂjq) (In)< [”Q(In)]l_B”InHa < [nq(In)jl_B

forl/s = (1—0)/oo+06/g, 0 < 6 < 1. This implies the assertion. First we
treat a special case; see also [8].

PROPOSITION 2. Let 2 < s <

candn =1,2,... Then

7 (8 B,—F) < MW g (8 En~>1«’).

Proof. From the well-known equality =,(I,) = n!
29) and the above Lemma 1 it follows that

”(3,2)(111) < [nz(ln)]l—gls = p}=le,
Now formula (1) yields
7y (S: H,—F) <

(cf. [10], Chapter

< p L) m(8: By~ F)y < 0P (82 B, ).

As a consequence of the preceding result we get an estimate for the g-inte-
gral norms of the identity operator on n-dimensional Banach spaces which
improves the result obtained by D. J. H. Garling and Y. Gordon [6] for
complex Banach spaces.
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PROPOSIION 2. Let L g coand n = 1,2, ... Then

4 (L) < moexQedis,

Proof. Denote by ¢ the conjugate index of g. Proposition 1 yields

my (12 B, ~10 < oM Pr, (T: B,—F) for 2<¢ < oo.
Now o duality argument [9], [10] implies
(8t F—d) < w20y (80 P-E,)  for 1<g<2
Hince ¢ == @y, and my(L,) = %', wo got
(L) <t Bry Iy <0 for  1<g<2

The ease 2 ¢ < oo can be cheeked by using the fact that ¢ < ¢.
LovMA 2. Let 1<g<s<< oo and n=1,2,,.. Then

M, ”)( W) < gex(al2,1)(1/g—-1js)

Proof. Sinee m, < 4, 1 < ¢ < oo, the estimate follows from Lemma 1

and Proposition 2. .

Now we ave able to prove the main result of this paper.

TusoREM. Let 1< g<Cs< oo, 1jg—1)p =1L[s—L/r and n = 1,2,
Then

i) (AS [J‘,‘v-%f') < pslal, (e~ 1/8)”, (S En-ilﬂ)‘.

The inequality is the best possible one in the sense Ma,t, if the above conditions
are satigfied, then the ewponent in the inequality can not be improved.

Proof. Using (1) and Lemma 2 we get the required inequality.

To seo that the exponent max(g/2,1)(1/g—1/s) is the best possible
one we have to show that, if

2 BB < nrs)(b: B, T

1/ Q) (
holds for all operators § and # =1,2, ..., then
Az max(q/2, 1)(1/g—1/s).

Tivst wo suppose 1< ¢« 2. Taking the identity operators I,: Ig—1J
woe have m, i (L,) = M”’ for 1< s <1< oo. If the inoquality
WM = g, o (L) < 0w (1) < wrnl
is true for every positive integer n, then we obtain
Az djp—1fr = 1jg—1]/s,

ag degired.
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Now, let 2 < ¢ < co and put m := [2%*]. We show for cach n = 1,
2, ..., that there is a (m, n)-matrix 4, whose cntries are 1 such that
() ‘ Ty (Aut BTN 2 0,00
and
[ for  r>82,

Aok A, BT < g '
() e (A )< le, n?2rte for ¢ = 2 and all &> 0,

Here ¢, ... denote certain positive constants not depending on n.

First we show (). By [1], [2] and [4] there iv an (n, m)-matrix B,
having entries +1 and satisfying

PO N £ —1
|l1B,,: ;,»Z{”H K6 N,
If A,:=B,, where B, denotes the trangposed matrix of B,, we have
A, B,el,==n for 4=1,2,...,m.

Here (¢;) is the canonical basis of Z{l’f; By the definition of the absolutely
(p, ¢)-summing operators it follows that

ki3

(3 < {14, Bet] ™

VAN

7‘(1) qJ( nt Zn_a’lm) ”B ZZE_}Z?”

AN

< Ty (A BT o

This implieg (). .
Sincé [4,: BT = [0, the estimate (+#) can be checked
by using the following results of G. Bennett [1] and P. Saphar [12]:
Ly L) =Pyl l,)  for 7> 5302
and
Ly L) =295 L)  for  r>2 and all &> 0.

'l\fow, if the inequality

is true for every m, then we get 1> 421 /p=1)r) = q/2(1/qg —1]s).
As a consequence of our Theorem we have ’
ProposIrIoN 3. Let 1< p<r< coandn =1,2, ... Then
7y (82 BT < ool W=ty (8 BT,

™
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|
. Using o duality argument as before from Proposition 3 we get
PrROPOSITION 8", Let L<pr< oo and n ==1,2,... Then
4, (8 B—T) < (/2,1 (Up—1/r) W(S: B-T,).

Prorosurron 4. Let one of 1, B be n-dimensional. Then

0 (80 BBy s g g (80 BBy for 1< p<2<r< oo,

Proof. At fivet woe show that it 1< p =< 2, then

0, (St 1,10 < MWy (S 5, 1),
The operator 8 can be factorized through the natural injection ¢ as
. o 0 [
8: B,~8(H,)—1".

Since ¢, == my, from Proposition 3" and the injectivity of the absolutely:
p-suniving norms it follows that

6, (85 By=rlf) <5 0, (Sy: B8 (7)) < 00, (842 B, —8(B,))

L Py, (80 B, —>T).

From this inequality we obfinin again by the duality argument that

my(No BBy s pl AW (8 BBy for 2K r < co.
Our assertion is now & combination of botl these inequalities with Prop-
osition 3 and 3°.

Remark, Propogition 4 has also Deen proved by D. R. Lewis [8]
ap to the constant 2(w/2)* (in the complex case) on the right-hand side
of the inequality.

UOROLLARY 1. Let one of 1, ' be n-dimensional. Then

b, (8t H-T0) 5 fn,“/“"m”n],(b': BT for 1<p< oo.

Prool. Let 1 <3 p =< 2, Then from Proposition 4 we have

- .1 — 1/
(N) =1y (8) < ™ W, ().
Analogously, for 2 =5 9 <5 oo we get
o gy 121, Y
0 (8) 5 4 (8) < w0 g (8).

Romark. In the cases p =1 and p = co Thes exponent in the in-
equulity of Covollary 1 ean not be improved (in the sense of our Thoe-
orem). Comparing the “lmit order diagrams” of £, and 7, for 1L < p << co
in [37 o [7] we see that the inequality

g h g fo10 g s
6, (8) = w'm,(8)  for  m o==1,2,...

implies A2 1/411/2~1/p|.
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A. Brdmann [12]has proved in this thesis that the exponent A= [1/2 —
—1/p| in the ineguality of Corollary 1 is also the best possible in the case
1 <p<< oo

COROLLARY 2. Let H, be a subspace of B. Then there is @ projection
P from B onto B, such that

lp(.P) < nmu,x(l/];,l/?,) fO?‘

Proof. For 1<<p <2 the statement follows from the well-known
result of 8. Kwapied (cf. [10], Chapter 29) that there is a projection P
with 7, (P) = n'* and Proposition 4. For 2 < p < oo the statement is
implied by the fact that 1, < n,.

1<p < oo,
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Maximal seminorms on Wealk I
by

MICITALEL CWIKEL (ITaita) and GULARLES FEFFERMAN
(Princeton, N.J.)

Abgtract. Tor eoch fe WeakZt ot g (f) = sup ap({w] |f(@)] > @}) and let g(f)
be the seminorm a0

(3

int PR

Fofydforb oSy fe=d

q(f) =

Wo obfinin two equivalent expressions for ¢(f) and mnake some remarks about the dnal
ol Woale b

Introduction. For 0 < p < oo the space WeakL? taken over the
moasure spaco (X, X ) consists of all (equivalence classes of) measur-
able functions f for which the quasinorm

QJA(f) = ﬂ111)(1[1’"‘({"’0[ |f ()] > a})]llﬂ
a0
i finite.

Tn [4] and [3] it was shown (independently) that Weak I' has a non
trivial dual space. This is ab fivst sight a surprising result since one can
readily show that any continuous linear funetional on Weak I' necessarily
vanishes on all simple functions i u is non atomic. Thus the functionals
and seminorms on Weak L' measure only the “behavior at infinity”
(in & senge to he indicated below and in [3]) of the functions on which they
acth,

Any continuouy linear functional on Weak L' iy dominated by & eon-
stant nultiple of the quasinorm g, and thevefore wlso by a multiple of
the seminom g defined by

ki

it > a(f)

Felytfybotty f1

q(f) =

vl OF fin Weak J?. The quotient space of Weak ' modulo the ‘sub-
gpaco of cloments f satistying ¢(f) == 0 is & Bupzwh gpace W normed by
¢ whose dual coincides with the dual of Weal D'
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