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M-structure and the Banach-Stone theorem

by

EHRHARD BEHRENDS and URSULA SCHMIDT-BICHLER (Berlin)

Abstract. We prove that, under certain conditions, the existence of an isometric
isomorphism between O (K, X) and (0D, X) implies that 4 x K is homeomorphic to
AxI for A in a family of completely regular spaces (K and L compact Hausdorff
spaces, X a real Banach space).

1. Introduction. Let X be a real Banach space and € a class of nonvoid
compact Hausdortf spaces. We say that X has the Banach—Stone - property
for € if, for K and L in €, the existence of an isometric isomorphism between
CO(K, X) and (L, X) (the spaces of continuous X-valued functions on
K resp. L) implies that K and L are homeomorphic. [3] contains
a complete description of those Banach spaces X which have the Banach—
Stone-property for all nonvoid compact Hausdorff spaces, provided that
the centralizer of X is finite dimensional (the M-finite Banach spaces).

In the following we consider Banach spaces for which the norm
topology and the strong operator topology are identical on the centralizer
(the M-finite Banach spaces are obviously contained in this class). For
these spaces X it is possible to caleulate the most important M-structure
properties of C(K,X) (centralizer, function module representation)
provided the corresponding properties of X are known (we note that these
results are a special case of theorems concerning the M-structure of tensor
products in [4]). Using this we get the following result: For every class
of nonvoid compact Hausdorff spaces ¢ and every Banach space X as
described above there is a family of completely regular spaces such that
the existence of an isometric isomorphism between C(K, X) and O(L, X)
implies that 4 x K is homeomorphic to 4 x L for 4 in this family (K and L
in %). It turns out that this theorem is a strong generalization of parts
of the results of the first-named author in [3].

2. Funection modules. We will use the terminology of [3]. In par-
ticular, X o ¥ for Banach spaces X and Y (resp. K = L for topological
spaces K and L) means that X and Y are isometrically isomorphic (resp. K
and L arec homeomorphic).
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Function modules have been introduced by Cunningham ([5], [67).
Note, however, that we use a slightly different definition.

2.1, DerINiTION. ([1], [5]) Let X be o real Banach space. A lincar
operator T': X — X is called M-bounded if there is & A > 0 such that the
following condition is satisfied:

(¢)) Tz is contained in every ball which containg - iz (all » e X)

Z(X), the centralizer of X means the collection of all M-bounded
operators on X. It is known that there exists an isometric algebra iso-
morphism between Z(X) and CKy for a suitable compact Hausdortf
space Ky.

2.2, DurINieIoN. L. A function module is a triple (K , (Xk)ks,g,i'),
where

(a) K is a nonvoid compact Hausdorff space;
(b) (X et is afamily of Bana,ch spaces, indexed by the points of K

(e) X is a closed subspace of ” X, (the direct product of the X,
T
provided with the supremum norm);

(d) X and the (Xi)ker have the following properties:
(1) % > |lw(%)|| is upper semicontinuous for every w € X ;
(ii) hao eX forhe C’K, veX (pointwise multiplication);
(iii) X, = {@(k)] @ e X} for k e K;
(v) B = (kX # {0});
(v) .’Z'Ae 4 (X) iff there is a function % € OK such that Tw = ha for
everyaz e X.

IL Two function modules (K, (X, X)y (Ki) (Xiset,, X.) are
called equivalent if there are

(i) an isometric isomorphism o : X1+Xz y

(ii) a homeomorphism ¢: kl»»fia,

(iif) isometric isomorphisms Uy? X} — Xipy such that w,(2(k))

= (Ja)(t(k)) for every weXy,keK,.

IIT. A function module (K (X pety X A) is called a function module
representation of a real Banach space X if X o~ x.

2.3. THEOREM.

- (a) Two function modules ( KI,(X,,)kekl,Xl) and (K,, (X2) Wy x,)
are equivalent iff X, cng.

Consequently, every two function module representations of a real Banach
space X are equivalent.
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(b) Bvery real Banach space X has a function module representation.

Proof. (a) Let (Kl, (Ziedatiyy X (), (Kz, (X ety X,,) be function mo-
dules, J: X 1 X an isometrie 1somorphlsm T+ JTJ ! is an isometric
algebra isomorphism from Z (Xl) onto Z (Xg) which induces an isometric
algebla isomorphism j from O‘K onto CKO (2.2.1.(d) implies that CckK
=7 X)). Note that J (hz) = j(h)Jz for h e CKI, w eXl. By the classical
Banach—Stone theorem there exists a homeomorphism i: 1%1_> f(z
such that j(h) (t(k,)) = h(k,) for every heOK,, k eX,. Let ke &,
be fixed. We define wu, : Xk0—>X,(ko by

Uy (@ (Bg)) 2 = (I) (t(Ko)

Uy, 18 well-defined, for let « EX1 be an element such that x(k,) = 0 (we
will show that Jz(i(%,)) = 0 in this case).

For ¢> 0, there is a neighbourhood U of k, such that [z(F)] <&
for k e U. Chooge a function k € 01% such that h(k,) =1 = [k, (k) =0
for k¢ U. It follows that HJm (t(o))| = | () T2 (t(ko))] < 17 (B) Il

= |lJ (he)}| < b < . Similarly it can be shown that Jug, (2 ko))ﬂ llz (Zeo) -
uy, is defined on all of Xk by 2.2.L(d)(ii]) so that (), is a family of
1sometr10 isomorphisms (the surjectuwty of the u; follows immediately
from the surjectivity of J and 2.2.L.(d)(iii)). By definition, J, ?, (%)ke,
define an equivalence. The reverse implication is valid by definition.

(b) The following construction is due to Cunningham. Let Ky be
a compact Hausdorff space with Z(X) 0Ky and Jx: Z(X)—~ OKx
an isometric algebra isomorphism. For ze X we define |z|: Kx— R
(the norm resolution of x) by

2| (k) : = inf {|T2]|| T eZ(X), Jx(

(all e X,).

T)(k) =1, Jx(T) > 0}.

It is easy to see that @+ |#|(k) is & seminorm on X for every ke Ky.
Let X, be the associated Banach space, i.e. the completion of X /{z] |#|(k)
= 0}, the quotient provided with the norm ||[z]l| := |»l(k) (all k € Kyx).

Define w: X — [] X, by
keK x

(@) (k) : = the equivalence class of # in X.

Then (Ex, (Xprexy 2 w(X) is & function module representation of X.

o= o(X) and 2.2.1.(a), (b), (¢) aze easily verified. (d)(i) is an immediate
consequence of the deflmtlons, (iii) is proved in [5] p. 621, (iv) follows
from the surjectivity of Jx. Note that T > wTw™" is an isometric iso-
morphism between Z(X) and Z(w(X)) and that o(Tx) = Jx(T)w(w) for
all T € Z(X) ( € X) by which we get (d)(ii) and (v).
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2.4. QoroLLARY. Let X and Y be Banach spaces with function module
representations (Iff y (Xet, X) resp. (ﬁ, (Xt f) If X ~ X, then
(l%, (X peizs X) and (f/, (YDt 1?) are equivalent.

2.5. ExAamMPLER. (a) Let L be a locally ecompact Hausdorff space.

X :=0,L = {f| f: L+ R, f continuous, f vanishes at infinity}.

In this case the centralizer of X consists exactly of the mappings
M,: f hf with h: L — Rbounded and continuous. Then (8L, (Xy)xeary X)
is a function module representation of X, where X, = Rresp. X, = {0}
according to whether k¥ € L or ke L\ L.

(b) Let X be M-finite with canonical M-decomposition X = MM @P,...
.. D MPr. The operators in Z(X) are just the operators of the form.

("’vi’ R w’l”’ wé? v

G 1 n,
) TE2 eesy Byy o nny TpT)

1,1 Ny el 1,1 e 0T
> (11, o uey QTLAYY, oy Gy o ..y GRTOPT)

- r
with aleR for ¢ =1,...,7, i =1,...,m,. With K:= {J{(e, 1),...
Q==1

sy {0y M)} and X, 1= M, (]AI, (Xp)rets X) is a function module rep-
resentation of X.

(¢} Let s be a fixed real number, 0 < [s| <1, X, :={f| fe([0,1],
F(0) = sf(1)}. In this case Z(X,) consists exactly of the operators of the
form f+>hf with hed[0,1],h(0) = h(1). Therefore Z(X,) =~ {h|h
e 0[0,1], h(0) = h(1)} == C{c*™* te[0,1]}. Let E = {&™ ¢ e[0,1]}
Xy =R (all 1e[0,1]) and X = {e¥™ ()| feX,,te]0,1]}. Then
(ﬁ s (X ket j) is a function module representation of X.

Similarly one can treat the case of more general G-gpaces which
are defined by a finite number of relations:

X ={fl feOK, flm) = 8,f(y); t =1,...,n}

(if some s, are equal to zero one has to consider Stone-Uech compacti-
fications of suitable guotients of X).

2.6. DerIiNITION. (cf. [4]) Let X be a real Banach space. A centralizer
norming system (cns) is a finite family @, ..., #, in X such that there
exigts a number r> 0 for which max{|Tz,|, ..., [|Tz,l} =T} (all
T e Z(X)). Obviously, X has a cns iff the norm topology and the strong
operator topology coincide on Z(X). It is eagy to see that, for function
modules (K, (X,)4e, X), X has a ens iff there are @y, ..., s, € X such
that ;ﬂné max |z, (k)| > 0.

€K i=1,,..,n
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9.7. BXAMPLES, (a) CoL has a cns iff L is compact.

(b) Bvery M-finite Banach space (in particular every reflexive space
[ex. 2 in [3], Section 1)] has a cns.

(¢) X, has a cns for 0 < 3| < 1.

2.8. TEHEOREM. Let (ff, (X)retes X) be a function module, K a nonvoid
compact Hausdorff space. We define

gy =X, Jor (2, ek xﬁ,

g :=ln({(h@e| heOK,zeX})” ((h@w)(p, k) :=h(@)a(k).

If X has a cns, then A
(@) (K x K, (X 1)) (w W)er x & Xg) 8 a function module,
) Xg =~ 0K, X).
Proof. (a) We have to verify the properties listed in 2.2.L.
(a), (b), (€), (@)(iii),(iv) are trivially satisfied.
(d) (i), (ii) are easy consequences of the well-known identity

O(E x K) = (linfh, ®hy| hy € OK, hy € OK})~ =~ CK ®,0K.

It remains to prove that (d)(v) is true. Cleaxly, for h e O(K x K), 2 > hz

is in the centralizer of Xy (this mapping is well-defined by (d)(ii), and
it gatisfies the defining property for M-bounded operators with 2 = ”h“):
Conversely, let T': iK+ XK be M-bounded. For p 51{, deﬁ]{e .Tp: XX
by (T,a)(k):= (T ®x))(p, k) (note that Tpaz e X since X is complete
and 2(p, ") eX for zelin{h@z| heCE,z e X}). It is easy to see that
every T, is M-bounded (in fact, T, satisfies 2.1 for the same Yalues as T
does). Consequently ’ohereAexis’cs, for p e K, a function k, € OK such that
T,x = hyw for every e X. Define hy: KX K — R by he(p, k):? by, (k)
We will show that hy is continuous and that Tz = hyz for 2z € Xg. Let

X e KB % K. #(p,, k) = 0. This implies that (T2) (Do, ko) = 0
ftflf ?c’ylffvov’sk&)om the s’em(i%:)’nt‘i,l)mity of (p, k) > llz(p, k)|l and Fhe fact
that T commutes with the operatorsz — hz: choose, for ¢ > 0, & nelgth}u--
hood U of (po, ko) such that le(p, B)| < & for (p, k) el and a funection
heC(K xlf) guch that h{(pe, ko) =1 = [all, h(p, k) =0 for (p, k)¢ U.
Then we have

I(T2) (Do, ko)l = I(AT2) (Poy ko)l < IRT2] = | Thell < TN kel < [Tl &)
Thus,forh e CK, @ € 22',
T'(h @) (Do) ko) = h(.’[’o)hpu(ko)m(ko)
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for every (p,, ko) € K x K (since [A @2 —h(po)(1 X 2)](po, ko) = 0). But
this means T(k®2z) = hyp(h®%) for every he 0K, z e X, 80 that the
linearity and continuity of 7' imply that Tz = hp2 for every 2 x « (note
that % is bounded by |[7]). For the proof of the continuity of h, we first
note that it is sufficient to show that p — T, is a continuous mapping
from X to Z(X) (since Z(X) = OK, O(K, OK) =~ O(K x K)). Let @y, ..., a,
ei’, r> 0 ag in 2.1. For every 2 e)ffK, P+ 2(p, ) i8 continuous from K
to X (this follows at once from the definition of XK). In particular, for
Po € K, ¢ > 0, there is a neighbourhood U of p, such that

ITA®2) (po, ) —T (A ®w)(p, ) <e for

- 1 .
Thig yields |7, — Tz,o < " sforevery p € U so that p — T, is continuous

t=1,...,n,peU.

at p,.

(b) This is an immediate consequence of C(XK, X) =~ 0K @,X (ex-
plicitly: O(K, X) = (lin{h ®=| h e OK, 5 « X})~, whereby in this case
(h®@x)(p) : = h(p)a).

2.9. QOROLLARY. Let X be a real Banach space having a cns. If (K ,
(Xeiy X) 45 a function module represemtation of X, then (K <K ,
(Ko, merx & XK) i8 a function module representation of O(K, X).

3. Function module properties.

3.1. DEFINITION. A function module property P is a rule which defines
for every function module (IKA.’ A X petts i) a subset P(l% 2 (XYt s X)
of K such that the following property holds:

It (K, (X ety Xl) and (K, (Xinetty» X,) are equivalent function
modules, the equivalence being defined by J, #, (u)ez, (f. 2.2), then

Py, (Xiery o) = t[P(Ky, (Xhe,» )]

For a function module (K, (X;)ez, X) let 2 (K, (X, X) be the

collection of all sets P(K,(Xp)er, X) for arbitrary function module
properties P.

3.2. Norx. It is easy to see ?hat 2 {1?? s (Xidrets x ) is always & complete
Boolean algebra of subsets of K.
3.3. BEXA:M:PLES. (?J) For function modules (i( y (Kedrets i) we define
Py (B, (Xpety X) 1= (k| ke K, X, o= X,}
N A (X; a fixed Banach space),
'Poontinuous(Kv (Xk)kaki X)

c= {k| keﬁ,lr—» lz (D)) is continuous at k for every = eﬁ},
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P(E, (et X) 1= (k] k € K, alimo()] = Lim ja()]

ok -k

L 12k
for every # € X} (ae[0,1] a fixed number),

-Pcounmblf (K7 (Xk)keﬁ’ -X) )
:={k| ke K, the neighbourhoodfilter of ¥ has a countable basis}.
In all these cases we have defined function module properties. This

follows immediately from 2.2.IL
(b) (cf. Ex. 2.5.(b)) Let ny, ..., N, be natural numbers, My, ..., M,

real nonzero Banach spaces, K= Ul {les 1)y «eey (0 M}y Xt
o=
=M, (e =1,...,7; ¥ =1,...,n0), X:= HAX(M). In this case

“ (eri)eK
3"(1% y (Xeipirks X) is the Boolean algebra generated by the sets
{(e, 1), .-, (0, W}y @ =1y..051
3.4. DEFNITION. Let @ be a class of nonvoid compact_ Hausdorff
gpaces. A function module property P is called %-hereditary if

P(E x K, (Xpo)pmersir Xx) = E X P(K, (Xt X)

for every K € # and every function module (ﬁ s (Xt X) for which X
has a cns (cf. 2.9).

PR, (Tueter X) 1= (P(E, (Xiety X))
el it ! iP is a @-hereditary function module property}
is a Boolean sub-algebra of 2 (K, (Xyeks X)-

@ 3 1 &

3.5. ExampLEs. Px , Poontinmonsy P° are @-hereditary with ¢ = the
clags of all nonvoid compact Hausdorff spaces”. o

Popuntante 18 ¢-hereditary with € = “the class of all nonvoid first
countable compact Hausdorff spaces”. ) X

Thig follows at onee from the definition of (B X K, (X5 p)perx2s X. x)-

Note that g’@(l%, (X)rets X) = 2K, (Xidisks X) in the case of
Example 3.3(b) (¢ an arbitrary clags of nonvoid compact Hausdorff
spaces).

4. A theorem of the Banach-Stone type.

41. TrmorEM. Let X be a real Banach space having & cns, € a class
of monwvoid compact Hausdorff spaces, (K, (Xk)k.ezg, X) @ fun.ction 'n'.md.ule
representation of X. Then, for K, L in %, the existence of an isometric iso-
morphism between C(K,X) and O(L, X) implies that AXK o~ A XL for
wwery 4 € P E, (Xdnetty X)- ' A A

yIn pwr;;lgul(,w, X hizs the Banach—Stone property for € if P K, (X ety X)
containg an clement consisting of & single point.
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Proof. Let P be a %-hereditary function module property,
J: 0(K, X) - O(L, X) an isometric isomorphism. By 2.9 and 2.4,

(K X I (X, 1), )emx R s XK) and (L x K, (Xﬁq,lc))(q,lc)eLxﬁ) XL) are equiv-
alent so that, by definition, K xP(K, (X)es, X) = P(E XK,

-

(X(p,lc))(p,k)er 74} XK)g’P(LA X k’ (-X(q,lc))(q,lc)efo{! XL) = LX-P(E7 (Xk)ksﬁi X)'

42. BxampLps. (a) K is always contained in (K, (X,).z, X)
go that we always may conclude that ExKE~EXL (this has firgt
been noted, for M-finite Banach spaces, in [2], th. 4.1).

(b) For an M-finite Banach space X = MNP, ... DM, O(K, X)
[~ 0(L7 X) implies that {(97 1),...,(e, 'n’e)} XK o2 {(Qi L,..., (e, ’ﬂe)} X
XL (¢ =1,...,7) (cf. 3.8). This is just the assertion of Theorem 4.4
in [2] for the compact case.

(e) X, hag the Banach~Stone property for the class of all nonvoid
eompact Hausdortf spaces for every |s| € J0, 1[. Note that P° (1% s (Xdueits X )
eqnmsts of a X gingle point for every function module representation
(K, (Xpie> X) of X, and o =s.

Analogously one can treat the case of arbitrary G-spaces (cf. 2.5).
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The localization principle for double Fourier series

by
CASPER GOFFMAN* and DANIEL WATERMAN** (Syracuse, N.Y.)

Abstract. Definitive results are obtained for localization by square and rectangu-
lar sums for the Fourier series of functions of 2 variables. For this purpose functions
of 4 bounded variation, ABV, and in particular, harmonic bounded variation, HBV,.
are defined for functions of 2 variables. It iz shown that if f e HBV, then localization
holds for rectangular sums. However, if ABYV & HBYV, there is an f e ABV for which
localization fails even for square sums.

This constrasts of course with the 1 variable case, where localization holds for
all summable functions. It differs as well from the case n > 3 where previously obtained.
definitive results are in a Sobolev space framework.

The Riemann localization principle for periodic functions of one
variable asserts that if an integrable function vanishes identically on
an open interval, then the partial sums of its Fourier series converge
uniformly to zero on any compact subset of that interval. For functions.
of several variables, strong additional assumptions are required in order
that the principle of localization may hold. Indeed, if we consider conver-
gence of the rectangular partial sums, S, = Supny,...onp of the Fourier-
geries of an integrable function defined on [—, =™, m > 1, localization
may fail even if the function is continuous. Here, by convergence of {8},
we mean the existence of lim S, as min {n;} — oo.

There are various alternatives one may pursue to obtain localization
theorems. Among these are:

(1) to require that f =0 on 2 larger set,

(2) to make additional global requirements on f,

(3) to replace convergence by other limiting procedures,

(4) to replace rectangular partial sums by other sums of terms of
the Fourier series,
and various combinations of these [14], Chap. 17.

Tor example, if we require that f =0 not only in the given interval,
put on every line in the direction of a coordinate axis and intersecting:
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