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Aronszajn—Keolmogorov type theorems for positive
definite kernels in locally convex spaces

by
J. GORNIAK and A. WERON (Wroclaw)

Abstract. It is shown that Aronszajn—-Kolmogorov type kernel theorems charac-
terize some new classes of locally convex spaces. There spaces have the factorization
property and the strong factorization property. First class includes all pseudo-barrelled
spaces and second one includes all barrelled spaces. Some applications to the dilation
theory are discussed.

1. Introduction. The study of dilations of operator functions in
non-Hilbert spaces has been initiated by the probability theory on Banach
spaces. Recent works has revealed a close mexus between the dilation
theory and the theory of reproducing kernel Hilbert spaces, see [9], [16].
Following [6] and [3] we will study here X-to-X* operator valued func-
tions, where X is a locally convex space. The motivation for this general
approach is given by the following three facts:

" (i) the correlation function of a generalized random field on RY
is a positive definite kernel K (-,-) with values in a set of all antilinear
X-to-X* operators, where X is a space of test functions on R¥ ([2]);

(ii) the covariance operator of weak second order probability
measures on locally convex spaces is a positive X*-to-X** valued operator
([14);

(iii) the theory of Abstract Wiener Spaces, which purpose is to
describe Gaussian processes, has been developed recently for locally
convex Hausdorff spaces ([8]).

The importance of positive definite kernels is well known culminating
from the basic results of Kolmogorov [7] and Aronszajn [1]. The purpose
of this paper is to obtain some generalizations of the Aronszajn~Kolmo-
gorov kernel theorem for the operator valued kernels in locally convex
spaces. In Section 2 we will show that the complete analogue of the Aron-
szajn-Kolmogorov theorem does not hold in all locally convex spaces.
We will give some modification of this theorem which holds in all locally
convex spaces (Th. (2.7)). Theorem (2.12) and (2.16) present two versions
of the Aronszajo~-Kolmogorov type theorem. The characterization of
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those locally convex spaces for which and only for which these theorems
hold are next obtained. By the way we give an answer to the question
of P. Magani (Remark (2.17)). The above characterizations lead us to
congider in Section 3 spaces with the factorization property, which first
appeared in [3]. The lagt Section 4 iy devoted to deduce some dilation
theorems as applications of the kernel theorems.

2. Kernel theorems. Lict X be a complex locally convex space and X*
its topologieal dual. By L(X, X*) (0L(X, X*)) we denote the space of all
antilinear operators from X into X* (continumous antilinear operators
from X into X*, where X* has the strong topology A(X*, X), i.e., the
topology of uniform convergence on bounded subsets of X). L(X,H)
(OL(X, H)) denotes the space of all linear operators (continuous linear
operators) from X into a Hilbért space H.

For A € L(X, H), where in H is given an inner produet ( -,-), we define
the adjoint operator A* e L(H, X*) by the formula

(4%f) (@)

(2.2) DEFINITION. Let Z be a set. An L(X, X*)-valued function
K on ZxZ is called positive definite kernel if for each n,2,...,2,€Z
and @, ..., %, € X we have

(2.1) = (4z,f), feH,reX.

O (Ko e (@) >0

[AE=S §
If X is a Banach space, then the next generalization of the Aronszajn—
Kolmogorov theorem was obtained in [9], Th. (2.9) and in [15], Th. (4.6).

(2.3) ProrositioN. Let X be a Banach space and suppose that the
kernel K(-,"): ZxZ — OL(X,X") is positive definite. Then there is a
Hilbert space H and an operator fumction T'(-): Z' — COL(X, H) such that

for

If H is minimal, then H and T () are unique up to unitary equivelence.
This result plays an important role in the theory of the second
order stochastic processes and in the dilation theory (cf. [9], [10], [12],
{15] and [16]).
Following [6], where positive definite operator Valued functions in
linear spaces were investigated, it is interesting to ask if this

proposition is also true for locally convex spaces. The example which
we present below shows that in general the angwer is not.

(2.5) Bxamrre. Let s, be a space of all complex sequences having

(2.4) K(u, v) = T"(v) T (w) u,veZ.

only a finite number of coordinates different from zero. Let us introduece -

e ©
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in s, & topology 7 (cf. [4]) by the family of seminorms

(2.6) 2 s

neNy

Dy ) @) = ) esg,

& = (Ty, La,..
where N, is an arbitrary subset of natural numbers with the density
equal to zero and {M,} is an arbitrary non-negative sequence of real
numbers. Note that a subset B < s, is z-bounded iff there exist a natural
number %, and constant € >0 such that the condition.x = {w,}eB
implies #,, = 0 for » > n, and |z,| < C.

Let Z be a singleton {2} and put

Ns

(K(z,z)m)( ) = Ty @y Y € Sq.

k=1

Then

K(y): ZXZ > O0L((s,, 7), (55, B(s},.50)))
is a positive definite kernel (K(z,2) is a positive continuons operator
on (8,,7) to (8:7 Bsy, 30)))-

If we suppose that similarly to Proposition (2.3) there exist a Hilbert.
space H and an operator 7', e CL(sy, H) such that

K(z,2) = -T:Tu
then the continuity of T, implies that the function

~ (3"

is. continuous on (sy, z). But following the definition of the topology 7,
f(z) is not continuous because for each &> 0 and for each seminorm p
from the family (2.6) there exists # € X such that f(z) > ep(@).

This contradiction establishes the fact that the complete analogue

2) ()] =

‘of the Aronszajn~Kolmogorov theorem (as Proposition (2.3)) is not true

in all locally convex spaces.

Moreover, we give a characterization of those locally convex spaces
for which and only for which this theorem is true. But it is convenient
to start from some modification of the Aronszajn-Kolmogorov theorem
which is true for all locally convex spaces.

(2.7) TEEoREM. (On factorization.) Let Z be a set and let X be a com-

plew locally convex space. If a positive definite kernel E(-,-): ZxZ
- L(X, X*) satisfies the condition

() E(z,2)eCL(X,X* for all zeZ,

then there ewist o Hilbert space H and an operator fumction T(-): Z
— L(X, H), where T (2) for each z €Z is a continuous operator on bounded.
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subsets of X such that
(2.8) K(u,v) = T*®) T(w), w,veZ.
If H is minimal, i.e., H =\ T(2)X, then H and T(-) are unique up to

e
unitary equivalence. This means that if Hy, H, are Hilbert spaces and

Ty(): X -H; as well H,=VT;,(x)X,i=1,2, and Tt ()T (u) =
%€z
T ()T o(w) for all u,v €Z, then there is am unitary operator U:H,~>H,

such that UT,(u) = T,(u) for weZ.

Proof. It is possible to present two different proofs. The first one
uses the original idea of A. N. Kolmogorov and the second the idea of
N. Aronszajn (cf. the proof in Banach space case in [15] and. [9], respec-

- tively). We use the first possibility. i .

Tet us consider the scalar valued kernel R(h,g) of two variables

B =(y,v) and g = (v, u) from X xZ given by the following relation

{2.9) Rk, g) = (K (u, v)2) ().

Since K (-,-) is an operator valued positive definite kernel, then for each
2 eX and u, v €Z, K(u, v)o is an antilinear operator and (K(u, v)a)(-) is
2 linear functional. Consequently, for each n and every n-tuples g; = (&, %)
& X xZ,c;eC we have

n

2 R(g;, gr) 0% = Z (K (%5 zi)wk) () €8

ik=1 hk=1
n

= 2 (E (2, %) 0i) (0i) = 0
k=1

and thus the scalax valued kernel R (h, g) is positive definite. If ¢4, gaye -y Gn
are » points in X x Z then complex matrix [R(g;, gx)] is positive definite.

Hence there exists an n-dimensional complex Gaussian probability distri- .

bution ufi-fn with mean veetor zero and covariance matrix [R(g;, 9x)]-
The family of probability measures uf--%n iy obviously consistent. Consider
the Borel space @ of all complex valued functions on X % Z with the
smallest o-field relative to which every projection map m,: f — f(g) from
into the complex plane is measurable. By Kolmogorov’s theorem there
exists & measure g on £2 such that the joint distribution of (f(gy), ... f ()1
fe @, is phrin for every gi,--+; gn e X xZ. If we congider the Hilbert
space I* (u) and define &(g) = f(g), f & £, then £(g) is an element of I?(u)
(& is & Gaussian stochastic process on X X Z) and

(2.10) (&g), &) = [F)f(R)au(f) = B(g,h).

Now we define H as the subspace of I*(u) spanned by the vectors £ (9),

©
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ge X xZ. Thus by (2.9) and (2.10) we have
(E(u,0)a)(y) = B(h, g) = (E(h), £(g)) = (£(y, ), &(, w),

where 6'(09, w) is an H-valued function of two variables # € X and » e Z.
Define an operator function 7(-): X >~ H on Z by the formula

T(w)(w) = E(w,u), weX,uecZ.

For e‘ach u ez, T ('u,.) is a linear operator according to the fact that the
function £(w, u) is linear on the first variable when the second is fixed.
By (2.10) and (2.1) we have for all z,ye€X and u,veZ

(E(wy v)a) (y) = (T(v)y, T(w)a) = (T*(v) T (w)a)(y),
which Ehows that (2.8) holds. Since the kernel K (-,-) satisfies condition (oc‘)
and X° has the strong topology, we obtain that for each bounded neb
z, =0, 2, X, .
“T(’M)%“z = (T(u)ﬁn! T(u)wa) = (f(mni ’U/), §(ma7 u))
= (K (u, w)z,)(z,) - 0.

Bffel;ree, for each % € Z, T'(u) is a continuous operator on bounded subsets
of X.

Since H is minimal, only uniqueness requires a proof. Thus suppose

that there exist Hilbert spaces H,, H, and T,(-):
. § 1 E () X—>H, H, = VT,
for ¢ =1,2 such that T v "Eé o

T () Ty(u) = K (u, v) = T (v) Ty(u).
Hence the map

N N
Ty ()~ D) T (wy)
pex 1 k=1

extends to the unitary operator U: H, — H, such that =
for ueZ. m ' : * U = T

k

Remark. In the factorization (2.8) the o i
. perator function 7'(.) may not
belpng ‘nq (}':L (X, H) (seg (2.5)). Let us note that for a complex linear space
X in a.‘snmlar way as in [6], Th. 1, the above proof gives a theorem an
algebraic factorization of L(X, X')-valued kernels.

(2.11) DEFINITION. A locally convex space X has the factorization
properly (the strong factorization property) it for each positive operator
BeOL(X,X") (ReL(X,X") the function z > (Rw)(z) is continuous.

(2.12) TEROREM (On continuous factorization I.) Let Z be a sel
cmd‘ X a complew locally conves space with the factorization property. If a
positive definite kernel K (-,): ZxZ — L(X, X*) satisfies the condition
(o) K(e,2) e CL(X, X*) forall zeZ,

4 — Studia Math. 69, 3
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then there ewist o Hilbert space H and o OL(X, H)-valued function T (-)
on Z such that ‘

K(w,v) = T*(0)T(u),

Moreover, if H is minimal, then H and T (-) are unique up to wnitary equiv-
alenoe.

Proof. By Theorem (2.7) there exist a Hilbert space H and a L (X, H)-
valued funetion Z'(-) on Z such that K(u, ) =T*_(0)T(u). We must
to prove that the assumption “X has the factorization property” yields
that T'(u) e CL(X, H) for cach % €Z. But

1T ()@l = (K(u, u)@)(x)
I we put B = K(u,u), u €Z, then R is positive by («) R e CL(X, X*)
and its square root T'(w) is continuous aceording to (2.11). m

(2.13) ProrosirioN. Let X be a complex locally convex space amd X*
its topological dual with the sirong topology. Then the following conditions
are equivalent:

(1) For each inmer product (-,-) defined on X, for which

(2.14)

u,veZ.

for veX,ueZ.

sup [(z, ¥)| = pp(®) < oo (for each bounded subset B = X)
yeB

amd the seminorm pp s continuous,

-, it . ,
the function |z = (&, 2)* is continuous.

(i) X has the factorization property.

(iii) Hor each positive definite kernel the analogue of the Aronssajn—
Kolmogorov theorem (2.12) holds true. "

(iv) For each positive operator R e COL(X,X"*) there ewist a Hilbert
space H and a square root T € OL(X, H), i.¢., B = T*T. Moreover, if H
is - minemal, then H and T are unique up to unitary equivalence. (*)

Proof. (i) = (ii). Let us define an inner product in X by the formula
(¥, ®) = (Rx)(y), p,y € X, where R e CL(X, X*) iz positive. This inner
product satisfies (2.14). Indeed, if B « X is a bounded subset, then for
each z € X, py (o) = sup |(Ra)(¥)] < cosince Ra is bounded on B, Morcover,

yelR

pp 18 continuous which follows from the assumption Re OL(X, ;\T"‘),
Congequently, by (i) the function @ - |j¢||* = (Rz)(#) is continuous which
by (2.11) shows that X has the factorization property.

(i) = (iii). Theorem (2.12). _

(iii) = (iv). We put Z is singleton in (2,12).
(iv) = (i). By (iv) for each z e X (Rz)(z) = [[T»|* and consequently

(!) For the Banach space X this result reduces to Vakhania’s lemma on factor-
ization [13]. Ci. also [14].
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the function & — (Rx)(x) is continuous, since I’ e OL(X, H). Let a contrario
(+;°) be an inner product in X for which (2.14) holds but the function

lzll = (@, ®)'® is not continuous. Then the operator R given by the
formula

(Bo)(y) = (y, =),

Is well defined, positive and R e CL(X, X*), but the function « — (Rw) ()
is not continuous. This contradiction completes the proof. m

(2.15) COROLLARY. Let X and K(-,) be as in (2.12); then for each
w,veZ, K(u,v)e OL(X, X*).

Proof. By Theorem (2.12) there exist the Hilbert space H and
the operator funetion T(-): Z - CL(X, H) such that K (u, v) = T (v) T (w).
But T'(u) € OL(X, H) and T*(v) e CL(H, X*). Thus K (u,v) e CL(X, X*.

(2.16) TurorEM. (On continuous factorization IL.) Let Z be a set
and X a complex locally comvex space with strong factorization property.
For each positive definite kernel K () ZxZ — L(X, X*) ‘there ewist
a Hilbert space H and an CL(X, H)-valued Sfunction T(-) on Z such that
K (w,v) = T*()T(w). Moreover, if H is minimal, then H and T(-) are
unique up to unilary equivalence.

Proof. We use Theorem (2.7). It is sufficient to check the continuity.
of T'(z), = € Z, on X. For each z ¢ Z, K (2, 2) is a positive L(X, X)*-valued
operator and by definition (2.11) the function z - (K (=, z)w) () is conti-
nuous. But according to the factorization (2.8), where T'(z) e L(X, H),
we have that the function z — (K (=, z)w) (z) = ||T'(2)a)* is continuous.
Hence T'(z) e CL(X, H), zcZ. m

(2.17) Remark. P. Masani ([10], (7.1)) asked in what form does
Proposition (2.3) survive for (not necessarily continuous) L(X, X*)-valued
positive definite kernels on Z x Z? The above theorem gives an answer
to this question in a more general setting of locally convex spaces. Because
Banach spaces have the strong factorization property (see Section 3)
Theorem (2.16) shows that Proposition (2.3) is true without any change
for non-continuous operators.

The next result is similar to (2.18). Tts proof is analogous to the proof
of (2.13) and will be omitted.

(2.18) ProPOSITION. Let X be a complen locally conver space and X*
its topological dual. Then the following conditions are equivalent:

(1) For each inmer product (-,-) defined on X, which is coordinatewise

. . dat s . .
continuous the funciion x| = (@, )2 is continuous.

(i) X has the strong faclorization property.

(iii) For each positive definite kernel the analogue of the Aronszajn—
Kolmogorov theorem (2.16) is true.

z,yeX,
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(iv) For each positive operator R e L(X,X*) there ewist a Hilbert
space H and a square root T € OL(X, H). Moreover, if H is minimal, then H
and T' are unique up to unitary equivalence.

3. Spaces with factorization property. These spaces were introduced
in [3]. Proposition (2.13) and Example (2.5) show that there exist locally
convex spaces without the factorization property. However, the class
of spaces with the factorization property is large and contains, for example,
barrelled spaces, bornological spaces, quasi-barrelled spaces, and DF-gpaces.
Consequently, it containg Banach spaces.

Let us denote

F — class of spaces with the factorization property,
&F — class of spaces with the strong factorization property,
PR — class of pseudo-barrelled spaces (X € #4# if each lower semi-
continuous and continuous on bounded subsets of X semi-
norm p on X is continuous),
# — class of barrelled spaces.

From the definition immediately follows that the barrelled spaces,

bornological spaces and quasi-barrelled spaces belongs to the class #4.

(3.1) ProrosITION. Hach pseudo-barrelled space has the factorization
property.

Proof. Let X be a pseudo-barrelled space and let R be a positive
operator from 0L (X, X*). We have to prove that the function = — (Bw) (x)
8 continuous. .

Congsider the operator B as a positive definite kernel on a singleton.
By Theorem (2.7) there exist a minimal Hilbert space H and an operator
T e L(X, H) which is continuous on bounded subsets of X and such that

R =T"T.

An analogous factorization of B may be obtained from the ecarlier algebraic
version of the dilation theorem ([6], Th. 1)
R =4%A, AeIL(X,F).
In view of the uniqueness property, H is unitary equivalent by U to the
completion. of the pre-Elilbert space F with the inner product (-,-) given
by formula (2) in [6] and 4 = UT.
Let us define on X a family of seminorms (p,),ep, <1 by the equality

(3.2) py(@) = |(y, 4o)|.

Note that each p,(-) is continuous on X. Indeed, uging the form of the

icm

Aronszajn-Kolmogorov type theorems 243

inner product and the operator 4, we have for a net 4, >

Py(2) = Iy, A,)| = (Bao) (2,)] 2 |(Boo) (@)] = |(y, 4B)] = p, (@)

where 2, € X generates y e ¥ in the sense of formula (1) in [6]. Hence the
new seminorm

(3.3) P (@) = |4z = S‘gl(y, 42)| = supp, ()

v v
llyl<1 Iyl

as the supremum of continuous seminorm is lower semicontinuous. Since
(3.4) P (@) = o) = ||UTz|| = |Tal,

the seminorm p () is continuous on bounded subsets of X, Hence, by the
definition of pseudo-barrelled spaces, the seminorm p(v) is continuous,
Thusr the function

@ > (Bz)(2) = (I"Tw)(s) = | Tl = p*(x)

i3 continmous and according to definition (2.11) X has the factorization
property. m

(3.5) PrROPOSITION. Each barrelled space has the strong factorization
property.

Proof. The proof is similar to the above one.

Let X be a barrelled space and R a positive operator from L (X, X*).
‘We prove that the function # — (R)(2) is continuous. Ohoose the space H,
operator A, seminorms p, () and p(2) a8 in the proof of (3.1). The semi-
norms p,(-) defined by (3.2) are continuous and its supremum p(-) (cf.
(3.3) and (3.4)) is lower semicontinuous. Since X is barrelled space, we
have that p (#) is continuous what in view of definition (2.11) shows that X
has the strong factorization property. m

Examples given in [3] show that:

(3.6) PrRoPOSITION ([3]).

(1) ¥7 ¢ #.

(2) 2% < &.

(B) PBNFF 2 .
(4) PR + PRNFF =+ SF.

4. Dilation theorems. Here we give some applications of kernel
theorems to the dilation theory. For the results of this type for the Hilbert
space case we refer to [11] and [9]. The Banach space case was studied
in [12] and [16].

Let 8 be a multiplicative semi-group and H a Hilbert space. The
operator valued function z(-): § — CL(H, H) = OL(H) is called a rep-
resentation if w(uv) = mw(u)n(v) for u, v eS. If § has a unit ¢, then = is
called wunital if m(¢) = Iz — the identity operator in H. .
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(4.1) DuriNirioN. Let X be a complex locally convex space, B
€ OL(X, H) and let #('): § - CL(H) be a representation of serhm-grou*p
Sin H. We say that #(-)is an R-dilation of kernel K(-,-): 8 x § — L(X, X*)
it
(4.2)

K (u,v) = B'n(v)*z(w)R, wu,vef.

Let us note that (4.2) implies that kernel K (-,-) is positive defir{ite
and satisfies the boundedness condition, i.e., there is a finite funetion
o: § — R* guch that

}f‘ (K(Wia S“k)mi)(ﬂ"’k) < o(s) 2 (K(“i: uk)wi) (o)

=1 ie=1

(4.3)

for all m, w,,...,u, 8 and #,..., 2, € X. o
" Now we generalize to the non-Banach space case the dilation theorem
given in [9], [12]. . .
(4.4) THEOREM. (General dilation theorem.) Let S be a unital semi-
group, X a complex locally convex space with the factorization p;"op.ert.y,
and E(-,): SX8 —~L(X,X*) a positive definite kernel which satisfics
condition (),
K(s,s)e CL(X, X¥)

If the kernel K (-,-) satisfies the boundedness condition (4.3), the'r_» K ( 5 °)

has an R-dilation which is a unital represemtation m of 8. The ommmahty

condition H = \/ n(s)R(X) determines H and () up fo unitary equivalence.
seS

for each se 8.

Proof. By Theorem (2.12) there exist a Hilbert space H and an
operator function 7'(-): § - OL(X, H) such that

K(u,v) =T*(v)T(u),
Following [9], [12] we define for s € § the operator

u,vel.

7(s) ZHT(M,)@. = D' T (su))a;

F=1 F=1
on a dense linear manifold of H = \/T(s)X. Condition (4.3) implics
that z(s) extends in a unique way to :re?s) e CL(H), Since
w(st) T(wye = T (stu)e = w(s) (T (tu)a) = m(s) (w(¢) T (w)a)
fors,t,u €8 and #eX and ‘
n(e)T(w)w = T(eu)w = T(u)z = Iy,
7(-) is a unital representation of § in H. Moreover,

K (us, vt) = T*(ot) T (us) = T*(t)m(v)*n(w)T(s), u,v,%,8¢€8.

icm
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Hweputi=s =¢and B = T (e), then we have
K (u,v) = R*z(v)*z(u)R.

Since the proof of uniqueness is standard, we omit them. m

If 8 is a *semi-group (ie., (st)* = s, & =5 and " =¢) and
K (4, v) = B(v*u), then Theorem (4.4) reduces to the extention of the
8z.-Nagy theorem proved in another way in [5].

(4.5) COROLLARY. (S8z.-Nagy dilation theorem.) Let 8 be a *-semi-group,
X o complex locally convex space with factorization property and B(-):
8 —~IL(X, X* positive definite function for which B(s*s) e OL(X, X*).
If B(-) satisfies condition (4.3), then B(-) has an R-dilation which is a wnital
*-representation m of S. The minimality condition determines H and = up to
unitary equivalence. )

(4.6) CoroOLLARY. (Naimark dilation theorem.) Let X be a complex
locally convex space with the Jactorization property. If ¥ is a positive
CL(X, X*)-valued measure on a measurable space (S, X), then F(-) has

. an R-dilation which is a spectral measure B(-). The minimality eondition

determines the Hilbert space H and spectral
equivalence.

Proof. Similar to that of Proposition 3 from [17], but we should
use Corollary (4.5).

(4.7) PROPOSITION. Let X be a somplex locally conver space and X*
its topological dual with the strong topology. Then each of conditions (i)~(iv)
Jrom Proposition (2.13) is equwalent to the following ones: )

(v) For each positive definite kernel the general dilation theorem (4.4)
holds. .

(vi) For each positive definite Sunction on a *-semi-group Sz.-Nagy
dilation theorem (4.5) holds. .

(vil) For each positive measure the Natmark dilation theorem (4.6)
holds. '

Proof. It is easy to observe that (iii) = (v) = (vi) = (vii) = (iv).

(4.8) Remark. In a similar way by Proposition (2.16) one may
obtain variants of the above results for locally convex spaces X with the
strong “factorization property.

measure B (-) up to wnitary
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Convexity, type and the three space problem

by
N. J. KALTON (Columbia, Mo.}*

Abstract. A twisted sum of two quasi-Banach spaces X and Y is a quasi-Banach
space Z with a closed subspace X, o X such that Z/X, o~ ¥.

‘We show that if X is p-convex and ¥ is ¢-convex where p = g, then Zis min(p ¢)
convex. Similarly, if X is a type p Banach space and ¥ is a type ¢ Banach space where
p % ¢ then Z is type min(p, g).

If X and ¥ are Banach spaces, we show that Z is log convez, i.e., for some 0 < oo

& 1
2 el (1+ 8 T ))

k=1

lleg+ .00 2Rl < G(

where ||+ ... + ll#pll = 1. Conversely, every log convex space is the quotient of a
subspace of a twisted sum of two Banach spaces.

If X and ¥ are type p Banach spaces (1 < p < 2) and one is the quotient of
a subspace of some Iy-space, then Z is log type p, i.e.,

1
1 1p
o surr S o b )

where [le}i? + ... -+ |lep|i? = 1. This result is best possible in a certain sense.

We also show that if p < 1 type p implies p-convexity, but if p = I a type I
space need not be convex. '

We investigate which Orlicz sequence spaces and Kothe sequence spaces are
A -spaces, i.e., such that every twisted sum with R is a direct sum.

1. Introduction. A quasi-Banach space Z is a twisted sum of X
and Y if it has a subspace X, == X suchthat Z/X, =~ Y. The so-called three
space problem is to study the properties of Z in terms of those of X and ¥.

In [1], Enflo, Lindenstrauss and Pisier showed that a Banach space
which is a twisted sum of two Hilbext spaces need not be a Hilbert space.
Independently, the author [6], Ribe [15] and Roberts [16] showed that
a twisted sum of a line and a Banach space need not be locally convex.
In [9] the author and Peck showed that these results are related by descri-
bing a general construction which shows that for every p, 0 < p < oo,
there is a twisted sum of 1, with I, which is not a direct sum. In particular,
for 0 << p << 1, there is a non p-convex space which is a twisted sum of
two p-convex spaces.

* University of Missouri. Research done while the author held visiting positions
at Michigan State University and the University of Illinois.
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