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Basic sequences in stable infinite type
power series spaces®

by

M. ALPSEYMEN (Ankara)

Abstract. Under the assumption that A.(a) is nuclear and stable, subspaces
of A (a) with bases are characterized. The characterization is in terms of a nuclearity
condition and an inequality which the basis must satisfy.

In [2] Dubinsky characterized subspaces with bases of (s), the space
of rapidly decreasing sequences. In [7] Vogt studied the same problem
without the requirement that the space have a basis. In this paper we
use Dubinsky’s techniques to solve the same problem for 4,(a). We
show that 4(a, N)-nuclearity and the condition (ds;), defined by Dubirsky
[2] which must be satisfied by the basis, are necessary and sufficient.

Preliminaries.

(a) A Kithe set A is a collection A = {a*: k =1, 2, ...} of sequences of
positive numbers such that af < af*, &, n e V. .

The Kithe space A(A) is the space of scalar sequences

A(A) ={t = (tp)2 [ty = ) f,lak < oo for all k eN}
n=1

and is topologized by the seminorms |-, & =1,2, ...

(b) Grothendieck—Pietsch criterion. A Kothe space A(4) is nuclear
if and only if

Vidls (aflal) €1,

(¢) Let a = (a,) be a nondecreasing sequence of positive numbers
and 0 < r << oo. The power series space A.(a) generated by a is the Kothe
space A(A) where af = (rk)“" and (r,) is any strictly increasing sequence
of positive numbers with limr;, = 7.

From (b) it follows that A (a) (vespectively 4,(a), 0 <1< o) is
qpuclear if and only if for some ¢ e (0,1) (respectively for all ¢ (0, 1))
(™ el .

T * This paper is taken from the author's dissertation at the University of Michigan
written under the direction of Professor M. S. Ramanujan.
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(d) A locally convex space X is said to be siable if B x F ~ K. For
power series spaces A, (a) stability is equivalent to: sup(wm,/e,)< co.

(e) Let F be a locally convex space. For two absolutely convex zero
neighborhoods ¥V and U with V< U (i.e., V « rU for some r > 0), the
n-th Kolmogorov diameter of V with respeet to U is defined as

@,(V, U) = inffint{r > 0: V < rU+L}:
L is a linear subspace of ¥ with dimZL < n}.
The diameiral dimension A(F) of E is then defined to be the set of all
scalar sequences (4,) such that
VUiV V< U and limtd, (V,T) =0.
It is well-known (cf. [6]) that for a nuclear power series space A (a),
A Ao(@) = {(t,): I M € (0, o0)5 (t,) = O(M™)}.
(f) Let o be such that A, (a) is nuclear. A locally convex space B is

said to be A(a, N)-nuclear if it has a base of absolutely convex zero neigh-
borhoods % (E) such that 101 cach U e (B), ke N there is a V e %(H)

such that supd,_,(V, U)e *n < oo (of. [6]). It is easy to check that F is

A{a, N)-nuclear if and only if 4(4,(a)) = 4(H).
In [2], Dubinsky defined bases of type (d;).
DEFINITION. A basis (2,) in a nuclear Fréchet space ¥ with a conti-

nuous norm is of #ype d, if there is a fundamental systern of norms (|f-|,)
such that

(ds) oabss Wallis
llm,,”k |150n"k+1

Preparatory constructions and the main theorem. Throughout this
paper we shall agsume that 4 (a) is nuclear and stable, and the topology
of A (a) is defined by the seminorms

;= sup fr,| 6"
(from (b) it follows that this is equivalent to the nuclearity of A, (a)).

Without loss of generality we may assume that 1 < o; < a3 < ... (6,)
denotes the coordinate basis of A, (a).

In the sequel we shall need the following renorming result.

LemuMA 1. Let B be a nuclear Fréchet space with a continuous noirm and
with a basis (v,) of type ds. Assume that B is A(a, N)-nuclear and that L
i a constant greater than 1. Then there ewists a rearrangement (2,) = (Tun)) o
the basis cmd a new system (|- 1) of norms defining the topology of H such that

(i) e < ll ”tz, nelN,
1.]

(i) (lznlla+1) < |zn|k+2’ B, neX.
25l [2nlrsa

icm

Bagic sequences in power series spaces ’ 23

Proof. The construction will be performed in two steps. We shall
use the symbols ||, to denote the original norms, satisfying together
with the basis (x,) the condition (ds).

Step 1. From the nuclearity of ¥ it follows that
Uy ={t = Y t,2,: swpltylloaly <1}, jeX
n .

is a fundamental system of zero neighborhoods in E. The A_(a) being
stable is igomorphic to 4,,(8) with 8, = a,,. Hence # is 4(f, N)-nuclear.
This yields, in particular, that there exists a j € N such that

supd, 1 (Uji, v1)9d2"< 00,

Let (m(n)) be a permutation of N such that (I nnyls /1% a(ylls1) 18 mOMin-
creasing. Then (cf. [6]) we get

&, 1{(Ujq, Uy) = lenlliflzllyyr  for 2, = nin)y T eXN,
- whenee
o Il
supe <0< o
Il

Replacing the norms |||, by ».(*) = | yg-ys1 We obtain the
new system satisfying the inequalities

6 < py(2,) 0(2,), mel,
and the condition (d,) for the new basis (2,).
“Step 2. We conclude the construction by letting
I*lg = Prige..re®(*), EelN,

where ¢ is any integer greater than Z.
LemMA 2. Let (af) be an infinite matriz of positive nwmbers such that

k+1 K+1

a; [y

o< 2=, m, kel.

G Gy ~

Given numbers by, ..., t, we define, for ke N,

@ty ---y t,) = max{g: Ii&Xltila"wltla"}

Then if 0< @< ...< "< p are iniegers, it is possible to choose
numbers by, ..., t, with ta # 0 but otherwise arbitrary, 1, = 0 for i = ¢*, ..

vy " and
aktl %
o [l
Itqkl S <ltqk+1]<ltqk|-—-——k , k=1,2,...,m—1.
aqk—{-l aqk+1
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Moreover, if any such choice is made, then

by oonty) =% k=1,..

Proof. Sce [1] and [2].

THEOREM. Let B be a Fréchet space with a basis (x,). Then B is iso-
morphic to a subspace of A (a) if and only if it is A(a, N)-nuclear and the
basis is of type d;.

Proof. Necessity. Suppose F is isomorphic to a subspace of 4 (a).
Since 4, (a) is nuclear, ¥ is nuclear, and from the classical Basis Theorem
it follows that ¥ is isomorphic to a Kéthe space. Hence 4 (A (e)) = 4(F)
which shows that & is 4(a, N)-nuclear. Also for & = Xt e, € A (a),

ym.

[olfy1 = (sup [t,] €®FTV%) = |t |2 g*0H1)%ng
1P Pl

= (It €%+ %0 )(It,,16*0) < [0l 01l -

It follows that (x,) is a basis of type ds.

Sufficiency. Let M = sup(oy,/a,), and suppose (z,) is a basiy for B

of type d,. Applying Lemma 1 with L = M1 and letting ¢ = lg],, we
get
G;c-l—l (017;+1)51< C;H-Z

) i o) <
ok f
4] 7

e k,jeN.

Now we use the bijection y: NXN >N defined by y(j,m)
= (2§ —1)2™"! to partition the coordinate basis (¢,) of A, () into coun-
tably many pairwise disjoint infinite subsequences (¢;,.)), (J, m) € N x N.

For
U= 4ty = D Emm € Aoo(0)
with
n =y(j,m) and Sm = bytim) = tos
we define

Iyl = sup &y mlem, kelN.
(d,m)

Tt is easy to check that the system (|-|}) defines the topology of 4, ().
Next we fix j e N, and by induction construct a strictly increasing

sequence of positive integers (g(%, j)) such that

. . W+

@) o1 o D o D ey,

i

To do this we first observe that it follows from (1) that e < ¢/}, 8o

that we may choose ¢(1, j) to be the largest positive integer satisfying the

left hand inequality (2) with % = 1. Suppose then that we have chogsen

g(1,J)<...<q(k+1,j) so that (2) holds and moreover, g(k-+1, ) is
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the smallest integer such that the right hand inequality (2) holds. Then,
it follows from (1) that :

daqu(k-f-l,?') . e%ﬂd(k+1:.’f)—1 '<6M“qu(k+1».’f)—1
= =

. k+1y M o2
R N (O_JJk_ ) < Sjiﬁ )
Thig establishes the left hand inequality (2) for ¥ replaced by k-1 and
algo shows that if ¢(k -2, j) is chosen to be the smallest integer such that
the right hand inequality (2) holds with % replaced by %+ 1, then ¢(k+1, 5)
< q(k+2, 4). This completes the definition of ¢(k, j).

Next with j still fixed we apply Lemma 2 with o = 6" 2", p = ¢(4, 5),
m=3Fand ¢ =q(l,j) for I =1, ..., m. We set

%
i

sy = Pl E=1,...,7;jeN

and ¥, = 0if< £ q(k,j), & =1, ..., j. It is easy to check that inequality (2)
s equivalent to the inequality in the lemma. Hence if we define

Yp = gy -0 o) € dele),
then

ah)

ly;lf = sup

la:ot las,
: Bl 692 = ltyq,p) 692
1i<g(d.9)

d o=l 1=1,...,§.

Finally we note that (y;) is a block basic sequence of some permuta-
tion of the coordinate basis (e,) in A,(a), 80 it is a basis for the space it
generates which is a subspace of 4 (e) isomorphic to H.

The author wishes to thank the referee and Professor Bessaga for
their suggestions to simplify the proofs.
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C(K) norming subsets of C[0,1]*
by
DALE E. ALSPACH (Cambridge, Mass.)

Abstract. It is shown that if a bounded subset of ([0, 1]* norms a subspace
of 0[0, 1] which is 1somorphw to 00(“"" ), for some a < w;, then there is a subspace
of 00, 1]isometric to O, (") which ig also normed by this set. The teohmques em-
ployed also yield a new proof that there is a bounded linear operator form O, (m’” ) onto
itself which is not an isomorphism when restricted to any subspace of Uy(0®”) iso-
morphic to G'o(cu"‘2 ).

0. Introduction. Several aunthors have addressed the gquestion of
determining conditions on a subset of C[0, 1]" which will ensure that
the subset norms & subspace isomorphic to € (X), the continuous functions
on some compact metric space K. Necessary and sufficient conditions for
the cages K = [0,1], [1, o], and [1, »”] (the ordinals less than of equal
t0 w, resp., w®, with the order topology) have been given by Rosenthal [12],
Pelezyrigki [10], and the author [2], respectively. Recently, J. Wolfe [15]
introduced a sufficient conditon (the definitions will be given shortly)
for the case of K homeomorphie to the ordinals less than or equal to w®®,
any a << o,. The condition he gave is closely tied to the isometric structure
of the O (K) space and thus the necessity of the condition is far from obvious.
In this paper we show that the Wolfe condition does yield a necessary
and sufficient condition. As a eorollary we deduce the first result stated
in the abstract.

We also apply the Wolfe condition to the bounded linear operator T
from Og{w™") onto C'o(cu“’) constructed in the author’s dlsserta.tlon 13,
to give a sunplel argument thmt there is no subspace ¥ of Cy(o” ) such
that ¥ is isomorphic to € (w"’ ) and the restriction of 7' to ¥ is an isomor-
phism. (For any ordinal o, O(e®), resp., Co{@®), is the space of continuous
functions on the ordinals less than or equal to »® with the order topology,
resp., and vanishing at %) This also shows that the Szlenk index condi-
tion used in [2] and the Wolfe condition can be quite different.

We now give the definitions used by Wolfe [15] so that we may
state our results precisely. The first is an inductive definition of a de-

* Supported in part by NRF-MCS 7610613.
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