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Abstract. Let G be a locally compact abelian group. For a closed subset E of
the dual group & we denote by L%(G) the space of all essentially bounded measurable
functions with their Fourier transforms (which are pseudomeasures on é) supported
by E. As & with a diserete topology is a dual of é, the Bohr compactification of @,
we may consider Ly (é) ag well. Our main theorem is that if  is closed and scattered,
that is, if it contains no non-empty perfect subset, then the Banach spaces LZ @&
and L% (@) are isometric. This isometry is canonical in the following semse: if m is
a topological mean on & and if F e LF (é) corresponds to f € Lz (G) by this map, then
Fy) = m(f7) for every ye@.

Introduction. For a given f e L®(G) (G'being locally compact abelian
group) we consider its “Fourier series” with respect to some topological
mean m on G: ‘ ‘

(%) 2 m(fD) x-
26

Tt is not difficult to see that there are only countably many y such that
m(f7) # 0 and, moreover, there exists an F e L*(§), @ being the Bohr
compactification of &, such that (+) is just the Fourier series of F. Tn
general, of course (+) depends on the choice of the mean m and does not
determine f uniquely. But this turns out to be the case under some ad-
ditional conditions on f, e.g. if the spectrum of f is scattered, as we ghall
see later; so if B < & is closed and scatbered, we obtain an injective map:

I8(@) s f> F e I3(G).

‘Yt has been proved by Mrs. Lust-Piquard that this map is an isometry

of the Banach spaces LZ(G) and L%(@) for F countable and discrete.
We generalize this to an arbitrary scattered set H. Thus functions with
scattered spectra appear to be in some sense similar to almost periodic
functions, as they have a kind of extension to @. Our result is based on
a theorem of Woodward ([6], Theorem 9 (ii)); we extend the notion of
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ergodicity introduced in his paper, but our extension is different from that
given in [4], as we use topological means only. Nevertheless the present
results are substantially related to these of [4] and [6].

Preliminaries. Let G be a locally compact abelian group, @ity dual
and @ its Bohr compactification. The dual of & is & with a discrete topo-
logy: we denote it by (&);. Let L*(&) be the usual Banach space of all
Haar-measurable, essentially bounded funections on @ (with a “supess”
norm {-|l,). C(G) and AP(@) are its closed subspaces consisting of conti-
nuous funetions and almost periodic funetions, respectively. ¢(G) may
be identified in a standard way with AP(@). For fe L*(G) we denote
by o(f) = @ the spectrum of f in L°(@), i.e. the support of the pseudo-
measure f on & By M(G) we denote the Banach algebra (with. respect
to convolution ) of finite regular Borel measures on ¢ and by ILY(G)
its subalgebra of Haar-integrable functions on G.

Let us now fix some Haar meagure dz on G. Put

2@ ={ueL'(@): u>0, [u(@)da =1} .
@

Note that 2 (@) is a semigroup with respect to convolution.

Let (k,) be the Fejér averaging kernel on G as constructed in [6],
page 285. It has the following properties:

(1) %, € 2(6).

(2) oo % — E,llzyg — 0 for any u e #(G).

There exists a natural homomorphism ¢: M(G)— M(G) given by:

Jode(w) = [odu for  pell(G),pc0(@) =AP@).
& @

As o(n)" (1) = p(x) for 1 € G, wo hawve o(ux») = g(u) *o(») for p, v € M(@).
2(@) acts by convolution on L*(@) as well as on L®({):

L*(@) o f-uxf e L@,

I®(G) s F - o(u)xF e I°(G)

for u € #(@). _ _

For fe I™(@) (F e L*(@)) denote by 2(f) (#(F))y the norm closure
of the orbit of f (F) under 2(@). It is a closed convex subset of L@
(L*(@)). In both cases, owing to (1) and (2), the a,ssumptlon of Eberlein’s
Theorem ([1], th. 3.1) is fulfilled. Thus we have:

PrOPOSITION 1. Let f e I* () (F & L™(G)) and let ¢ (0) be & constant
in I2(@) (L*(G)). Then the following statements are equivalent:

() e 2(f) (0 eZ(F)).

(i) Nlkexf— el > 0 (llo () % F — 0| — 0).

icm°®

On functions with scatiered specira 149

Moreover, if (kyxf) ((e(k,)*F)) is Cauchy in L*(&) (L=(@), then
there exists a ¢ (C) such that (1) and (ii) hold.

Let m be a topological mean on L™ (&) that is.a linear, positive, normed
functional invariant under the action of #(Q). Using m, we can identify
the constant ¢ in Proposition 1. In fact, if kxf - ¢ in L°(@), then m(f)
=m(ksf)—>m(e) =¢, so ¢ =m(f). Notice that [ (o(u)=+F)(@)dw

= (o(u)*F)" (0) = %(0)-F(0) = [F@)dw for ueP (&) Ga,nd F e L=(@).

G ~
Thus in the bracket version of Proposition 1 we obfain € = F(0)
= [F(2)dw.
é

Topologically ergedic functions. We begin with introducing the
notion of (topological) ergodicity for f e L°(G) and (topological) G-ergo-
dicity for F e L*(@).

DermTION 1. We call feL®(Q) (FeL>(@) ergodic (G-ergodio)
at y €@ if f7 (Fy) fulfils one of the equivalent conditions of Proposition 1,
If f(F) is ergodic (G-ergodic) at every x € &, wo call it ergodic (G-ergodic),

Remark 1. Let f e L®(G) (F e L*(@)). I x €@ is not a cluster point
of o(f) (o(F))in @, then () is ergodic (G-ergodic) at y.

Proof. Let V be a neighbourhood of 0 in & such that (x- V) na(j)

‘e {g (x+V)no(F) = {x}). Let a, be such that the support of %,

contained in V¥V for a > a,. Then kxf¥ = ¢ (¢(k,)*Fx =0) for a > q,
and some complex ¢, 0. Since (k,*fT)ase, ((Q(ka)*FZ)Dao) is constant,
it is Cauchy. .

Remark 2. If y is an isolated point of o(f) and m is a topological
mean on L*(@), then m(f¥) 0.

Following [4], we infroduce maps 4,, and B,:

DEFINITION 2. Le’s m be a topological mean on L®(@). For f e L™ (&)

we define 4,,f e I*(@) as a functional on L'( G). Tt is sufficient to define

it on (@) = AP(Q) and then to show that it is continuous in IMG)-norm.
So let

{Aynf, 9> = m(fp)
for ¢ e0(@). Bvidently [{Anf, o>l < Iflem(el) = Ifllo lpllzya -

It is easy to check the following properties of A4,,: I7(GY— L=(G)
(cf. [4], TL.2. Lemma 3):
PROPOSITION 2.
(i) 4., s linear with norm equal to 1.
(i) (Anf)" (2) = m(f7) for f e I*(G), y G .
(il) Apy =@ for g € AP(G).
(iv) Ap(nrf) = o(p) % Anf for f € L2(@), u € M(G).

4 — Studia Mathematica LXX, 2


GUEST


150 P. Glowacki

w(f2) = duf 1 for f e I=(@), 1@

(Vi) oldnf) = olf) for 1@ )

DEFINITION 3. Let'  be an extension of & e 0 (@)* (8o(p) = @(0)
for p e (@) to a normed functional on L*(@). For ¥ e L* (G) we define
B,F e I*(6) = LI'(G)* asfollows:

(B, uy = {w, o(4)+I)
for u € IM(@) (we put % (@) = u(—a)).

It is clear that B, F e L®(@) and B, I, < [Fl,-

ProrosrtionN 3 (¢f. [4], IL.1). B,: L2(@) - I°(G) has the following
properties:

(i) B, is linear with norm equal to 1.

(i) B,p =g for p €0(6@).

(ifl) By(o(u)*F) = pxBol for FeL*(@), peM(@).

(iv) ¢(BF) c o(F) for FeL(@).

‘We omit an eagy verification of (i)~(iv).

The main result. Let m, be a *weak cluster point of (k,), in L*(G)*.
Taking a subnet, we may assume that m, — limk, in the *weak sense.
Put 4, = A and fix some w a8 in Definition 3.

TE.EOR:GM 1. Let F e I° (@) be G-ergodic at y € G. Then

(4B (1) = F(x).

Proof. By (iii) of Prop. 2, the definition of m, and the G-ergodicity
of ¥ at y (Prop. 1 (ii)) we have:

A(B,F)" (1) = mo(BoI7) = lUm(BEE, k)
= ltm<Bm1", k3> = h:n<w, e (k) g+ B>
=i, (o (k) +F7) ) = <o, Fon
=P (1)<, 2> = P(x)1(0) = F(y).

COROLIARY 1. If F e L®(@) is G-ergodic, then A (B,F) = T.

Proof. In fact, we have A (B,F) (x) = ii’(x) for every g e @ 'so
A(BJF) =1T. .

We call a closed subset of G scatiered if it does not contain any non-
empty perfect subset. We have the following

PROPOSITION 4. Let f € I*(G). If o(f) is contained in a dlosed, soattered
subset B of &, then f is ergodic (at every y & G).
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Proof. As o(fg) = o(f)+y and since framslations are homeomor-
phisms, it is sufficient to show that f #& ergodie at 0. To prove our prop-
osition take u € 2 (@) such that the support of # is compact. Then the support
of (w=f)" is compact and contained in B and thus by the Loomis theorem
([3], Th. 4) w=f is almost periodic and, a fortiori, ergodic at 0 (Prop. 1).
This means that (k#uxf), is Cauchy. But by (1) we have -

oy f —Fgxw S|, — 0

and so (% *f), is Cauchy.

Now let us restrict A to LE(G) (the space of all f € L™ (@) with o(f) = E)
where F is closed and scattered.

TaEOREM 2. Let A be as defined at the beginning of this section and let
E < G be closed and scattered. Then A is an isomelry from Lg (@) onto G-ergo-
dic elements of LE(G).

Proof. By Prop. 2 (iv)-(vi) A maps L% (@) into G-ergodic elements
of IZ(@). Take F e L% (@) which is G-ergodic. Cor. 1 shows that A (B,F)
= F and so by Prop. 3 (iv) A maps L3(@) onto G-ergodic members of

2 (@). Suppose now that Af = 0 for some f e L (G). This implies (4, S0

= my(f) =0 for every yc@ By Remark 2 o(f) =@ and so f=0.
Thus 4 is injective on L (G). It is isometrie by the above and Prop. 2 (i),
Prop. 3 (i).

Our last step is to show that every F e LS (&) is G-ergodic for F closed
and scattered. Theorem 3 is ]ust an adaptation of [6], Th. 9 (ii).

TeEOREM 3. Let F e L®(G) be G-ergodic at every y 0. Then F is
G-ergodic also at 0.

Proof. Take % e #(@). Of course, g(u)*F is G-ergodic at y # 0
and it is G-ergodic at 0 exactly when F' is. Using Theorem 1 and Prop. 3 (iii),
we have

A(usB,E) () = A(By(e(w)*F))" (z)
. = (ew)+F)" () =#(nF(x) for "y #0.

Thus o(u)*F = A(uw+B,F)+const. Being an image of g(u)+F by
B, uxB,F is ergodic at every y s 0 by Prop. 3(iii). As it is uniformly
continuous, we may apply [6] Theorem 9(ii) to obtain the G-ergedicity
of A (u»B,F) at 0. Of course the same is true for g(u)*F and hence for F.

CoROLIARY 2. Let F e L*(G). If o(F) is contained in o closed and
scattered set B = @, then F is G-ergodic.

Proof. Infact, let & = {y € @: Fis not G-ergodic at x}. By Remark 1,
A < B, and so it either is empty or contains an isolated point. Suppose
that there is an isolated point g, in 4 (we may assume that x, = 0). Let
u € P(G) be such that suppun 4 = {0}. (By suppi we denote the support
of #.) Then g(u)+F is G-ergodic at y 0, and so by Theorem 3 o(u) I


GUEST


152 P. Glowacki

is @-ergodic at 0, and this implies the ergodicity of I at 0. We have thug
obtained a contradmtlon, as 0 e &. Hence 4 = @ and our corollary is
proved.
Piecing together Theorem 2 and Corollary 2, we get our main result:
TarROREM 4. Lot B < & be closed and scattored and let m be & topological
mean on L®(@). Then the map

L3(@) - L3(&)

defined by (Af)" (z) = m(f7) Jfor felz(G) and re@is an tsometry  of
Banach spaces Lﬁ(G) and LL(GY and it does not depend on the choice of m.
Almost periodic functions are fized points of A.

We end with simple corollaries to Theorem 4. Denote by R the ad-
ditive group of real numbers.

Exavern 1 (of. [B]). Tet @ = B = & and let (p,)%, (2,)F be two
sequences of integers, p,,, ¢, = 2. Let

= D1t oo Dk k=0, +1,..., +q,}

and let = UE HE K < (—%, $) is compact and countable, then by [5],

Example (I), I,E 1z (@) = APp, £ (G). Tt is eagy to see that F+ K is closed
and scattered; hence 'by Theorem 4 we get Iy, (@) = APy, (G).

CororrAryY 3. (cf. [2], Corollary of Theorem 1), Let H< @ be
closed, scatiered and independent. Then every f e Ly (@) is a Fourier transform
of a discrete measure with o support in B,

Proof. B is Sidon in (@), so L3(G) = APy(G) = 1'(E)". By The-
orem’ 4 LH(G) = APz(G) =1'(E)".

References

[1] W. F. Eberleln, Abstract ergodic theorems and weak almost periodio funatwns
Traps. Amer. Math. Soc. 67 (1949), pp. 217-240. ’

[21 S. Hartman, Rosenthal sets on the line, Math. Nach. 76 (1977), 153-158.

[31 L. H. Loomis, The spectral characterization of o class of almost periodic functions
Ann. Math. 72 (1960), pp. 362—368. '

[4] P.Lust, Hléments ergodigues et totalment ergodiques dams L™ (I'), Studi
69 (1981), pp. 191-225, g (I'), Btudia Math,

[6] L. Pigno, 8. Saeki, On the s_pecim of almost periodio functions, Indi
Math. J. 25, 2 (1976), pp. 191-104. d » Indiana Unir.

[6] G.S. Woodward, Invariant means and ergodzo sets in Fourier )
J. Math. 54, 2 (1974), pp. 281-299. anaiyie, Buitio

Receved January 15, 1979 (1603)

Im STUDIA MATHEMATICA, T. LXX. (1981)

Some ergodic theorems for commuting I, contractions

by
8. A. McGRATH (Woodland Hills, CA)

Abstract. Let Ty, T, ..., Ty Dbe commuting submarkovian operators on I
and suppose for some 1< p < oo, [Tillp < 1, 1 < 4 < k. Then for fe L,

Q"S5 28 2o

1y=0 =0

converges pointwise as n — oo. Also, the local ergodic theorem is proved for %-par-
ameter semigroups of I, isometries.

Introduction. Let (X, X, u) be a o-finite measure space and leb
L, = L,(X, Z, ), 1<p< oo, be the usual Banach spaces of complex-
Valued functmns A linear operator T on I, is submarkovian if it is a positive
contraction (7f e L if f e I and ||T], < 1). Suppose T is suhmarkovian
and ||Z'], < 1 for some p > 1. A.kcoglu and Chacon [2] showed that

a1

lim (1/n) 3 T'f(@)

exists and is finite a.e. for every f e L,. In this paper we extend their
result to the case of multiple ergodic averages of k commuting submarkovian
operators. In obtaining this result we generalize Akeoglu’s pointwise
ergodic theorem [1] to the case of ¥ noncommuting positive L, contractions.
The final section of the paper contains a proof of the local ergodic theorem
for strongly continuous semigroups of (not necessarily positive) L, iso-
metries. This result provides a partial answer to the gquestion of whether
the local ergodictheorem holds for k-parameter semigroups of nonpositive L
contractions. )

Let {T(ty, ..., 4): £, >0, ..., % > 0} be a strongly measurable semi-
group of I, contwctmns In considering the question of pointwise conver-
gence of the ergodic averages

AT, &)f = La)* [ oo [Tty oony ) faty ...
L] [1] .

it is necessary to define 4 (7', a)f(w) in such a way that the question makes
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