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On one generalization of weakly compactly generated Banach spaces*
by
L. VASAK (Prague)

Abstract. The wealx topology of Banach spaces iz studied in context of the
descriptive theory of sets. In this way the WCG property is generalized without loging
the most useful properties of it.

Introduction. When considering the weak topology on a Banach
space, we can express some well-known notions in terms of the descriptive
theory of sets. For ingtance, Banach space is reflexive iff it is K, (l.e. is
a countable union of compacts) in its weak topology. Similarly WCG
Banach spaces are those which contain some dense K, subset. In this
paper we study some generalizations (in the sense of the descriptive
theory of sets) of this WCG property. The methods are similar to those
used when dealing with WOG Banach spaces but after proving the main
theoremn (Theorem 1), the handling with them is more easy.

The author would like to thank dr. David Preiss and dr. Zdenék
Frolik for fruitful discussions on the subject.

Notation and basic definitions. In this paper we denote by o the
set of all natural numbers and at the same time the first infinite ordinal
number. If X is a Banach.space, we denote by dens X the smallest cardi-
nality of a norm dense subset of X, by w*-dens X* the smallest cardinality
of a w*-dense subset of X*. By sp4 we denote the closed linear span of
a given set 4 < X. Subspace of a Bavach space always means closed
linear subspace. We say that a Banach space X is WOG (weakly compactly
generated) iff there is a weak compact O = X such that spC = X. If 8
is a get, we denote by ¢,(S) the set of all mappings x: § - R (B = all
real numbers) which vanish at infinity. The norm ||-| of a Banach space X
is called locally unmiformly rotund (LUR) iff for any sequence {,},., in
the unit sphere of X and for any « the following implication holds:

o, -+l > 2 = 3, — 2.
B will always denote the closed unit ball in X**.

* This paper is part of the author’s PhDr thesis under supervision of dr. Viclav
Zizler.
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We start with our fundamental definition:

DarmnrrIon 1. Let T' be a topological space, T < T'. We say that T
is countably determined (CD) in T’ iff there are compacts {4;; iew}in T’
such that: for any @ & T there is ¢ = w such that w e ({4;; teg} = T
In this case we say that T' is determined by {A;; © € w} in T'.

For our purposes the following lemma is useful:

Lmvya 1. Let T be a uniform space countably determined in @ uniform
space T". Let, moreover, T be a uniform subspace of a topologicaly complgte
uniform space 8. Then T is countably determined in S.

Proof. Let {4;; ¢ € o} be a sequence of compacts in T" determining 77
in T', For any i € w we set 0; = cl(4;nT), where ¢l denotes the closure
in 8. It is easy to see that C; are compacts in 8. Let z e T, we find a set
¢ © o such that & e[| 4; = T, hence & e () ;. We show that ¢ = O e

e ice i6e -
cT. Let yeC. Bo ethere are nets {yi; eel} in 4,nT, for any ieg,
such that y = §'— lim % (limit in §). But every such net is Cauchy in T
and so there are ° gA,- such that o = 1" — 111:_.1 yi. But y* =’ for all

ael;
i,j € p. To show this, take any W, closed element of uniformity on 7'.
‘We find an element of uniformity V on 8, such that (Vo V) (T xT) = W
(o denotes the composition of elements of uniformity) and a; € I; Boel;
such that for any ael;, a>ay el BB W9 eV, Why eV.
Then (4%, y}) € W. So we have (4", ) € W and W being arbitrary we geb
o =y Henceyle () 4; = T, 580 y = T — lim y}, from which y =y*eT-
iee acly

COoROLLARY 1. Let a Banach space X be in its weak topology countably
determined in some uniform space T". Then X is countably determined in X
in its weak-star topology.

Now the following definition is natural:

DEFINITION 2. A Banach space X will be called weakly couniably
determined (shortly WOD) iff X in its weak topology is countably determi-
ned in X** in its weak-star topology.

Remark 1. In [6] J. Lindenstrauss gave the following question:
Ts it true that a Banach space is WOG iff it is Lindeloff in its weal topology ?
The “only if? part was proved negative by H. P. Rosenthal in [8] by
finding & non WOG subspace of a WOG Banach space. The “if” part
was proved independently by D. Preiss and M. Talagrand, uging the
notions of analytic (for definition see [3]) and K, topological space
(countable intersection of countable tnions of compacts). It is easy to
show (using [3]) that

X is K, in (X**, w*) = X is analytic in its weak topology
= X is 'WCD.
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Moreover, Talagrand gave an example of a Banach space which is not a
subspace of any WCG Banach space but is analytic in its weak topology
{[10]) or even an example of such a gpace which is, in its weak topology,
I, ([117]). See also the example of Pol in [7].

Lzywia 2. Let X be a WOG Banach space. Then X is K,y in X™ in
its weak-star topology. :
L 1
Proof. We simply set 4,, = al —t—z ", where ( is an absolutely

convex weak compact fundamental in X and B’ is the closed unit ball
in X**. Than 4,, are weak-star compacts in X** and

X =NUA4,.

1=l p=1
LEMMA 3. Let T be a topological space which is countably determined
in some topological space T'. Then T is Lindeldff. -

Proof. Let % be an open covering of 7', A’ the system of all finite
unions of elements of A. Let us denote

& = {nc ﬂ Ay = T},
where 4, determine T' in T. We define f: & —expT by
flw) = (" Auyy, forall mes.
i€

For any @G eW we denote f (@) = {ne; f(w) = G}. We show that

{f71@); GeW} is an open covering of & (& with the topology of w®).

First every f~(@) is open in & because if # € f~!(@), then thereis a i, € @
4y

o )
such that (1) Ay = G and so for every n’ € & so near to & that n(i) = ='(3)
i=1

for all i < 4, we have
%0 10
flz') q Ay = _ﬂlA,,m c@, ie. ' efYG).
= =

Secondly, for any = € & there is a @ e % such that f(n) = & (from compac-
tness of f(x) and the fact that A’ is closed under finite unions). Now &
is metric separable (because »” is), so Lindeloff, and so there are G, e U,
n € o, such that | f~*(@,) = &. It is easy to see that then { ) &, =T

new new
(because | J f(n) =T). Hence the system B ={G,; neco,
) ne{/ in . .
i=1,2,...,1,}, where G, ¢, |J@G, =@G,, is countable subcovering
=1

of 9.
Now we turn our attention to the properties of WCD Banach spaces.
We introduce the following definitions:

DEFINITION 3. (a) A Banach space X has projectional resolution of
identity (PRI) iff there is a family {P,; o < a < u} of continuous linear
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L4
projections from X into X, where g is the first ordinal number of
. cardinality dens X, satisfying:
(i) 1P,ll =1 for any a sb. o< a << p,

(ii) P,P; = P,P, =P for any a, B s:b. 0 << o<y

(i) densP,(X)<<carda for any a s8.b. o < a < p,

(iv) for all # € X the mapping P, () is continuous on {a¢; o < a < u}
in the usual order topology on ordinal numbers,

(v) P, is identity on X.

(b) Let {4;; % € w} be a family of subsets of X**. We say that X has &
PRI subordinated to {4;; i € o} iff X has PRI {P,; o< o< u} and there
are linear continuous operators Z,: X** s X** guch that T,/X =P,
and T,(4;) = A; for all i e w and a 8.6, 0 < a < pe

~ To prove the main theorem we must somewhat refine the sets A4,
from Definition 1.

TiMMA 4. Let X be a WOD Banach space. Then there are absolutely
conver wr-compacts A;, i € w, in X** with nonvoid norm interiors which
determine X in X™.

Proof. Let {0;; i € w} be a sequence of w*-compacts in X** deter-
mining X and closed under finite intersections. Then it suffices to take
for A, the algebraic sum of the w*-closure of the absolutely convex hull

of O, and %B".

TeroREM 1. Let X be a WOD Banach space and {4;; i € w} be the
w*-compacts from Lemma 4. Then X has a PRI subordinated to {A;; i e w}.
Proof. We prove the theorem in several steps similarly as in [1].
Step I. Let B be a finite-dimensional subspace of X, fi,...,fu e X%,
m € w, let m, 8 € w. Then there exist € —a separable subspace of X —
such that for any &> 0 and any finite-dimensional subspace Z in X con-
taining B, dim(Z/H) = n, there is a linear continuous operator T:Z->C
satisfying: .
(i) T(e) = ¢ for all ¢ B,
(i) T(Zn4,) c (L+e)4; for all i<ys,
(1) 1f%(2) —F(TR)| < ellell for all k< m and 2z €Z,
(iv) T(ZnX) c X.
Proof of this step is only a slight generalization of Lemma 2 from [4]
for finite number of norms (we take Minkowski functionals of 4;, ¢ < 8).
Step II. Let B, fiy .oy fmym, n be as in Step I. Then there exists
a separable subspace C in X** such that for any Z as in Step I there is
T: Z > X** satisfying:
(iy T'(e) = e for all ¢ € B,
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(i) T(ZnA) = A; for all 4 € o,
(i) fr(?) = fi(T2) for all k< m,zeZ,
(iv) T(ZnX) = C.

Proof of Step IL. For any s € w we find C, separable and the ope-
rators T,: Z— O, from Step I, ¢ =1/s. Let ¢ =5p( (J C); then O is
SEW

separable. For any s € o, Ts("Z NB") = 2B", 80 we can consider {T,/(ZNB");
s € w} a8 2 get in (2B”Y*"E"(B" with w*-topology). Hence this net has
a certain pf)mt of condensation T. We extend 7 homogenously on Z and
denote again by T. Evidently T' satisfies (i)—(iii). But from (ii) it follows
tha;tl.’l’(er\X) < X and so, for any 2 € X, T'(x) is a weak limit of some:
net in €, which gives (iv).

Step III. Let B, F be finite-dimensional subspaces of X, X*, repecti-
vely. Then there is a separable subspace € in X* and a continuous linear
operator T': X** - X** satisfying: :

(i) T'(e) = e for all ec B,

(i) T'(4;) = A; for all ic o,

(iii) T*(f) =f for all feF,

(iv) T(X) = C.

Proof. From Step II, if we take for fi, ..., f,, any basis of F, n € w,
we get Oy, separable subspaces in X**. Let ¢ = sp( | C,). For any finite-

new

dimensional Z containing B we have Ty: Z - X** from Step II, n =
dim(Z/H). Extending every T, by zero outside of Z and then restricting
to B”, we can again as in Step II find a point of condensation in (B")%”,
homogenous extensions of which satisty (i)—(iv).

Agtep IV. Let B be a separable subspace of X, F a w*-separable subspace
of X*. Then we can find a linear continuous operator 7: X** -~ X** such
that: . -

(i) P = T'|X is projection into X,

(i) B = P(X),

(iii) F < P*(X),

(iv) T'(4,;) = A; for any i€ w,

(v) P(X) is separable.

o P.roof ofﬂStep IV. We use Step III and procede as in [1] but we

limit in (B”)®” and use the fact that all 4; are preserved in this limiting
(so we get that X is preserved).

Step V. Let B, F are subspaces of X, X*, respectively, let dens B <N,

w*-dens F' <N, where ¥ is a given cardinal number. Then there is a linear
continuous operator T: X** - X** such that:
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(i) P = T|X is projection into X,

(i) B = P(X%,

(iii) F < P*(X),

(iv) T'(4,) = 4; for any 1 € w,

(v) densP (X)) <N

Proof of Step V. By transfinite induction over ¥ using Step IV.

Step VI. (Proof of the theorem). We construct PRI suborinated
to {4;; ¢ € 0} by transfinite induction over dens X. The first separable
projection we have found in Step IV. Then we procede again as in [1]
‘but limit again in (B")®". Norm one of all members of our PRI we assure,
if necessary, simply by adding B between the members of {4;; 7 € w}.

COROLLARY 2. Let X be & WCD Banach space. Then X has the weak-star
cardinality property, i.e. for any subspace ¥ in X w*-dens Y* = dens Y.

Proof. Since WOD property is hereditary on closed subspaces, it
suffices to show that dens X = w*-densX*. In Step V of Theorem 1 we
set B = {0}, F = X* ¥ =w"-dens X*. So we can find a projection P:
X — X such that X* = P*(X*), densP(X)<N. But then P* is identity
on X* so P is the identity on X. This immediately gives: densX
= densP(X) < w'-dens X*. The otherinequality holdsin every Banach space.

COoROLLARY 3. Let X be o WCD Banach space. Then

(a) Thereis o set I' and a linear continuous one-to- one operator L from X
anto co(I);

(b) X has an equivalent locally uniformly rotund norm.

Proof. (a) is proved in [6], (b) in [12], both for WCG Banach spaces.
But those proofs clearly work in every Banach space subspaces of which
have PRI (all subspaces or even only all complemented subspaces). The-
orem 1 shows that WCD Banach spaces are of that type.

THEEOREM 2. Let X be a WCD Banach space. Then the following con-
ditions are equivalent:

(I) every subspace Y — X has a projectional resolution of identity
{P,; o< a< )t such that {P:; o< a<p} is PRI on Y%,

(IT) X has an equivalent Fréchet differentiable norm (at any nonzero

point),

(IIT) X has an equwalent norm, the dual norm of which i8¢ LUR,

(IV) every subspace ¥ < X has a shrinking Markusevié basis, i.6. a bior-
thogonal pair (H,, Hy), H;« ¥, H, = Y*, such that SpH, = Y andsp H,
= X

Proof. (IV) = (III): If Y has a shrinking Marku¥evié basis, then X
is WCG —see for instance [5] or [12]. So we can use [5] where (IV) = (III)
is proved for WCG Banach spaces.
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(IIT) = (II): It holds in every Banach space.
. (II) = (I): Let ¥ be a subspace of X, we take PRI {P,; o < a < u}

on Y from Theorem 1. If we take on X and so on ¥ this equivalent Fréchet
differentiable norm |||-||l, {P,; o < a < u} satisties the conditions (ii)~(v)
from Definition 3(a) and (i) is weakened to (i)’: there is K > 0 such that
P < K for all 0, 0 < @ < p. Now it is shown in [5] (with [||P}]j =1,
but it is not esential) that then {P}; w < o < u} also satisfies (i)’, (i)~(v)
in the norm dual to |||-]||. So it is PRI on X* in the norm’dual to the
previofis norm.

(I) = (IV): By transfinite induction over dens X:

1. I X is separable, then X* is separable. It follows simply from
the same number of projections in those PRI on X and X*. In that case
it is well-known fact that X has a shrinking MarkuSevi® basis.

2. Let dens X >N, and let X satisfy (I). Let every WCD Banach
space Z which satisties (I) and has density smaller than X has a shrinking
Markufevié basis. Take a PRI {P,; o < a < u} from (I) for X. For any
a, o < a<< 4, Banach space (P,., —P,) (X) has a ghrinking MarkuSevié¢

basis (H., H2). Set H* = () H., H* = U {(Poyr —P)* (HZ) (we con-
o<a<y o<a<p .
sider (P, ,, —P,) as mapping from X onto (P,,, —P,)(X) and in this sense

We take (Papy —Po)). Then we show that the pair (H*, H?) is a shrinking
Markufevié basis of X. It is easy to show that (HY, H?) is biorthogonal.
SpH! is X because it contains all subspaces (P,,, —P,)(X) the union of
which ig dense in X, as follows from (iv) in Definition 3. Similarly sp H?
containg all subspaces 8P (P, —P.) (H2) = (P —P5)(X*) for all a,
w< a< py, and so SpH? = X*. Thus we proved that every Banach space
which is WCD and (I) has a shrinking Marku8evié¢ basis. But both these
properties are hereditary and so X satisfies (IV).

Close connection of WCD and WCG Banach spaces show also these
theorems:

TuEoREM 3. (a) Let X be a WOD Banach space, ¥ a Banach space,
and f a linear continuous mapping of X onto ¥. Then Y is WCD.

(b) Let X be o Banach space such that X* is WCD. Then X has the
cardinality property, i.e. dens Y = dens ¥* for any subspace ¥ < X.

Proof: (a) Take a family {4,; ¢ € o} of w*-compacts in X** deter-
mining X in X** and closed under finite intersections. Let ' O; = f**(4;)
for all¢ € w. 0; are w*-compacts in ¥*™*. Lety € ¥. We find w € X s.t. f(z) =y
and o< o 8% we ﬂA.cX A; = 4; for any j<4, i,jep. Then

10

ye ﬂ C;. Morecover, for any 2z e ﬂ C; we find »; € 4;, i € o, such that

b (fﬂt) = 2. We can take {»;; i ¢ g} bounded and so it has a 'w*-eonden-
sation point — say #. But then o e ﬂ A; 50 62X and 80 2 = w*- llmf @)

icQ
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= f** (&), where {z,; a €I} is a subnet of {r;; i € ¢} w*-converging to =,
hence ze Y. )

(b) In every Banach space Y densY < dens Y*. Now when ¥ is sub-
space of X, ¥* is isometrically isomorphic to X*/ Y+, where ¥+ = {g e X*;
g(y) =0 for all y € Y}, so ¥*is a linear continuous image of X*. Hence
using (a) and Corollary 2 dens ¥* < w*-dens ¥** < dens Y.

Remark 2. In [9] it was proved that the cardinality property of X
is equivalent with the Radon-Nikodym property of X. So every WCD
dual hag the Radon-Nikodym property.

TEEOREM 4. Let X and X* be both WOD Banach spaces. Then X is
WCG. )

Proof. Using Corollary 3(b), we can suppose that X has LUR norm.
Let {4;; 7 e 0}, {C;; i € 0} be a weak-star compacts determining X, X*
in X**, X*™**, respectively. From Theorem 1 we find a PRI {P,; o< a< p}
on X* subordinated to {4}; i e w}U{0;; ¢ € w}. Here A means the polar
set of 4, in X*™*. We show that then {P}/¥; w < a< u} it PRI on X.
From the preservation of all 4, by all P, it follows that P}(X) < X for
all o, 0 < a<< p. Pi/X clearly satisfy (i), (i), (v) from Definition 3. To
‘prove (i) take any a: o < a<< u. Because (Pi(X))* is isometrically iso-
morphie with P,(X*), from Theorem 3 we get: '

dens P} (X) = dens(P%(X))* = densP,(X*) < carda. -

To prove (iv) take any & € X and a—a limit ordinal number, v < a < p.
It is easy to show that then Pj(z) converge weakly to P (z) and I1P5 ()
converge to ||P;(z)| over f< o. Hence using the LUR property of the
norm of X, P;(x) converge to Pj(z) in norm. .

We have proved that X has a PRI, the dual projections of which
form a PRI on X*. But if Y is a subspace of X, then ¥ and ¥* are both
WOD and so we have showed that X satisfies condition (I) from Theorem 2
and so (using again [5]) X is WCG.

Open problems.
(1) X is WCD = X is analytic in its weak topology?
(2) X is amalytic in its weak topology = X is K, in its weak topology?
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