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Proof. Let P be a %-hereditary function module property,
J: 0(K, X) - O(L, X) an isometric isomorphism. By 2.9 and 2.4,

(K X I (X, 1), )emx R s XK) and (L x K, (Xﬁq,lc))(q,lc)eLxﬁ) XL) are equiv-
alent so that, by definition, K xP(K, (X)es, X) = P(E XK,

-

(X(p,lc))(p,k)er 74} XK)g’P(LA X k’ (-X(q,lc))(q,lc)efo{! XL) = LX-P(E7 (Xk)ksﬁi X)'

42. BxampLps. (a) K is always contained in (K, (X,).z, X)
go that we always may conclude that ExKE~EXL (this has firgt
been noted, for M-finite Banach spaces, in [2], th. 4.1).

(b) For an M-finite Banach space X = MNP, ... DM, O(K, X)
[~ 0(L7 X) implies that {(97 1),...,(e, 'n’e)} XK o2 {(Qi L,..., (e, ’ﬂe)} X
XL (¢ =1,...,7) (cf. 3.8). This is just the assertion of Theorem 4.4
in [2] for the compact case.

(e) X, hag the Banach~Stone property for the class of all nonvoid
eompact Hausdortf spaces for every |s| € J0, 1[. Note that P° (1% s (Xdueits X )
eqnmsts of a X gingle point for every function module representation
(K, (Xpie> X) of X, and o =s.

Analogously one can treat the case of arbitrary G-spaces (cf. 2.5).
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The localization principle for double Fourier series

by
CASPER GOFFMAN* and DANIEL WATERMAN** (Syracuse, N.Y.)

Abstract. Definitive results are obtained for localization by square and rectangu-
lar sums for the Fourier series of functions of 2 variables. For this purpose functions
of 4 bounded variation, ABV, and in particular, harmonic bounded variation, HBV,.
are defined for functions of 2 variables. It iz shown that if f e HBV, then localization
holds for rectangular sums. However, if ABYV & HBYV, there is an f e ABV for which
localization fails even for square sums.

This constrasts of course with the 1 variable case, where localization holds for
all summable functions. It differs as well from the case n > 3 where previously obtained.
definitive results are in a Sobolev space framework.

The Riemann localization principle for periodic functions of one
variable asserts that if an integrable function vanishes identically on
an open interval, then the partial sums of its Fourier series converge
uniformly to zero on any compact subset of that interval. For functions.
of several variables, strong additional assumptions are required in order
that the principle of localization may hold. Indeed, if we consider conver-
gence of the rectangular partial sums, S, = Supny,...onp of the Fourier-
geries of an integrable function defined on [—, =™, m > 1, localization
may fail even if the function is continuous. Here, by convergence of {8},
we mean the existence of lim S, as min {n;} — oo.

There are various alternatives one may pursue to obtain localization
theorems. Among these are:

(1) to require that f =0 on 2 larger set,

(2) to make additional global requirements on f,

(3) to replace convergence by other limiting procedures,

(4) to replace rectangular partial sums by other sums of terms of
the Fourier series,
and various combinations of these [14], Chap. 17.

Tor example, if we require that f =0 not only in the given interval,
put on every line in the direction of a coordinate axis and intersecting:

* Gupported in part by NSF grant MC376-21660.
** Qupported in part by NSF grant MCS77-00840.
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the interval, a set which is called a cross-neighborhood, then localization
holds for the rectangular partial sums in the original interval. On the
other hand, if we replace convergence of the rectangular partial sums by
{0, 1)-summability, then localization holds for bounded functions. ’

More recently, Igari [6] has shown that, for square partial sums (S,
with ny =y = ... ==n,;), the localization principle fails in the class
of continuous functions, while for square (C, 1) means, the localization
prineiple holds in I? if p = m—1, but fails if p < m—1,

Tonelli [10] introduced a notion of bounded variation which yielded
a pointwise convergence theorem for functions of two variables. This
theorem implies a pointwise localization prindiple: If a function of this
class vanishes on an open set, then the rectangular partial sums of its
Fourier geries converge to zero at each point of the set. He obtains the
usual (uniform) localization principle only with additional restrictive
hypotheses which are unnecessary in view of the results of this paper.

Cesari [1] improved on Tonelli’s results with his introduction of
the notion of generalized bounded variation which guarantees localization
and a.e. convergence and has had many other fruitful applications. This
notion may be expressed as follows [5], [9] for a function f defined on an
interval in R™:

f is measurable and, corregponding to each coordinate direction,
there is an equivalent function which is of bounded variation on a.e.
line in that direction, and whose total variation on those lines is an. inte-
grable function of the remaining (m —1) variables.

This class contains the Sobolev space W], which suggested to Goffman
and Liu [3] an approach to obtaining a localization principle for m > 2.
They have shown that the localization principle for square partial sums
holds in R™ for f € W}, if p > m—1, but fails to hold if p < m —1. Liun [7]
extended this to rectangular sums, but in this case localization holds if
Pp>m—1 and fails if p<m—1.

Another way in which one may attempt to generalize the COesari—
Tonelli result is by enlarging the class of funetions. A method which
S}lggests itself is that of replacing ordinary bounded variation (on the
lines in the coordinate directions) with other notions of bounded variation.

Let A = {1,} be a non-decreasing sequence of positive real numbers
such that 3'1/4, diverges. A function g defined on [a,b] < R* is said

to be of A-bounded variation (ABV) it 3'| g(a,)—g(b,}| /4, converges for
1

every sequence of non-overlapping intervals [a,, b,] = [«, b]. The supre-
mum of such sums i the total A-variation of g on [a, b]. If 4, = n, we
say that f is of harmonic bounded variation (HBV). The convergence and.
summability properties of Fourier series of functions of these classes
have been studied recently [11], [12], [13]. In particular, we note that

e ©
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the conclusion of the Dirichlet—Jordan theorem holds for functions in HBYV,
but not for larger ABV classes. The class HBV contains properly the
various classes of functions of generalized bounded variation introduced
by Wiener, L. C. Young, Garsia and Sawyer, and Salem, for which a gen-
eralized Dirichlet—Jordan theorem was known to hold.

In § 1 of this paper we shall show that if the Cesari variation is gen-
eralized by replacing ordinary variation by harmonic variation, then,
in R?, the localization prineiple for rectangular partial sums holds for
integrable functions of that class.

In proving this result we will make certain measurability and conti-
nuity assumptions. In §2 we will show that these assumptions cause
no loss in generality and that the measurable functions corresponding
to each coordinate direction can be chosen so that the total variation
on lines in that direction is minimized. We define the class 7% , to consist
of those fe I?, p>1, on an interval in R™, to which there correspond
equivalent f;, ¢ =1, ..., m. such that, on almost every line in the ith
coordinate direction, f; € ABV and ¥, the total A-variation of f; on these
lines, is in L% a>>1, as a function of the remaining (m —1)-variables.
For m > 2, we assume further that each f;, restricted to almost any line
in the ¢th coordinate direction, has, at each point, a value between the
upper and lower limits at that point. We also give an equivalent defini-
tion of the space which avoids the introduction of the m equivalent funet-
ions.

In § 3 we show that a norm may be defined on V4, 80 that it is a Banach
gpace with the property that fe V%, and f=g¢ ae if and only
it ge V%, and j|f—gl = 0. We are then able to show that, in R?, the
localization theorem of §1 is best possible in the sense that if ABV is
not contained in FLBV, then there is a function in V7, for which. the local-
ization principle for square partial sums does not hold.

§1. It f(w,y) is » function on I = [—m, =], let Vo{fiw, ), [a,8])
denote the total harmonic variation of f as a function of # (with y fixed)
on the interval [a, b]; v,(...) is similarly defined.

Our positive theorem on localization may be stated as follows:

TenormM 1. Let f be an integrable function on I amd let there exist
functions g and b, equivalent to f, such that V (g{(z,y), [—=, =]) and
Vy(h(z, 9), {—m, =]) are finite a.c. and are integrable functions of y and @,
respectively. Then the localization principle for rectangular partial sums
holds for f.

Tn the proof of this result we will make several assumptions that are
essential to our argument. In § 2 it will be made clear that these assump-
tions result in no loss of generality.
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We agsume that

(i) for a.e. ¥, g(w, y) is right continuous as a function of @ in [ — =, )
and left continuous at # = m,

(i) V.(g9(x,y), [a, b]) is & measurable function of y for any interval
[a,b] = [—m, n],
and. the analogous statements for the function .

Proof of Theorem 1. Let D, (s) = sin(m--})s/sints. We nmst
show that if f(w,y) =0 for (w,y)e[—4, 8, where 0 < 6 <=, then
for any ¢’ € (0, 6),

™ ™

f ff(w—}—s, y-+).D,,(8)D,(t)dsdt — 0

— —

uniformly for (x, y) € [— 6%, §'T. The integral in question can be written
ag the sum of integrals over the following domains:

{n> lo] > a} {n> @l > a} {6> |m|>a}
b 2 kl

=yl =6 b= lyl>a n2 |yl >0
2= ol > 8 =0 =0
az= |y = 0f’ mzlyl =6

where a € (0, 8). For a fixed g, we may show that the integral over F,
the union of the first three domains, tends uniformly to zero as a con-
sequence of much the same arguments as are used to establish the local-
ization principle for cross neighborhoods.

‘We have

[[f(@+3,y+1)Dyu(s) D, (1) ds
B

T m

= f ff(w-l—S, Y4 p(8; %) sin (m -+ §) s sin (n -+ §)tds dt

-7 -

where y(s,%) is of period 2w in each variable and, in [~ =, =T, equals
(sin}ssin4?)™ in B and zero elsewhere. Proceeding in & manner similar
to that employed in the one variable case [14], Chap. 2, Lemma 6.4,
we can show that this integral tends uniformly to zero as m, #n — co.

Our proof of the theorem will be complete when we show that a, M
and N can be chosen to make the integrals over the remaining portions
arbitrarily small uniformly for (w, y) e [— &', 8'F when m > M and n > N.

We will discuss only the integral over [0, a] x [8, =]. The remainder
can. be divided inte integrals over seven similar domains and can be
estimated in the same way.
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Fore < &' < @+ a, write

j

3

(@48, y+8)Dy,(8) D, (1) ds e

Pl

— [ Du)@ [ (-5, y+0—1(6", y+ 01 Dp()ds + [ Dy ()5 X
P 0 o

x [ (@', y-+D, (06 = P+Q.

Noting that g(z,¥) = f(», ¥) a.e., we will write
p =g(@+s,y+t)—g@,y+1),

indicating the dependence of  on any of its variables only to the extent
necessary to clarify the argument. Then, for a < 3n/(m-+1/2), we have

a
lflpo(s)dsl< 3w sup [y] < 8n*V,(g(@ +5,y+1), [0, a))
o I<s<a

for a.e. . For a > 3n/(m-+1/2), let k be the greatest integer guch that
2k+1)w/(m-+1/2) < a. Then

(2k+1)mc/(m+1/2)
= I+ I,+1I.

mi(m-+1/2) a

a

D, (s)ds = + +
of ¥m uf (2k+1)1:7{m+1.’2) al(m¥1/2)
For a.e. t.

|, < w2 sup [ngnzvs(g($+syy+t), [0,0:])

0<s<m/(m+1/2)
and, similarly,

sl < 2772Va(g(w+3’ y+1), [0, a‘]) .
Now

5k (il
ds

=y ) P '”(m:%) o )

geml
=

% , . R
1 s4m\ sin(s-+im) ds
="—m+‘;2f“”(m+%) . (sw)
=1 gin {———
2m+1

I

——

2k ™ . .
1 S s+m) gin s s
m-l-%z(—l)ufw(m—i—% sin (S 247
= 2m-+1
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- 8~+2imw o [8 T (2i=1)n
=_i_2kf w(m-Hz) _ P( m+ 3} ) )
PHET () O mads

2m4-1 m 3
(s+2in)__ (s+(2¢_—1)n)
- > mtd mt4 singds -
m-+ &) Sin(s—}-(%——_lﬁ
2m--1

s+ @i—Un o42im
k n —
R ﬁfw(s-kzin) E‘m( 2m+1 ) sm(zrm-}-l) _
) sin(s—i—(%——l)w) T sinsds
2m 1 2m+1)

= Ii+1I,.
The absolute value of the term in brackets in I} is

-
’ i—l)n) 4 @i—1)e

B

udt 2m+1

Hence, for a.e. t,

k
7] 1 ™ 2m+l

I < —— E.

<o go'ﬁg«'w! 7 @icy S Tl y+e), [0, a)).

If ose, (v, [a, b]) denotes the oscillation of y, as i
! he of a functio:
interval [a, ], we have " ot over the

[l() - (i) m(sfi’éim i

e

<osc,( 28,y 1 [(2”"1)“ (2i+1)‘ﬂ=]) F sing
g( +8, ¥+ )) m+% 9 m_}_% Jz (2i~1)7t ds
T om 1
2m+1
=% 1 08C,(...)
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Thus

k
Ll < 2 2 osea(g(w—ks, ?/»H),[

do]

(2i—1)n (2i4+1)m ,
m+3 ' m+} ])/(21—”1)
gZV,(g(:v-i-S,y—H),[O,“])

for ae. 1. We have now gshown that there is a constant € such that for a.e. t,
for every o' € (¢, v+ a), and for every m,

| [9Du()ds| < OV, (gl@+s, y+1), [0, a]).
0

Then

PI< O [ Vilglats,y+1), [0, 6] IDy(o)\dt
]

L3

<20 [Vow+s,y+1, 10,07

T

--—’(§-0_£ V,(gl@+s,1, 0, al)dt,

since ¢ is periodic. Now the integrand in this Jast expression is a non-
negative measurable function of ¢ bounded above by the integrable fun-
ction V,(g(s, 1), [—=, =]). For a.e. ?, Volglw+s,1),[0,a]) % 0-as a0
[13], Theorem 3. Hence, given s > 0, there is an a(e, 2) > 0 such that

[Pl < &

for every y, m, and n, if 0 < a< a(s, @) and 2 < 2’ < @+a.
T <E<F <®+a/2 and a is such that F —% < a < a/2, then

[Dawas [ (9@-+5, v +0-0(F, v +91D(0) a3
; .

0

™

Ll
-<-"g"0 { V(g (&5, 1), [0, a])dts.% f Vilg(w-s,1), [0,a))dt < e

if 0 < a < a(e, ®). For every ze[—¢', §'] choose a positive a(x) < }min
{a(e,w), 6— &'}, Then the -collection of intervals, (=, w—[—a(w)}l
we(—0, 6’)} hag a finite subset which, with [— ¢/, — & +a(—d')] and
[8, & +a(8)] is a covering of [— ¢, 6']. Choose A >0 to be less than
one-half the minimum distance between distinct endpoints of intervals
in this covering and so that 26’/ is an integer. Congider the intervals
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[—&Fid, —&"-(i+1)4], 4 =0,1,...,28'/4. In each interval choose
&; > — 8’ 4-i4 such that f(;,y) e L'(y). I e[~ ¢, 6'], then for some
4, 0 <@;—x < 24. There is then an interval of the covering, whose end-
jc%oints we will denote by & and £+ a(£), such that & <o < o, < E+ta(é)
Then

™ 24
| [ Da) [ [g(@+8,9+) g0y + 1)1 Dyp(s)ds | < o
] 0

since § <o <y < £-+a(8) <<

6+g‘(le”§‘)“ and & —o <24 < ae, §)[2.

Choosing @ = 24, we see that, for any (@, ¥)e [—6, 87,
[Pl <&

if #" is chosen to be the appropriate ;.
Choosing 2’ = »;, we have

Q! = | J Pu(e)ds [S(os,y+9) D) dt] < = ,,f fl@y, y+0D, () dt| < e

if n>Ny(e) for —8'<y<d by the Riemann localization principle
for functions of one variable. Setting

N(e) = max{N,(e)| ¢ =0,...,248'/4},
we have

Rl <e
for (z,y)e[— &', 0P ifn> N(c). m

§ 2. Our goals in this section are to show that:

(i) the assumptions (i) and (ii) of § 1 cause no logs in generality,

(i) we may dispense with the functions Ji in the definition of V7 ,.

It we were to assume f to be continuous, the delicate congiderations
of this section would become unnecessary. However, the functions we
consider may be highly discontinuous. Indeed, there are functions of
generalized bounded variation in the sense of Oesari all of whose equiv-
alent functions are nowhere continuous.

The following two lemmas concerning functions in ABV have recently
been established [8]. Note that functions in ABV have only simple discon'-
tinuities. A function f, with a simple discontinuity at @, is said to have
an internal saltus at o if liltl.l.inff(t) < f(o) < Bmsupf(2).

(25

LEMM.A 1. If o [.a,, b]— R is in ABV and has an internal saltus
ai each point of discontinuity, then the total A-variation of a is independent
of the values of a at the points of discontinuity.

icm°®
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Levma 2. If a: [a, b] — R' is in ABV and a(x) = a(v) ot each point
of continuity of a and has an internal saltus at each point of discomtinuity,
then ais in ABYV and its total A-variation is less than that of a.

Let I be an interval in R™ and let T; = 3,(2y, .y By g, Byygy oeny B)
be the (non-empty) intersection of I and the line through (=, ..., %,_,,
0,2;,...,2,) in the direcction of the ith coordinate axis. If f: I - R,
V,(f) will denote the total A-variation of f on an I,, so that V,(f) is a fune-
tion of the (m—1) variables @;, j  ¢. We may sot V,(f) = co for those I,
on which f is not in ABV. When f restricted to I, is continuous at z, we
will say that f is linearly continuous at @ on I, or has » as a point of linear
continuity. If f is right or left continuous at #, or diseontinuous at , anal-
ogous terminology is employed.

A function f is in class V, if it is measurable and there exist corre-
sponding functions f;, © =1, ..., m, equivalent to f, such that V,(f,) < oo
a.e. for every 4.

A function f is in class V% ., p > 1, a>1,iffe V,, fe L7 V,(f) e L®
for every 4, and if, for m > 2, each f; hag an internal saltus at its points
of linear discontinuity on each I; for which V,(f)) < cc.

Suppose now that f is a measurable function on I and V,(f) < oo a.e.
Let L be the union of the I; on which V,(f) = co. Restricting f to an I,
in I°, f has only simple discontinuitics, each of which is an approximate
discontinuity of f as & function of #;. It is known that the set of points
in I at which & measurable function is not approximately continuous in
& particular variable is a set of measure zero [2], 3. 13 (4). Letting 4 be
the set of points at which f is not approximately continuous as a function
of x;, we see that the points at which f is discontinuous as a function of x;
are contained in 4 U L. We have, as a consequence, the following result.

LemwmA 3. If f is measurable and V,(f} < oo a.e., then f is continuous
a.e. as a function of w;.

The next result iz essential to what follows, but ity proof is quite
technical and so we defer it to the end of this section. It must be empha-
sized that this result is for m = 2. At the end of its proof we will make
gsome remarks on the case m > 2.

Let f;y4 == 1,2, be the corresponding functions of fe V4. We will
say that a real number a has property 4, if one of the following is satisfied :
(i) on almost every l;, f, is linearly right continuous at &, = «,

(ii) on almost every ;, f; is linearly left continuous at @; = a.

Let V,(f, [a, b]) denote the total A-variation of a function fon a seg-
ment a <o, << b of an .

TarorEM 2.1, Let fe V, and f;y i = 1,2, be the corresponding func-
tions. If an f; has an internal sallus at each of its points of linear disconti-

4 — Studia Mathematica LIXIX, 1
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nuity on the 1, for which V(f) < oo, then the function V,(f;, [a,d]) is
measurable for every [a, b] such that both & and b have property A,;.

If we make agsumption (i) of § 1, then this theorem shows that assamp-
tion (ii) is satisfied.

The continuity condition in this theorem may not seem natural,
but the following simple cxample shows that it is.

Let B be a non-measurable subset of [0, 1]. Define f on [0, 1] %[0, 1]
by
1 i w>%forifo=
0  otherwise.

2and y =0
flo,y) =

Then f is meagurable, satisfies the saltus condition, and its total A-vari-
ation is 1/A, on each horizontal line and 0 on all but one vertical line, but
V4 (f, [0, 1/2]) is not measurable.

We are now able to prove a theorem which justifies our assumption (i)
of §1.

TrnorEM 2.2. Let f e V4 and let f;,7 =1, ..., m, be the corresponding
fumctions. If fi(w) = f(@) at each point of linear comtinuity on the I, for
which V,(f;) < oo and has an internal saltus at the points of limear discon-
tinuity on those 1, then Fiy i =1,...,m, are also corresponding functions

or f.
d fIf fe Vo, then |Vilfley @ =1,...,m, are minimal wvalues for
these morms over the dlass of corresponding functions.

Proof of Theorem 2.2. From Lemma 3 we sce that {x| f;(x) = f;(=)}
has measure zero, so that f; is equivalent to f. If I, is such that V,(f;) < oo,
then by Lemma 2, V() < V.(f,). Hence the f;, ¢ =1, ..., m, are corre-
sponding functions.

Let fe V%, and ¢g;, ¢ =1,...,m be another set of corresponding
tunetions. For any 4, on almost every I, V,(f,) < oo, Vi(g;) < oo, and
fil@) = f(@) = g;() a.e. (). It is elementary then that, for those I, f;
and g, have the same set of non-removable linear discontinuities and,
therefore, that fi( () = g,,(w) at each point of linear continuity of g,. Then,
by Lemma 2, V,( f) < Vi(g,) for those l, I¥f m =2, by Theorem 2.1,
V) is measurable For m>2, Vi) = Vi(f) = V,(g;) ae. Hence
ivi -ﬁ)”a g ”Vi g’i)”a

The following lemma provides the basis for our simplification of
the definitions of ¥V, and V% ..

LemMa 4. If f is measurable and, for almost every 1,, there is & function
in ABV on 1, with total A-variation V which is equivalent to f on 1, then
there exisis an f = f a.e. such that V(f) < V < oo a.e, and, on the 1, for

which Vi(F) < oo, f has an internal saltus af each of its points -of linear
discontimuity.
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Proof. Without loss of generality, we may set ¢ =1 and write
@ =01, Y = (Bayerey By

There is a set Z of (m —1)-dimensional measure zero such that, for
y ¢ Z, there is a function g,(2) e ABV and f(#, y) = g,(%) a.e. (v). We
may assume that V,(f) = o if y €Z.

Let [, b] be the projection of I on the X-axis. For y € Z, let f(w, ¥)
= f(x, y). For y ¢ Z, let

gyla--), v =a,
gy(b )s % =b,
tyle—, y)+g(= » & (a,b).

J@,y) =
+, 9],

It I(x) = [x—h,x-+Rk]N[a,b], h>0, we see that, for y¢Z and
I, = I(2),

7w, y) = hm-——— )t = Jim f 1, y)at.

fla 9) = im - f 0 77 [

Suppose y ¢ Z and f is approximately continuous in # at (%,, ¥). Then there
is aset B = R', having density one at @,, and such thab

9y (0) = F(@o, y)+o0(1)

as T — @, within E. Since g, (¢) is bounded, as & — 0 we have, for I) = I, (%),

1 1
e Bt = —— eit—
A ,hf W% = 7] ,hnf,, A |

pOEC
= (F(@0, 1)+ o(1)) L2207

LN B
T HO P = fla ) +o(L).

Thus Fwe, y) = f(®y, ¥). Since f is a.e. approximately continuous in x
and [@, b] XZ hag meagure zero, we have f = f a.e. For y ¢ Z, we note
that f(w,y) = g,(») at each point of continuity of g,(») and is either
continuous or has an internal saltus elsewhere. By Lemma 2, V,(F) < V(g,),
the total A-variation of g,, for y ¢ Z. =

The next theorem. shows that we can dispense with the notion of
“corresponding functions” in the definition of V, and V% ..

THBOREM 2.3. feV, ¢f and only if f is measurable and, for each
iy 4 =1,...,m, on almost every 1, f is equivalent to a function in ABV.

fe V5, if and only if f e L* and, for each ¢, i =1,..., m, on almost
every 1;, f i8 equivalent to a function in ABV (having, if m > 2, an internal
salius at points of discontinuily) whose total A-variation, as a function of
the remaining (m — 1)y-variables, is in L°.
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Proof of Theorem 2.3. It is clear that functions in ¥, or V%,
have the indicated properties. We will show the converse.

If, on almost every I, f is equivalent to a funetion in ABV, then
Lemma 4 asserts the existence of f; = fa.e. in I and such that V(f}) < o
a.e. Thus f;, ¢ =1,..., m, are corresponding functions and f e V,.

If we assume also that the total A-variation V; of the function in ABV,
which is equivalent to f on I, is in L% then by Lemma 4, if m = 2,
V:(f) < V, a.e. and Theorem 2.1 implies that V,;(7;) is meagurable. Hence
WWeflla < IVill.e I m > 2, then Lemma 1 implies that V(f) = V.,
and, therefore, V,(f;) e " m

We turn now to the proof of Theorem 2.1.

A function f will be said to be almost continuous at a point if there
is a set of measure zero such that the restriction of f to the complement
of that set iy continuous at the point. Almost lower (and upper) semicon-
tinuity are similarly defined.

Lemma 5. If f is measurable, equivalent to g in I, and V,(g) < co a.e.,
then f is almost continuous in ; a.e.

Proof. By Lemma 3, g is continuous in »; a.e., say on the set 4.
Let B = {o| f(x) = g(»)}. Let ¢ be the union of the I, on which f(z)
= g(x) a.e. If w e ANBNC, a set of full measure, then f is almost conti-
nuous at # in the variable ;.

COROLLARY. A function in V 4 is almost continuous in each @, a.e.

LemwvA 6. Let fe V, on I = I; X I, with corresponding functions f;,
1 =1, 2. If an f; has en internal saltus at each of its points of linear discon-
tenuity on the I, for which V,(f;) < oo, then for [a, b] < I, and such that,
on a.e. l;, f; is right continuous at a and left continuous at b, the fumction
Vi(fiy (@, b]) is almost lower semicontinuous a.e.

Proof. Let us choose ¢ =1 and write (x,y) = (v, »,) and g(v, y)
= fi(®y, @3). Let A <= I, be the set of y, € I, such that, as a function of
@, g(®,Y,) € ABV, is right continuous at # = a and left continuous at
@ = b, and, as a function of y, g(», ¥) is almost continuous at y, for almost
every . By the corollary to Lemma 5, we see that 4 has full measure.
Fix 9, A. Then

V(yo) = Vi(g(, 90), [a,5]) < oo.

For any & > 0, according to Lemma 1 there are non-overlapping intervals
[a;, 4] = [a,b], j =1,...,n, such that g(w,y,) is continuous in » and
almost continuous in y at each (a;, ¥,), (b;, y,) and

n

2 lg(a;, yo) —g(3;, yo)lll} > V(yo)—e/2.

1

icm
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There is a 6 and a set Z < I, of measure zero such that, if B = {y| V,(g)
< oo}, then y € B—Z and |y—y,| < 8 imply

V) = D lg(ay, 9)—g(by, )1 14> V(go) —e.
1

Thus V is almost lower semicontinuous at y,.

Lemma 7. If a function ¢ is defined on an interval in R* and is almost
lower semicontinuous a.e., then ¢ is measurable.

Proof. Suppose ¢ is almost lower scmicontinuous exeept on Z,
a seb of measure zero. Let {I,} be the intervals with rational endpoints.
Suppose k € R' and &, ¢ Z such that ¢ (o) > &. Then for some n = n(k, @),
there is & set Z, of meagure zero such that ¢ (x) > & for # € I, —Z,,. Thus,
it & = {nk,)| p@) >k and Z’' = {z| p(2) > k}nZ, then

&) p@) >k} =2Z'v( L}, (I, —2,).

which is measurable.

Proof of Theorem 2.1. We use the notation of the proof of Lemma 6
and consider g = f,. If we suppose that for almost every y for which
Vi(g) < oo, g(%, ¥), a8 o function of #, is right continuous at (a, y) and
left continuous at (b, y), then by Lemma 6, V,(g, [a, b)) is almost lower
semicontinuous a.e. and is, therefore, by Lemma 7, also measurable.
There are three other cages. We will consider only one; the others may be
treated analogously.

Suppose that, for almost every y for which V,(g) < oo, g(2,¥), a8
o function of «, is right continuous at (a4, y) and at (b, y).

By Lemma 3, the set 4 of » for which g(=, y) is continuous in = for
almost every y has full measure. Choose b,e 4, n =1,2,..., so that
b, b. ¥or each n, V, = Vy(g, [4,b,]) I8 a measurable function of y.
Let Z, <= I, be the set of measure zero consisting of those y for which
g(@, y) is not continuous in @ at @ = b,. Let Z, = I, be the set of measure
zero consisting of those y for which g(w,y) is not right continuous at

@ = b, Then if y ¢ OZ,,, we have V,(y) \ V(y); hence V is measurable. m
[]

A result analogous to Theorem 2.1, but for m > 2, would require
% condition implying that the function is almost continuous ag a function
of (m—1) variables on almost all coordinate hyperplanes. Such a condi-
tion hag appeared in [3] and [4] in work related to absolutely continuous
functions, i.e., to functions in Sobolev spaces Wj. Functions in Wj are
(m~1) continuous if p > m—1. In our present getting it is not known
what further conditions on f imply almost (m—1) continuity.
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§ 3. In the first section of this paper we showed that the localiz-
ation principle for rectangular partial sums hold for the class Vi, in R
(H = {n}). The following theorem asserts that this result is best possible
in a certain sense.

TrrRoREM 3.1. If ABYV is not contained in HBYV, then the localization
property for square partial sums does not hold for the class V| in R

In proving this vesult we use the fact that V7 ,, with a suitable norm,
is & Banach. space. Thig is a consequence of our final result.

For fe V% ,, choose corresponding functions f,, ¢ =1, ..., m, to
be right continnous for —= <@, < = and left continuous at @, = = on
almost every I,. Let

W lape = 1o+ 3 1Vl £l

de=l

Note that if f e V% , with f; 8o chogen and ¢ = f a.e., then the f; are suit-
able corresponding functions for g,ge€ Ve and " |f—glape = 0.
Conversely, if g € 7% , and |f—gll4p« = 0, then f = ¢ a.e. and f e V4, a-
‘We see then that we may congider the elements of V7 , to be equivalence
classes of a.e. equal functions.

Our final result is the following

TeEBOREM 3.2. V% , is a Banach space with norm |- lla,p,a¢

We turn now to the proof of Theorem 3.1 assuming Theorem 3.2
to be valid. The following lemma has been established recently [8]. We
include its proof for the sake of completeness.

n n
Levva 8. If ABYV is not contained in HBYV, then D1k # O(31/4).

1 1
Proof. The hypothesis implies that there is a real sequence {a,},

a, 0, such that Zlf%/}*n < oo, but %‘,‘%/'n = oo, If we suppose that

jl/k< oi‘ 1[4,
1 1

for alln, then ,
n n-1 k n
Dl = 3 311} (= )+ D1/) a,
1 1 1 1

n~1 &k

<03 (Sun) uann o[ S8 o =0 St
T T 1 !

implying 3 a,/n < oo, contrary to our hypothesis. =
1

Proof of Theorem 3.1. Let I denote the square [—m, =] I
the square [—w/2, n/2]%, and % the characteristic function of I— I7.

icm

©
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It 8,,(X,f) is the nth square partial sum of the Fourier series of f at
X = (m, y), define a linear operator on V7, by

To(9) = 8pn(0, b-g).

Tt the localization principle for square partial sums holds in VY ,, then
T, (g)—~ 0 a8 n—> oo for overy g € V3, implying that {Z,} is a bounded
sequence of operators. Let

fn = gignum D, ().D,,(y).
Then.

an
Ifullz,s = 47287 311k,
1

falla,: = 4% 87‘:2 1 /2.
1

Let g, = fu/Ifulla,,:- There is a ¢ > 0 such that

1 ™ ™
L) = f ) f h(@, 9) 1D, (@) D, ()| dody > Ologn
for large . Thus
Clogn
Ty (g,) > — e # 0(1)
dn24-8m 31 /A,
1

ag % - oo, in view of Lemma 8. Thus {T',} is not a bounded sequence. m
Proof of Theorem 3.2. We will show only that 7% , is complete.
It is clear that V4 , is a linear space and verification of the prope}*ties
of the norm is straightforward. We treat the case m = 2, since it is entirely
typical. The facts used concerning the space ABV are known [11]; [13].
Oongider - {f,} Cauchy convergent in V%, on I = [—m,n]" Let
G = (Fu)1s by == (fo)s Do the corresponding functions, chosen as z»boye.
If f is an LP-Lnit of {f,}, let {F,} be a subsequence of {f,} converging
a.c. to f and {@,} the corresponding subsequence of {g,}.
For every k € Z* thero is a least ny, in Z+ such that

[Vi@—Gn)ay <1/3* & m,n>m,.

Thus
[ V@, Gy <1[3* for k=1,2,..
Let

Ek == {?/| .VJ. (Gn Gnk) > 2"‘7&‘/‘1}'

T
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Then ‘
| < (2/3)*
and
%
(*) 2/ V]‘(G”k-u_Gf%)

1
converges of y¢ U B, for some N. Since
k>N

U E,Cf—->0 ag N - oo,
k>N

the sories (*).eonverges for almost every y. Henece, for & > j and almost
every y, as k,j-> oo,

(ﬂuk) Vj (G“k —-an) < .Vl(G”j—H-—G”J) -|~ e + Vl(Gnk ~,

' 7‘__1) — 0.
Now I, — f a.e. implies &, — f a.c. Thus, for almost every y, {@,,} converges
for some @, which, with (#x), implies that {Gnk} converges in ABV ag a fune-
tion of ®, for almost every y, to a ABV function g(,y). For such y, g
is right continuous for —w <2 < = and left continuous at # = =, since
convergence in ABV implies uniform convergence. Since, for almost
every v,

lim, Vl (gn - Gnk)

Frc0

and
lim Vl (Gnk) = Vl(g) ’

k=00

we see that V,(g,—g¢) and V,(g) are measurable functions. Given &> 0,
we have

[Vigu—g)ay < limint [ V(g,—G,)dy < e
e OO
if » i3 sufficiently large. We must show that V,(g) € L? but
[ 7ig)ay <limint [ V(& )dy < oo
Je—00
sinee
JIVi(6) = Vi (G 1"dy < [ V36, — G, ) Ay > 0
a8 k,j— oo, implying that {V.(@,,)} converges in L°

In the same fashion, we may show that there is an » = f a.e., with
the appropriate continuity properties and such that

Ve —B)llo 0
and V,(h) e L. Then fe V% , with corresponding functions g and B,

11400 = Ifllp+ 1V (@ lat+ Vs (B,
and

Ifo—~Fllap,e =0,
a8 was to be shown. m
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