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By Banach’s principle [5], Theorem IV. 11. 3
A(T, o)f(0) = f(@) a.e., fely,

as ax0 through QF. Since A(T, o)f(w) depends continuously on a a.e.
it follows that

im A(T, o)f (%) = f(®) a.e,, fel;. m

aNo
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Addendum to the paper
“Weak-strong convolution operators on certain
disconnected groups”

by
IAN R, INGLIS (Montreal)

Abstract. In [1] G.1. Gaudry and the author obtained several results concerning L2
convolution operators and multipliers on & totally disconnected group where the
indices of sucessive subgroups remain bounded. More specifically, estimates were
obtained for kernels (rosp. multipliers) having a strong singularity at the erigin (resp.
at infinity). In this note we ghow how to extend the results of [1] to the case where
the indices are unbounded, and in doing so answer a question implicit in the work of
Peyridre and Spector [2].

1. Imtroduction. Lot ¢ denoto a compach abelian group having the
following properties:

(1) thexe exigts a strictly decreasing sequence {6.,.}2., of open compact
gubgroups of @ such that the index G.,: G, of @, in G, i finite;

(i) UG, =6 and NE, = {0};

(iif) |G| = 1 where |8] denotes the Faar meagure of a (measurable)
set §;

({v) |Gl (Gl 710

Tet I' denote the dual group of & and I', the annihilator of &, in I
Then {3} is an increasing soquence of open compact subgroups of I
and J7: 1y = Gpyy: Gy Such groups divide naturally into two classes:
(3) where @16, < for some positive integer b>2, and (b) where
Gpyrt G, = oo, Groups satisfying (a) were treated in [1] and from now on
we shall guppose that (b) holds.

We refer the reader to [L] for all the requived definitions and notation.

9. Convolution estimates. Tho following result takes the place of
Theoroms 2.1 and 2.2 of [1]. (There is no real need to consider the cage
6>0 of [1]) )

Tenorum 1. Suppose k e L', If

1 b ()] < B{Gusal 161", ¥ € LN
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and

(2) [ ke—9)—b@)de < B, whon ye6,,
. GGy,

then for all f in L™

(3) exfllparo. < Clflsaro. s

where € depends on B only.
Proof. Fix an fin L™ and consider

1 . 142
L(f) = ("@T Gf lk*f——Du-l*k*fl) ,

where D, = & |G,["" Split f = f,+f, Where f, = fé,_, Then, by (1)
and the definition of fy,

1 1 - 12
L(f)< @ L3 *fm—Dn—xﬂc #fylla < G (flkfxlz)

1 e, ( X 12 B
<Bowmg ) < =D,
1G,[72 |G, [ 11\1;{_1 Ifal ) G, (V1 1% f1lla

n—1

<B{(]G1_ll [ir-n _2*f|“>112+}ID f—D, ﬁ*fum}
Gp—1

< 2B|flpao.-
The argument of Theorem 2.2 of [1] shows that

L,(f) < Blfllpaco.
80 we obtain (3) with ¢ = 3B.

8. Main results. The proofs of the following results are similar to
those of the corresponding results of [1].

THEOREM 2. Let 0(y) = (|G, 41| |G,/ y e I, NI}, If kis o pseudo-
measure equal to an integrable fumction away from 0 satisfying (1) and (2),
then k(y)0(y)™" is an L Fourier maltiplier when p e [2/(2—a), 2/a],
b<a<l.

COROLLARY 1 (compare with [2]). Suppose ¢ is a quasi-radial function
on Iy d.e.  is constamt on cosets of I', in Lo\, If

(P < BT, Ipn+1l—1}(1—a)/2, YE Tn-k‘l\rnv
then @ is an LP multiplier when p e [2/(2—a),2/a], 0 < a<1.

.
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