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On the representation of measurable functions by
maultiple trigonometrie series -

by
JAU-D. CHEN* and IN-L. HWANG (Taipei)* *

Abstract. It is proved that for every almost everywhere finite measurable
function f defined on a k-torus Iy can be represented by b k-fold trigonometric series
that is convergont to f almost everywhere by square summation. For % = 2, we show
that there exists a function ¥, continuous on 7', and such that the result of term-by-term
mixed differentiation of its double Fourier series iy a double trigonometric series
convergent to f almost everywhere by square summation. For higher dimensions we
have a similar result. .

1. Introduction. Answering a question posed by Lusin, Men’shov
[2], [4] proved that, for any measurable almost everywhere finite 2r-perio-
die function, there is a trigonometric series convergent to the given function
almost everywhere. Bary [2] strengthened Men’shov’s result, by showing
that for any f(»), measurable and finite almost everywhere on T; = [0, 2=],
there existy a function F(w) continuous on T, and such that I (z) — f(x)
almost everywhere and the result of term-by-term differentiation of the
Fourier series of I'(x) is a trigonometric series convergent to f(z) almost
everywhere. This result is very deep, since even for integrable functions
the Fourier series cannot in general be taken as the apparatus for represen-
ting summable functions [3]. X

In connection. with the above question for functions of several wvari-
ables, it is natural to ask whether every measurable almost everywhere
finite function f defined on the k-torus T', can be represented by a k-fold
trigonometric series convergent to f almost everywhere and summed
either by squares or by rectangles [57].

In the present paper, we give a confirmation of Men’shov’s theorem
on the existence of such a representation by a multiple trigonometric
series summed by squares. For notational simplicity, we treat the question
explicitly for the cuse of dimension 2.

* Supported in part by the National Science Couneil, R.0.C.
** We are grateful to Professor Casper Goffman for suggesting this problem.
Algo, we are thankful to Professors E. T. Y. Lee and T. C. Liu for helpful discussions.


GUEST


icm°®

290 J.-D. Chen and I.-L. Hwang

2. Preliminaries and notation. Consider the 2-torus T,= [0, 2x] x
X [0, 2n] of points (#, y). For F e L*(T,), let 8,,, 27 (%, y) be the rectangular
partial sum of the double Fourier series SF(xz,y) of I at (w,y), where
n, mz> 0. We shall make use of the standard eguality

1 )
BunB (@,9) = — [ F(u, 0)Dy(4—0) Dp(v—y) dudv,
7

where

Lo sin(e4(-)
Dy() = — Sems

It is easy to see the mixed differentiation

T8l (@,9) _
owdy

0D, (u—m) 0D, (v—y)
U, V) r” > dudv.

(2.1)

As is known (see [2], pp. 406—410), there exists continuous mon-
otonic function g(z), ¢g(0) =0, g(2=) = 1, constant in all the intervals
contiguous to some perfect set of measure zero in [0, 2w] for which

—int,
tim fommigtn =
hence, as shown in the proof of a theorem in [2], pp. 366-367, the Fourier—
Stieltjes series of g converges to zero almost everywhere. We ghall fix
such a function in this paper.
To any continuous function % on T, we can assign a function I,
as follows:

2n

(2.2) Ty (u,v) =fsz s) dids — g (v) ffh(t,s)dtds—
00 -0 0

v 2 2 2T
—g(w) [ [ B(t,s)dtds +g(u Vg (@) [ [ h(ts)dids,
00 ()
where (%, v) € Ty and g is the function stated above.
Algo, for convenience, in the following seetions woe uso tho same
letter ¢ for an absolute constant, which may be different from case
to case.;

3. Some essential lemmas Some basic tools are necessary for our
main result. First we rewrite a modification lemma due to Menw’shov:
Levma 1. Suppose [¢,d] = [0,2x], yeR, >0 and let »>8 be
an integer. Then there ewists a function p(w) and o closed set D such that
(8.1) w(w) is o continuous piecewise linear function on [0, 2%] and y(w) = 0

-
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oulside [c, d];
(3.2) lw@ <2yl in 0<a2<2n;
(3.3) 1f1p(w)dm\<s, 0< &< 2,

[
(3.4) p(@) =y in D,
where D < [0 a} and w (D) > (d—c)(L~5/v) (u, the Lebesgue measure
in R);
'f p(u) Dy, (10— d’l//} Olyl (0 =0),

(3.5)

I

for each @ e [0, 2], where O is an absolute constant.

Proof. The proof of this lemma is essentially the same as in [1],
pp. 488-504.

The following lemma is an generalization of the above on T,.

Lmvma 2. Suppose [¢,d]1x[a,b] < Ty, yeT, 6>0 and let v>8
be am integer. Then there ewists a continuous fmwtwn o(w,y) and o closed
set A such that

(3.1) T g, y) = p@A),

where w(x) i8 o funciion constructed as in Lemma 1 and A(y) is a continuous
piecewise Zmea/r Sfunction in [0, 2] vanishing owtside [a, b];

(3.2

(% — mdu]<0ne (n=1)

lple, ¥} < 200yl in 2,y < 2x;

&
(3.3 Iffﬂzp(w, y)dady| < 2me, 0< £, 7 < 2n;
00

(3.4) plo,y) =y i 4,

where A < [o, d1 X [a, b and py(A) > (d—0) (b—a) (L —B/v) (uy the Lebesgue

measure in R*);

(8.8")  the rectangular partial sums {8, ¢(
and for each (w,y) €Ty,

[Bum® (@, ¥)| < Ovly|  (n =0),
S (@, )| < On’e  (n>1, m > 0);
where O 48 an absolute constant.

Proof. Let w(x) and D be, respectively, the function and the closed
set constructed by Lemma 1. ‘

@, 1Y)} converge uniformly,
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Chooge 6 such that

1 (D) — (d——a Y(1—B[»)

2u,(D)

o< o<t (b—a).

Define A: [0, 2x] -+ B as.follows:

(y—a)jd, a<y<a-d,
. 1, a0 LYy b—0,
(8.6) Aly) == , ,
(b—y)6, b—0Ky=<h,
0, Y ¢ la,b].

Bet (e, y) = p@AW), @, y)eTy and 4 = DX [a}8,b -
that, as in [2], pp. 488-489, for ecach m and ¥y we have

W

So it is easy to sec that p(»,y) and A have the desived properties
(3.1)~(8.5").

The next lemma iz a fundamental tool for our main result, and it
geems interesting in itgelf. ' .

LmyvA 3. Let b be a continuous function on Ty, and let B, be defined
as i (2.2). Then we have

-6]. Note

D, (v—y)dv| < C.

(3.6") I(z,y) =0 on the boundary of T, and F, i3 continuous on T,

&
and ||F1|m<4sup{]fjht s)dids|: 0< &, n< 2n}, and also

(8.7) zf the rectangular partial swms {S @, ¥)} (n?p the square partial
sums {Smmh(m, y)}) converge umformlv, ih(m{ ’unf”1 ;(T 4/)}
Y

65’ 7,
-—m’;—a%jiﬂ}) converges 1o h(x,y) almost everywhere.

nm

(resp. {

Proof. The conclusion (3.6") follows immediately from the definition
of . It remains to prove (3.7').

From (2.1), integrating by parts and using the fact that 7, («,
on the boundary of T,, we obtain

EERY

a Sanh( ’ ?/)
dwﬁy

oD, 0
: (18— w) 3D, (v y) dud
ou o

—_ th (u, v)

an 2m

L[ oo

(16— ) Dy (v — ) dudo —
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27 2

~] D, (u—w)dg( uf fhu ) D, (v — ) dudo —

2 2w

mjD (v—y d(](wfj h(w, v) D, (4w — @) dudv -

ar I 21
"

'I'j D, (w—m)dg (v) f]),n(’l,’——’l[ dg (v) ffh %, v)dud'v]

[0

Note that

(1 — o) dudo

97‘\ 1..

trlicd T 27
J (w, 9).D, (v —y)dude  and f f
0 ¢ o

converge uniformly.
So the conelugsions follow from the fact that the Fourier-Stieltjes series
of g converges to O almost everywhere.

4. Main theorem. In this section we shall use the tools of Section 3
0 prove our main regult.

Trmonmm 1. For any fumction f, measurable and finite almost every-
where on Ty, there ewists an F continuous on Ty and such that the result
of term-by-term mized differentiation of the double Fourier sevies SF(w, y)
of I is a double trigonometric series convergent to f almost everywhere by -
square summation, that s, for a.e. (x,y)eT,,

lim

m—r00

8y (%5 Y) _ '
——W'“ = f(®, y).

Proof. Suppose o, = 1/[pn22"+*], 9, =

We divide the proof into four steps:

Step I. There exists a function ¢, continuous on T, and such that
ay(w, y) = f(z, ¥) Yy,

where ¥, = T, i closed and py(¥y) > 4n?—4%.
Ninee q; is continuons, there exists a step function

!
1 "“:Z}’sx.‘lw

ol

[5m2gn ] 41,

(4.9) in

18— alleo < o

(4.b) and  [IBille < lloalles -
€
whero {45}3_1 is a sequence of non-overlapping rectangles and (J 4, = Tz
e =1
Set 4, = [, dy] % [d,, ] (8 = 1,2, ..., ey). ’
o< < Tg,41 bC B Sequence of natural

nunhbers Wlneh we Wlll dof!no mductwoly, gec (4.8") and (4.h). Assume
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that

1
£ = pom (s =1,2,..., ¢).
8

On the bagis of Lemma 2, in which we suppose that
e, d1x [a,b] = [, ds1xX [, b,], e=185, v=9, y=19,

for each s =1,2,...,¢, we can find a continuous function ¢,(z,y)
and a closed set 4, such that

(4.1") @g(m, y) = v, (®)A,(y), where u,(x) iz a function as in Lemma 1
corresponding to [¢, d] = [0, d,], & = &, ¥ = 94, ¥ = vy, and 4,(y)
is a function like A(y) in the proof of Lemma 2 with [a, b] = [a,, b,];

(4.2') 2@, VI <2nlyl  n 0< o,y < 2m;
&7

(4.3) [ [ 7@, )iy | < 2me,,  0< &0 <2m;
[ I

(447 @5(#,y) = y, in 4, where

Ay = [0, ] X [@5, b,]  and  uy(A) > (dy— 6,) (b — @) (1 — -NE-),
. 1

- (4.5') the square partial sums {8,,,¢,(%,y)} converge uniformly, and for
each (z,y)eT,
s (2, )] < Orsly,l (M2 0),
18mm®e (2, ¥)| < Omile,|  (m=1).
Let Fy = F, as in (2.2). Then’

(4.6') F (=, y) = 0 on the boundary of T, and F, (z, ¥) is continuous on T,
and ||Fyll, < 8me,;

2
(4.7 lim —————————a SunTs (@, Y)
. M~>00 6m5y

=g,(w,y) for a.c. (,y)eT,.

By (4.7’) and Bgoroff’s theorem, for s =1, 2, ..., ¢, —1, there exists
a closed set B, = Ty, u,(B,) > 4n?—1/s? and n,,, > n, such that

8
, O 8,0 (@, y 1
(4.8 Z[Jg;af?l_’_)_%(m, y)]‘< ~ in B, for each m > my,,.
F=1
+ Set
€1
(4.c) Py =Y;n(lJ4y).
8=1
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°a
Then P, is closed and p,(Py) > 47?2 —1, since uy(¥,) > dn?—%and 3 uy(d,)
8§l
> 4m? (1 - ~§——) > 4wt —4,

1
Note that

1
(40) |f@, 9~ )o@, 9)|<d i P

Since Py is closed, thero exists a 6 > 0 such that the set

@ == {(wa y)eTy: d((”, y)’vpx) > 5}
is open and
1
Mg(G) > (1"- m)ﬂﬂ(Ta N.Pl).

We can choose finite non-overlapping closed rectangles A, iy, ..., 4;
in @ such that
Z"I'W , 1
(4.0) D) mld)> (1= g ) malTa~Py).
ama]+1

.

Therefore Ty~ | 4; can be covered by a finite number of non-
Rmar{-l' g
overlapping 1‘ectarclglcs Aygayoeny 4
1

Let fy = f— 3 ¢,. There exists a ¢ > 1 such that
gmal
(4.1) pa(fr L —a, Q14 > pa(di)(L—03), & <s<T.
Now sclect an integer g 4y > #,, and closed sets X, B, such that

%

(4.8) ]j?.»m(u»w)dg(u)l.ﬁwﬂmw-—y)dg(v)k? n X,

and
l"[
Ml (@ 1 . .
e ——%(w,y)]’<;;1- in B,
goal

‘where X, Py, m 2 Ny 4y and fa(Xy) > 4mt =1, py(H,) > 4n2—1]ef .

From (4.0), (4.f), we have

v ) 1
%p( U - glndy) > I"E(Tz"’Pﬂ”“"é?-

gmeql
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Algo, note that

v
,ua(f’l[:—()‘%, a1 (T, U A;)) Z s

syl

(Pa)-

Hence, for each s = ¢,+1,...,1, there is a continuous function o on T,
and a closed set Y, c 4 such that o) (z,y) = 0 for each (,¥) ¢ 4;,

(4.1) loglloa < a3, Z’ <s \<\ l,

g 0<s<l; gl

a(®,y) = fule,y) in Y,
where
1 , 1
/‘52( U ys)>4732'—‘§{' -
g6y +1
! 1
S Let ¥p,= U Y, and ay= > o. Then a, iy continuous on
.9:-51-\-1 §=ep-+1
T, and
!
(4.0 w=f=f—D¢ n X,

§=1

For e, < s < 1,, there exists a step function

s
' 1
ﬁs == 2_, VeiXay,

. T=1

such that 16, — oyl < o} 5 [fn < e, where {4,302, is a sequence

of non-overlapping rectangles U Ay = Ay and it Ay = [04;, Gy X [@ggy by
then

(4-3)

max {dsw - Gsz ? aw} ML/'Z—)"

~for each e, < s <<V, 1< 4y

We enumerate the rectangles 4., 1<i<
lowing way:

For ¢, < s <!’ we arrange them in the order A,, 41 -
V<8<l in the ovder Ay .y,..., 4,,.

Now we may write the sum of tho step functions as fa,

Jy {6 <081) in the fol-

. A“i; and for

]

l
(4.) D B= D vela
g=e)+1 s=e1+1
and
IBe— ol < 03, Bales < llaall-

icm°
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Stop LI By the same procedure ag in Step I, for the step function B,
wo can define: o geguence of mtegors Mgt < Mgy < oo < Mgy & SEQUEDCE
of pomm\ 1;11111 L {pﬂ L2 'n,,,}ﬁ ey by TWO sequences of contmuous
Iunctmns Patoe 1 {¥ B}ﬂ byt and twa sequences of closed sets {H,}
(A3 o1 Huuh that for ocach § == e, -1,
hold nnly it v, 18 replaced by v,

Now sot

.9=cl+1 7

. 65 properties (4. 1 ¥—(4.8")

Y n Yar U A,).

amybl

(4.¢')

Mhen By 18 cloned and g (Py) > 4=}, since

Ly £
. L Q X 5 1
pa(CXy) e A ot wndd ..}..J fo(A,)) = Z s (A,) (1m ;z—) > él'n:~—-§—
geabyell 5»01 1
[
@@y | f@y g 3 oulw, )| = | fulw,y)~ 2 gila,9)|<ob in Py
il 8y 1
We now show that for each (v, y) e X,
0*8 1 (20 1 4}
(4.k) FShal'a(at, 4) e Whenever 6y < 8 =5 6y and m 2N 4.
dmdy 9
Write
W W (o s
(4.1) Bl (0, y) [y Wi, y]
Qwdy it i
where
Pacae]
Wita, 9) = [ [ ¢4(w, 9) Dy(u—a) Dy (0 —y) dudo,
[t
2 2w
Wiw,y) ~j Dy (=) dg () [ [ (1, 9) Dy (0—y) dudo,
00
W (w, ) f D, J f (4, 0) Dyt~ ) duudw,
0 (L]
and
ar An
W, ) [ D4 ) iy (0 J Dy (v —y)dg () f f @, (%, ©) dudv.
Since d(X.‘“ Au) >0 af 8 =0y *|"17"'7 617 if As == [037 a‘] X [“57 s]? we

haive the following two cases:
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Y > (iii) & sequonce of rectangles {4,},
Case 1. @ ¢[0,—~5/V2, d,+4¥2]. Then (iv) threo soquences of continuous functions {}, {F.}, {e}, and
a sequence of step funclions {#},
(v) a sequence of real numbers {y},
(vi) five soqu(mces of closed sebs { ¥}, {4}, {Py}, {X;} and {B,}, such

Wi, )< le%(u (u—2)du|

1 _1 < 8% 6, wo havo the following:
< Ovglyyl ————(d,—¢,)  [see (3.2)] that for ¢, " .
sin (8/2V2) (4.17) @, (@, ) ==, (@) A,(y) Whore y, () is & function as in Lemma 1 cox-
1 oZsin(8/2V2) . rosponding o [0, @] = [0, 4], & = & = 1/2mg, y =y, v.=w;
< Onalyyl (8/273) Ty [see (4.3)] and 4,(y) is o function like A(y) in the proof of Lemma 2 with
sin f -
¢ [, 0] = [, b1, dy == [0gy @] X [&, b,], s0 that (J IAs = Ty;
K=, since |yl <q [see (40)], ' F=tp—1t
? (2" pa, ) <2yl I 0 <o,y <am
a3 _C . ¢
lW:(w,y)ig()'——é-vglyal <or (6=2,8)  [see (4g)] (5" Uf%(m,y)dwdy|< Srs,y 0 < £, 1< 2m;
00
and . : (44" 960, y) =, in 4, where
2 ¢ —_ 5
Wito 0 < () 20 <5 A sy, i nd)>m)1- )
Hence in this case we have (4.5") the square partial sums {8,,7,(%,¥)} converge uniformly, and for
B BpmFe(,y) | _ C each (v, 9) €Ty
owoy |7 2 s (@, 9| < Oyl (10> 0),
Case 2. y¢[a,—0/V2 ,b,+06[V2]. Here we can treat |Wi(x,y)l ’ 8 e (8, )] < Omley|  (m > 1); ’
(i =2,3, 4) in the same way as above, and for Wi(z,y) we have (4.6") Fy(2,y) = T, (0,y) =0 on the boundary of T, and is continuous
am by on T, and ||[F,l, < 8ne,;
: = / — ) d Ay () D, (v —y)dw ‘ :
Wi, y)| Inf (1) Dy, (40— ) 'MH&[ y (0) Dy (0 —9) (4.77) lim a,'si.”'!!a"a‘g_y(___‘_). =g (@, y) for a.e. (z,9)eLy;
00 .
1 ¢ _ .
— @) e e .B) and (3.4)]. 1 ,
< Ovyly,| (b, — a,) 075 <5 [sce (8.5) and (3.i)] (4.8") [6 ngiaq(,m’ ¥ v (@, y):”< = a8 m > n,,, and (z,y) € By,
Pon
For e;< § < ¢, we have i where H, = Ty and py(H,) > drt—1 /g
Wiz, y)l < Onlyal < 07’2 <02 (i =1,2,8) [see (4.)] (4a)
o,
and ) Y 2 @ in X, where (X)) > dn?~1[2", and 6, =1;
W2, ¥)] < 0i2me, << 0[2%, gl o
Hence (4.k) is proved. ' @by By= Veray 8=l < ohi1r  Bulle < llogllees
Step IIL. Inductively, we can obtain: RLL AR ";c
(i) & sequence of positive numbers {s,}, (4.0 Py =Tpn( U A),  ma(Py) > dn2—1 225
(ii) strictly increasing sequences of natural numbers {n}, {&} .

Bemejpy 1
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]

(4.4") |7@,9) = Dl e @

s .
K Oppn I

Py

(4X) X, <Py ua(Xy) > 4nt—1/2%"" and for each (z,y)e X,
P8 e (@4 1 ¢
W’;qp;y( 2 ¥) < Whenever €< 8" < 0y, 20 MMy,

Step IV. Let F = 2,14’ Then, by (4.6"") Zﬁ’ converges uniformly

8=al
on T,, and so T iy eontinuons on T,. Thuofore, for each m, we have

a“Sﬁ’mn"E,(""”‘7 ?/) i 2 aubymmfzﬂs (09’, .4/)
dwdy dmdy ’
Suppose @ =lmW, nlimX, . Then

00 N~+00

ta(€2) = 42,

since uy(H,) > 4dn®—1/n% and u,(X,) > 4n?
We show that for each (#,%)e @,

2
(4.9) lim Mm
Moo 0w dy
Tirst, (@, y) € 2 implies (», y) € X,, for n large enough, and so (, y)
€.P,. Observe that (4, d”) holds and that at most one term of the sum
oy

Y @(@,y) is non-zero. We conclude that
ane],_1+1 .

~1/2n1,

9 fa, ).

F@9) = D) (@, 9).

ga=1
Next, for (z, y) € 2 there exists a j, such that (z, y) € B, n X, whenever

n = jo.
Given & > 0, there ex1sts a ko sueh that (i

(iif) if j > ¢, then |Zj‘<p, @, Y)| < e
&

) 1/(ko—1) < &, ({i) By —1 3 fo,

Now
yﬁ%ﬁ;ﬁjﬂ*ﬂm’y]m ~ asm,gfa;“)_ 2 §(@5 )
<§5 nga;‘”’y 2% :?/‘ ‘asm’gig;:y)“_
“:laswgzy ) 9) ‘+‘Z% ’yl

icm
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If m> Moy s then there exists a j, ¢, < j<C
Ny < MK Ny g

epyy (B> k) such that

g SmmF(m ) ¢ i 28 F (@, )
———— —f(#,y)| < e et Lm0 X 0 YD
owdy 7o e Ll owdy
(see (4.8") and (4.k')).
‘Write
O o (5 Y) 1r<s .. '
et l) e [ YW, 0)] w i e
Y
0
[Wi(@, )| < Om?s, < Om? < (i=1,3),
3

Wi, 9)| OU% u)du| < 0z, < €2,

. Am 2T

(Wh@ I <| [ [ o, v)dudo| < 0j2°.
00
So

< i——;—é(]e.

8e==f4-1

b)

gmjt1

EZSmmFs (a} ? y)
owdy

Therefore we obtain the proof of (4.9), and the preof of our theorem
is complete.

5. Some remarks. The basic ideas for proving the theorem in the
lagt section are the lemmas stated in Section 3. So if we generalize these
lemmas to higher dimensions, the only difficulty being that the notation
becomes glightly complicated, we have the following theorem. :

TnmorsM 2. For any function f defined on the k-torus T, = [0, 2n] X
x{0,2n]x ... X[0,2x], measurable and finile a.e., there ewists a conti-
nuous function B on T such that

ke
Lol —— YR )

@
w400y . .. Oy, » @)

lim = f(®,, @gy...

Mro0

for a.e. (@y, @y, ..., x) €Ty, where Sy o T (1, Byy..., @) 18 the square
partial sum for the multiple Fourier series of F at (%, tay ..., Bp).

‘We still do not know whether every almost everywhere finite mea-
surable f defined on T can be represented by a k-fold (k> 2) firigono-
metric series convergent to f a.e., summed by rectangles or spheres. But
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a8 a parallel to the proof of our theorems, we can prove the Eollowmc
theorems:

TemorEM 3. For any function f defined on the k-torus Ty, measurable
and, finite a.e., there exists a continuous function I on T, such that
Lim ak“g'mlmz...frrl,yh.“b1 (mh Bopenvsy w/a)
my, Bml—-»oa 0%,0%5 ... Om,c
(752,350, 1)

= @y, By, 1)

Jor a.o. (y, Doy ..., 1) € Tpyy where Sy, I (@15 By ooy ) is the vectangu-
lar partial sum of the multiple Fourier series of I at (@1, Bayny ).

TagoreM 4. Let f be a function as in Theorem 3. Then there caists
a continuous funciion F on T, such thaot

15 p .
. a bSmlmg...m;l._lﬂ(‘pl7 Hogeney a’/ﬂ)
lim = f(mu Wayeony @)
mgfm;<d,ms—ro0 0040y ... 0wy,
( 3§5=1,2,000,k)

Jor a.e. (@, 20,...,2,) € Ty, where A is a fived positive consiant not less
than 1.

Therefore, any finite a.e. measurable function defined on T, can be
represented by a multiple trigonometric series a.c. in the sense of restricted
summability ([6], p. 68; [7], p. 308).
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