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C(K) norming subsets of C[0,1]*
by
DALE E. ALSPACH (Cambridge, Mass.)

Abstract. It is shown that if a bounded subset of ([0, 1]* norms a subspace
of 0[0, 1] which is 1somorphw to 00(“"" ), for some a < w;, then there is a subspace
of 00, 1]isometric to O, (") which ig also normed by this set. The teohmques em-
ployed also yield a new proof that there is a bounded linear operator form O, (m’” ) onto
itself which is not an isomorphism when restricted to any subspace of Uy(0®”) iso-
morphic to G'o(cu"‘2 ).

0. Introduction. Several aunthors have addressed the gquestion of
determining conditions on a subset of C[0, 1]" which will ensure that
the subset norms & subspace isomorphic to € (X), the continuous functions
on some compact metric space K. Necessary and sufficient conditions for
the cages K = [0,1], [1, o], and [1, »”] (the ordinals less than of equal
t0 w, resp., w®, with the order topology) have been given by Rosenthal [12],
Pelezyrigki [10], and the author [2], respectively. Recently, J. Wolfe [15]
introduced a sufficient conditon (the definitions will be given shortly)
for the case of K homeomorphie to the ordinals less than or equal to w®®,
any a << o,. The condition he gave is closely tied to the isometric structure
of the O (K) space and thus the necessity of the condition is far from obvious.
In this paper we show that the Wolfe condition does yield a necessary
and sufficient condition. As a eorollary we deduce the first result stated
in the abstract.

We also apply the Wolfe condition to the bounded linear operator T
from Og{w™") onto C'o(cu“’) constructed in the author’s dlsserta.tlon 13,
to give a sunplel argument thmt there is no subspace ¥ of Cy(o” ) such
that ¥ is isomorphic to € (w"’ ) and the restriction of 7' to ¥ is an isomor-
phism. (For any ordinal o, O(e®), resp., Co{@®), is the space of continuous
functions on the ordinals less than or equal to »® with the order topology,
resp., and vanishing at %) This also shows that the Szlenk index condi-
tion used in [2] and the Wolfe condition can be quite different.

We now give the definitions used by Wolfe [15] so that we may
state our results precisely. The first is an inductive definition of a de-

* Supported in part by NRF-MCS 7610613.
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creaging family of subsets of the Cartesian product of a subset of
C(K)* and the topology 7 of K.

DEevINITION. Let K be a compact Hausdorff space, ¢ > 0, and let B
be a subset of O(K)* (which we identify with the finite signed regular
Borel measures on K). Let

Py(e, B) = {(,6): peB,Ges, and (@) > e}
If P,(e, B) has been defined we let
P,1(e,B) = {(u, B): (p,@) ePy(s, B) and there is a sequence

{(th G‘"): n e N} « Po(s, B) such that g, 5 4, 6, NG,
=@, for n w2/, and | JG, = @}.

Tor a limit ordinal g let
‘Pﬂ(si B) = {(‘u; ¢

ordinals o,ta and an element (u,,@,)eP, (¢,

): (4, @) € Py(e, B) and there are a sequence of
B) for

each n, such that u, s b, G,NG, =0, for n # 0,

and @, < G}.

‘With this definition and a minor modification of Wolfe's proof of
Theorem 1 of [15] we get,

THEOREM 0.1. Let K be o compact Hausdorff space and let B be a w*
meirizable set of measures in the unit ball of C(XK)*. Then, for every e, 1
= &> 0, there is an integer N = N (&) such that if B< wy, Pg,(e, B) £ 0,
for some m > N, then there is a subspace Y of C(K) which is normed by B
such that Y is isometric to C(wf).

Moreover, the norming constant, i.e.,

sup{i: sup{KKb,>|: be B} >
depends only on e.

The difference between our Theorem 0.1 and Wolfe’s theorem is in
the definition of the sets P,(¢, B). Wolfe required that u(@) > & rather
than |u|(@)>e. In the remark following Lemma 1.1 we show how to
deduce our theorem from Wolfe’s.

Theorem 0.1 raises a question. Is it possible that there is a subseh
of By which norms subspaces of C(K) uniformly isomorphic to ¢ (@™

_,,Tw but which does not norm a subspace isomorphic to C(w®’)? To
find such an example one might attempt to construct a set B such that
for some ¢ >0, P, (¢, B) @ for all n but P_,(4, B) 0 for all 6 > 0.
One such. set is B 1 (gu?)¢ » ROWever it obviously norms Co(0®"). In Section 1.
we show that this example is typical by proving

2071l for all fe ¥},
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TaporEM 0,2. Let K be a compact Hausdorff space and let B be a w*
metrizable set of measures in the unit ball of C(K)*. If there is an & > 0 such
that P, (e, B) # @ for a sequence of ordinals {a,: n € N} with anTco then
there is o subspace ¥ of O(K) such that ¥ is isometric to Oy(w” Y and Y is
normed by B.Moreover, the norming constant depends only on .

The signifie.mce of this result lies in the fact that C({w 5} is not iso-
morphic to Cy{w®") for any n. Indeed, Bessaga and Pelezyrski [5] proved
that for f < y < @y, C(B) is isomorphie to C’(‘y) if and only if 8 > y. This
implies that C(w?) is isomorphic to Co(w®) if and only if o" < o< L
(It is easy to sec that Cg(y) is isomorphic to C(y) for any y > o.) In [15]
Wolfe proves a result similar to Theorem 0.2 but under a formally stronger
hypothesis.

Theorem 0.2 suggests that a necessary and suﬂxclent condition for

a set B « By to norm a subspace isomorphic to C(w®) is that there
exist an & > 0 such that Ps(e, B) # @ for all < «® (One might call the
largest such o for a given e, the ¢ Wolfe index.) Under some mild (and
natural) restrictions on B we are able to show that this is the case. In
Section 2 we prove '

TaEoREM 0.3. Let K be a compact Hausdorff space, B a bounded w*
dlosed w* metrizable subset of C(K)*, and B the w* closed convex symmeiric
hull of B. Then, if there is a subspace ¥ of C(K) such that B norms Yand ¥
8 'Lsomorphw to Co(0®"), then there is an ¢ > O such that P,(s, B) # @ for
all y < o

A natural application of our result is to T*Bx. where T is'an operator
from ¢ (K) into a Banach space X. Thus we get

OOROLLARY 0.4. If T is a bounded linear operator from C(K) into
a separable Banach space X such that there is a subspace ¥ of O(K) such
that Y is isomorphic to Co(w®"), for some a << w;, and the restriction of T to
Y 4s an isomorphism, then thera is a subspace Z of C(K) such that Z is iso-
metric to Gy (w®") and the restriction of T 1o Z is an iso'nwrph'ism.

COROLLARY 0.5. Let T: C(K) — X be a bounded linear operator and let X
be a separable Banackh space. Then, there is a subspace Y of C(K) such that ¥
is ssometrie to Co(w®") and the restriction of T to ¥ 48 an isomorphism if and
only if there is an & > O such that P, (s, T"Bx.) # @ for all y < .

COROLLARY 0.6. Let B be a bounded w* closed w* metrrizable subset of
O(K)*. Then if B norms a subspace of O(K 'Lsomorphw to Oy(w®), for some
a << o, there is o subspace isometric to Oo(” ) which is also 'no'rmed by B.

Corollary 0.6 follows from the observation that for all fe C(K),

sup{|<b, f>1: b e B} = sup{|d, fHI: b e (BU—B)}.
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The third and fourth sections of this paper are devoted to the afore-
mentioned example of an operator from ¢ (co“’“) onto itselt which isomor-
phically preserves no copy of Cy(w o ). By using Corollary 0.5 we are able
to give a simpler proof of this than we gave in [1]. In the last section we.
ligt some open questions and make gsome concluding remarks.

We will use standard Banach space notation as may be found in the
book of Lindenstrauss and Tzafrivi [8]. For the definitions of the ordi-
nals and their arithmetic the reader may wish to consult [13]. Several
notational conventions from our earlier papers, e.g., [2], will be used here
ag well. For any ordinal a and topological space 4, A® will denote the
ath derived seb of 4 and A% = 4@ AW Tt B < 4, A is a set of
ordinals, and feB, f~ = sup{ae< B: a e B}. (The set B will be specified
whenever this notation is used.) If a and f§ are ordinals, [a, ] = {p:a< y
< B} [a, B) = {y: a<y< B}, ete. Finally if a subset 4 of O(K)* is written
in the form A4 = {u,: a € A} for some set of ordinals A, then we mean

that the map u, - « iy a homeomorphism where A4 is considered in the w*

topology and A has the topology inherited from [1, sup A] with the order
topology.

1. An extension of Wolfe’s Theorem. Before we begin the proof
of Theorem 0.2, let us recall the basic notions used by Wolfe in the proof of
Theorem 0.1. '

DEFINITION. Let ¥ < v, and K be a compact Hausdorff space. A family
F of nonempty open subset of K is a y fwmily if for each a with 0 < a <<y
there is a subfamily #, of # such that # has the following properties:

(0) I @,G e F, NGy, =B, G, Gy, or G, Gy:

1) F =U{Fa: a<y};
(2) #, is a singleton set, say @, and if G e #, G < G ;

(8) If a<< y, #, is an infinite family of dls]omt open sets,

(4) If GeFp and 0<<a< <<y, the set {H: Hc G and He &}
is infinite; ‘

(8) If @ & F4.,, then there is u sequence (G,,)y., of digjoint sets in &,
such that | J@, = G;

(6) If G € #, and f is a limit ordinal, then there exist a sequence 8,1
and a sequence (&,);., of digjoint sets such that G, € #, g, for each n and
Jea, = 6.

If there is also a set 3f measures .# (on K) associated with #, i.e,,
for each G € # there is a measure pg € ), which satisty

(8') If G € # 5, , then there is a sequence (G,)2., of disjoint sets with
G, e F, for all m, | J@, = @, and ,ugnl’; Has
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(6') If G € #, where § is a limit ordinal, then there exists a sequence
(@)%, of disjoint subsets of G and §,tf such that G,eF, , ,an 2y g
and D‘G,, < G

(7) For each G € &F, |ugl(@) =
then the y-family is said to have e-measures.

The following lemma containg some fundamental relations between
the Wolfe index and p-families with measures.

LevmA 1.0. Let y < o, and B a w* metrizable subset of C(K)
following are equivalent:

(a) There is an &> 0 such that P,(s, B) # @.

(b) There is a y-family F with s-measures in B.

(e) Thereis a y-family F = {G,: a < o’} with e-measures {u,: a < o}
< B (i.6., g, = g, and u, ~ a defines a homeomorphism).

(A1) There is a y-family F = {G,: a < o’} with e-measures {u,: a < w'},
and for each a< o, | J{G:: G.S G} < @,, there is o neighborhood A",
of o (in [1, @*]) such that G, o | H{G.: e N, —{a}], and {r: G, =2 G}
is fimite.

The proof is an exercise in transfinite induction and we leave it to
the reader. The next lemma is quite easy.

LeMyA 1.1. Let & be a y family as in (d) of Lemma 1.0. Then if A is
a closed subset of [1, w’] and A is homeomorphic to [1, o], then ¢ = {G,
e F: ac A} containg a p-family with e-measures in {u,: o € A}.

*. The

As a convenience we will assume that whenever we use a y-family
it satisfies the conditions of (d) of Lemma 1.0.

Remark. From these lemmas and Lemma 2.5 we can deduce our
Theorem 0.1 from Wolfe’s original as follows: By the equivalence of (a)
and (d) of Lemma 1.0 we can find a fn-family # = {@,: 7 < o} with

e-measures {u,: 7 < o’"}. For every ¢ > 0 and integer L, if V is sufficiently
large, by Lemma 2.5, there is a subset {r,: 7 <.0™} of {u,: 7< 0°} such
that [iwll— [vl] < e for all 7, "< o*F. Choose a continuouns function g
and an open set G such that

G < {lgf =1}, 17 (@) > v ezl — e,
and

f 9% o> v ozl — @
Pass to a closed neighborhood 4 of »®* such that

S 9@, > v ozl —20 > Il —3¢
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and
el (@) > I gzl — o, for all 7 e,
Now observe that :
[#:1(G°) < pell — (@) < [ gzl + 0 — I gzl + @ = 20,

and thus

g1 (G.0G) > | (G,nF) —30 > & —Bo.

By considering the sets {@,: 7 e #} and the measures {g-7,: 7€ 4} we can
find a pL-family with ¢ — 5o measures in the sense of Wolfe.

In hig proof of Theorem 0.1, Wolfe uses the fact that P, (s, B) # @
to comstruct an o-family with s-measures from B. Then by a series of
mfmements, he construets a f-family # with associated measure so that
X —spa,n{la. G e#} i3 isometric to O(wf) (where X is considercd as
a subspace of the bounded measurable functions on K) and is normed by
the associated measures. He then takes continuous approximations to
the funetions in X to get the required subspace Y.

For our proof of Theorem 0.2 we do not need the specific construction -

of the proof of Theorem 0.1; we will just use the result. It is sufficient for
us to show:

for every ¢ > 0 there are a sequence of pairs of disjoint open
sets {(&,, H,): n € N}, with @, < H,, and subsets B,, of B such
that P, (e—d, Bylz) # @ and [M(U{Hk k;éw,u( —@,))
<& for all ueB,.
(Here B, | = {pls,: p€B,}.)

Indeed by Theorem 0.1 we can find a sequence 8,1 »* and subspaces
Y, of 0(@,) isometric to (o Pn *), uniformly normed, with constant ¢, by B,.
For each n let X, be a subspace of O'(K) isometric to O(w (w ) so that the
restriction of the funcmons in X, to @, is X, and all of the functions in X,

are supported in H, . (See [8] page 169.) We claim that span{X,: n e N}

is the required subspace Y. If f = qu fieX, i =1,2,...,n, then
Il = If;ll for some j. Hence

sup{|<p, fHi: p € B} > sup{|<u, fH|: ue B}
= sup {|<u, fI: Hij}—~SuI>{1<#,

= sup{[<n, fila, >I — £l | (EL
=l (U {: %J})
= elfill— 85l = (e~ &) If1.
Clearly Y is isometric to Co(w®") and the claim is proved.

(1.0)

f1>1 14 EBJ}
-G ) 4 € Bj}—
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To prove (1.0) we use some of the ideas from [2]. If 4 is a bounded
subset of L, (B, X, u) for some probability measure u, let

AA, p) =supfef V6>038eX and ved

such that z(8)<< 6 and [»|(8)> &}.

Tor us we will take A to be a separable subset of B such that P, (¢, 4) # @
for all » and u & probability measure on K such that for all v e 4, v < u.
We will also need the following lemma whose proof we omit (Lemma 1.5
of [2]).
Levwa 1.2, Let (4,)2., be a sequence of disjoint w*-closed subsels of
By, K a compact Hausdorff space, and let u be a probability measure on K
such that \J A, < Ly(s). Further assume that for each n A, = {u,,:

=1
y < of™} er some ordinal f(n) and that there are constanis a > &= 0 such
that

2 ( U An;/‘) =a and A((l‘,,,mﬂ(n)):=17.’“) =zea—§.
n=1

Then for every 6> 0 there ewist am infinite subset M of N, dzsyomt open.
subsets {H,: n € M} of K, and subsets {», ,: » < o"™} of {u,,: v < o™}
for each n € M such that
}'(U{”n.rlﬂc TYSs
n

Proof of Theorem 0.2. Let

o™, ne M}, p) < £+ 8.

7, = sup{z| 3{»,: n € N} such that
A({ra: neN}, p)=>7 and v, € P, (e, 4) for all n}.

The supremum is attained, so let {»,: » e N} be an attaining sequence.
Since #, € P, (¢, 4), for each n, we can find disjoint subsets {4,: n e N}
of A such that A, is homeomorphic to [1, »™], A on) {»,}, and P, o8 4p)
# @, (use (d) of Lemma 1.0). Moreover, we can assume that 4, < P, e, (87 A)
(by passing to a subsequence {a,: n € N} of {a,: » € N} such that a,—dn_y
> a, and choosing », € P, (s, 4))-

n
We claim that there is an integer % such that
MU {4,: n>k}p)—7< 8/8.

If not, then we can find a sequence {s;: 1 € N} such that i € | J{d,: n> 1}
and A({u;: 1 e N}, u) > 7o+ 6/8. But, then p; € Py (e, 4) for all 1, so that
702 A({t;: 1 € N}, p) = 7o+ /8 —a contradiction. Hence the hypothesis
of Lemma 1.2 is satisfied, (7, < & < 7,-+0/8), and we get sequences of

3 — studia Mathematica 70. 1
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open sets {H,: n € M} and subsets {», ,: » < o™} of A, with

Py (&) Py < 0™) %@ for all ne M
and :
(U{”Mlﬂc < o™, neM},p)< 8/8+68/8 = 5/4.
'
Choose an integer I sufficiently large so that

Wl lge (U {Hy: 521, 5 e M}) < 8/3
n
and '
[P0l (Hp) < g+ 6/4  for all y< 0™, ne M, n=l.

For each » in M find an open set G, = G, = H, and a w* neighborhood
{Vapt 7= Vut Of ¥,.0% Such that

Ivn,'y! (Gn) 2 |"’n,ma’1,,] (Gn) e 0‘/6 > lvn,wanl (an) - 6/4’
for all y = y,, . Thus if we let B, = {9,.1,,% ¥ = ¥puih
I”[(U {Hy: b #n+1}0 (H,y, _Gn-{-])) < 8/3+6/2< 4,

for all » € B,, and we need only show that P WE— 08 Bilg, . ) #9 to
complete the proof of (1.0). This will follow from i

LEM:.MA 1.3. Let B be a bounded w* metrizable subset of C(K)*, with
B < Ly(u), H a closed subset of K, and e, 6 > 0 such that P,(e, B) =@
and MB|., p) < 6 for some a< w,. Then- P,(¢—3,Blg) =@ for all
y<a.

Proof. By Lemma 1.0 (d) there is an a-family # = {G4: < 0}
With e-measures {u;: f< 0’} in B. We claim that the cardinality of

= {up: |ugl (GsNH®) > 6} is finite. If not, then let {uf,: neN} < D

be a w* convergent sequence with limit u;. By Lemma 1.1 {G4 : n e N}U
U{6;} contains a 1-family with e-measures. However, this means that
there is an infinite set M < N such that {@ : n € M} is a set of dlsJomt
gets and 185, (Gg O H°) = 0 for all n € M. This contradicts MB_ o, u) < 6.
Clearly #' = {GﬁnH up ¢ D} containg y families with (e-&?me asures
(relative to H) for all y << a, completing the proof of the lemma.

To finigh our proof of Theorem 0.2, observe that A(B ,,luc ) 1)< Of4

1

and for all »eB,, |v|(H,y,~G,.,) << 6/2. Thus }.(Bi ,u)< d and
Lemma 1.3 yields P, W(e—%, Blg, ) # 0.

2. Proof of Theorem 0.3. In our proof of Theorem 0.3 we will use
a slight modification of the notion of yp-family. In the following defi-
nition and throughout this section K will be a compact Hausdorff space
and B will be a convex bounded, w* closed, w* metrizable subset of ((K)*.
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DEFINITION. A family of open subsets of K will be called a 'y -family
if for each a < y there is a subset &, of # satisfying

1Y F =U{F: a<y}
and properties (0), (3), (4), (5), and (6) of the definition of y-family. As
in the case of y-families, if there are measures satisfying (87, (8", and (7)
associated with the y-family we will say that it has e-measures.

Olearly if there exists a p-family & with e-measures from B, for some
&> 0, then Py(e, B) @ for all < y. Thus we may restate Theorem 0.3
in the (formally) stronger form:

THEOREM 0.3(2). Suppose that there is a subspace ¥ of O (XK) such that Y
is isomorphic to Co(0®") and B norms X, then for some ¢ > 0 there is an

g);—jamily with e-measures from B.

That this conclusion is eqmvalent to the assertion that for some
&> 0, Py(e, B) # 0 for all < " follows from an argument similar to
that given in the previous section and will be implieitly contained within
our proof of Theorem 0.3(a).

We divide the proof of Theorem 0.3(a) into two parts —Propositions 2.0
and 2.1. The proofs of these propositions are inductive and depend on
the establishment of both for smaller ordinals.

PROPOSITION 2.0. Let y = «®, for some ordinal a< w;, b> 0, and T
be an isomorphism from C(w”) 'mto C(K) with |T|i < b. Let A be a subset of
aByys, for some a > 0, such that T 4 is @ homeomorphism onto the sek
of point masses on [1, w"]

Then for every 6 > O wnd any & and ¢ satisfying 6 < c<1ja and 0 < &
< (1—0a) [b there emist a y-family F with (e — 6)-measures chosen from A
and a P-family of clopen sets ¥ with 1-measures chosen from the point mass
measuzres on [1, w*] such that there is a Boolean algebra isomorphism ¢: g
—F with

@ < (o | Tig(@)] > c— (@)},
boll{@: Tla(@)] > ¢ —T(6)} —0(6) < 5,

for some ©(@) < 8, and T* pyq = vg for all G € 9. (Here pye, and vy are
the measures assomatod with ¢ (@) and G, respectively.)

Remark. We are abusing the term Boolean algebra isomorphism
in the statement of Proposition 2.0. We mean that ¢ is the restriction of
a Boolean algebra isomorphisim @, from the Boolean algebra generated by ¢
to that generated by & (with operations U, n). This amounts to saying.
that ¢ is o bijection which preserves mcluslons, since we are dealing with

p -families.

Before we state Proposmon 2.1, we will deduce Theorem O. 3(a)

from Proposition 2.0.


GUEST


36 D. E. Alspach
Let T be an isomorphism from (w®") onto ¥. Since ¥ is normed
by B, there is a constant ¢ such that

sup{IKb, y>l: be B} = elyl
for all ¥ e Y. It follows from the Hahn-Banach Theorem that

4
=B ae.
Iz e

TB >
By Proposition 2 of [10] there is a subset 4 of B such that | '™
is & homeomorphism from 4 onto some closed subset S of {&;: f < 0"}
with 8@ s @. By Lemms 2.3 there is an isometry L from (8) into
O(0®") such that L*s = §, for all s & § and thus [T o™ *TL satisties the

- e
hypothesis of Proposition 2.0. Hence there is an o®family with (e — d)-
measures from B, ag claimed.

ProrosITION 2.1. If Proposition 2.0 holds for B, i.e., y = of, then
for every 6> 0 and n e N there is an integer N = N (d, n) such that if T
s an isomorphism from ((w"™™) into O (K) with |T|| < b, and A is a subset
of aBggys such that T*|, is a homeomorphism onto the pointmass measures
on [L, @*N], then for every 6> 0, and ¢ and ¢ satisfying << ¢<< 1ja and

N
0 < e << (1 —ca)/b, there exist a yn-family F with (s — 8)-measures from A and

N
o yn-family of clopen sets & with 1-measures from the point masses on [1, ']
swuch that there is a Boolean algebra isomorphism @: ¥ — F with

p(6) < {2 |Tlg() > c—7(@)},
ol 1T1a(0) > 6 —1(@)} —9 (@) < 6,

for some v(G) < 8, and T*:%(a) = dg.

The basic induction argnment follows these steps. We prove Propo-
sition 2.0 for a = 0, ®® == 1 == y, then we assume ity validity and the
validity of Proposition 2.1 for all ordinals ¢’ < @, and prove Proposition 2.0
for a. (Actually we will not use Proposition 2.1 when « is a.limit ordinal.)
Then, we will prove Proposition 2.1 for « using Proposition 2.0 (for «)
to complete the inductive cycle.

Remark. For the cases ¢ = 0,1, Proposition 2.0 could be deduced
from earlier results of Pelezyinski [9] and this author [2]. The techniques
used here are really derived from those.

Proof of Proposition 2.0. Fix a probability measure u such that
A < Ly(p). Let a =0, 0 <7< 4, and T be an isoniorphism of 0(w) into

om®
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((K) as in the hypothesis. It u, = T" 8, (s, € 4), then

({2 1Tl (%) > 6—1}) > &
Indeed,
1 = [ty Tl < I ){{221 Ty (@) > € — 7} + (0 —7)
< b lpl({o: 1Tyl (@) > ¢ —7}) + (6 —7)a.
Hence

mal({m: 1Tyl (2) > ¢c—7}) >}b_(1 —ca-+-1a) > &.

We claim that A({s,: neN},u) =¢>e Observe that since
|3 £1gy] =1 ab most |Tljo—7 of the sets {w: |Tly|(®)>c—7} can
contain a given point. Thus p({m: |Tly,l(e) > ¢—7}) goes to zero ak n
goes to infinity, establishing the claim.

By Lemma 1.2 (with g(n) = 0) there is an infinite set M <« N and
disjoint open sets {H,,: m e M} such that

A({,.am|Hc :me M}, u)<< é/4.

Let G, = H,n{: [Tlyyl(®) > ¢—7} for all me M. To complete our
argument for the ¢ = 0 we need to show that there i an infinite subset
L = M such that

ol (Gp) > e— 0 and  |u,l({z: Tyl (2) > c—1}—Gp) < 6,

for all m e L. Then, & = {G,,: meL} and ¥ = {{m}: m e L} wﬂl be our
{-families with measures {u,: m € L} and {4,: m e L}, respectively.
To see that L exists, consider :
I ={m: meM and |pyl({z: | Tlpml() > c—1}—Gy) = 6.
If I° is infinite,

. =0
M{pinl o : € M}, )= Mknlgs g, s ? B

—contradieting our choice of {H,,: m € M}. Since
Iﬂm!({a;: lTl(m)Hm) > c——r}) Z & I["'m] (Gm) =e—08
for all m e I, and the first step of our induction is eomplete. .
The proof of Proposition 2.0 for the limit ordinal case is similar to
the proof for suceessor ordinals. Thus we will present only the argument

for suceessor ordinals and leave the adaption of the proof 1;30 the limit
ordinal case to the rveader. In both cases the argument is like that for
N

Theorem 0.2, except that we must now build «*-families. To do this we
will need the following lemmas:
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LevmMA 2.2. Let K be a compact Hausdorff space and let H be a closed
subset of IC. Suppose that for some y < wy, F is & p-family relative to H, i.c.,
if Fe F, F < H and is open relative to H, and that G is an open set in K
with G > H.

Then, there is & y-family % (relative to K) such that for all I in F there
s a set Qpin G suchthat if 'y G B E Fy, By, Py € F, then Py = GpnHe Fy.

Moreover, if F has c-measures, then given 6 >0, 9 may be chosen ';o
have (¢ — 8)-measures and such that |up| (I —Gyp) < 6, for all I e F.

Proof of Lemma 2.2. For each set F e & let f be a continuous
function on HUG® such that

1 it he{BSF,BecF}
o(h) = #on !
Ty(h) {0 i hele.
Let‘ X = [fp: F e #] and note that X is separable. By a standard appli-
cation of the Michael selection theorem (see [7] page 170) we can find a
norm 1 positive linear extension operator L: X — C(K).
Let {&,: a<< ¢} be a set of positive real numbers such that25a< 1/2
and define
9 ={Gp: Gp = {Ifyp>1— Y s}
aB

where f is the unique ordinal such that F e & ,3}.

We claim that ¢ is the requived family, with ¢, = {Gp: F e F,},
for all @ << p. All of the inclusion properties follow from the corresponding
properties for & and the positivity of L. The digjointness properties
follow from e, << 1/2. :

The “moreover” assertion can be obtained by choosing for each I € &,
a closed subset # such that

FoF' o UESF,GeF} and  |upl(@') > lugl(F)~0d.
We then require that
1 hel
(B = ! !
e T

and complete the nrgument as above.

Be_ma,rk. In the above lemmia we have veferred to a p-family realbivo
to H' with s-measures. There is some ambiguity here with regard to the w*
convergence requirements and the domain of the measures. In our case,
we will use meagures defined on the Borel subgets of K and the w* con-
vergence will be relative to ¢(X).

Lemua 2.3. Let 0 be a clopen subset of [1, o], for some ordinal a and A
a closed subset of 0. Then there is @ positive linear ewtension operator L: C(4)

~>0[1, a] such that X = L(C(4)) is supported in 0, and consequently, X
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is @ complemented subspace of O[L, al, the restriction map Ry: C[1, a]
— O(A) is am isometry from X onto C(4) and LR 4 is & projection onto X.

Proof. Define a linear extension operator L': C(4)—C[i, a] by

, _ 0 ) . ' if /3>S‘1PA7
L1 _{f(a,) where a = inf{yed: y=>f} i p<supd

and let B, be the restrietion map onto 0(0), i.e., Rof = flo- L = R I/
satisfies the requirements of the lemma.

We are now ready to continue our proof of Proposition 2.0.

Suppose « = f+1 and let T be the given isomorphism from C{w™")
into O(K). Detine

00 = sup{et {r,: n € N} such that
A({ra: neN}, p)=> ¢ and », €P 5 (e—6/2, ) for all n}.

Tt follows from Proposition 2.1 and the fact that O (0*%) o C(m“ﬁ") for all n
that such sequences exist. The supremum is attained, so let {v,: neN}
be a sequence a8 above with A({»,: n e N}, ) = go-

By passing to a subsequence if necessary weé may assume that v, € P p
(s —6/2, A), for all n. For each n choose a subset 4, of A such
that A, is homeomorphic to [L, @], AL™ = {}, P s (e—8/2, 4,)
#@, and 4, <P g (¢—38/2, A). The same argnment as we used in the
proof of Theorem 0.2 shows that there is an m, such that A({J{4n:
%> g}, p) < o+ 6/16. By Lemma 1.2 there are an infinite subset M
of N, disjoint open sets {H,: m & M}, and subsets {2 ¥ < w‘”"’”} cA,
for all m € M such that

(2.0) U Ll ot 7 < 0™, m e MY, ) < 8/8.

Clearly we can assume that

(2.1) B, | (El) > 00— 3/8

For each &k € N let n(k, 8/16) be the integer given by Proposition 2.1.
Choose for each %, an integer m(k) > n(k, 4/16) with m (k) € M, and leb
oPm(k) 1 (mﬁ(m(k)—n(k,a/m)))} .

for all y < w“’ﬁm, meM.

Dy, = {e: 8, = T*fbmg,, Tor sgome ye[l, o

(Here we could use elements of any closed subset of [1, w?"#)7, homeo-
morphie to [1, 0?8818 ) By passing to smaller sets of the same
homeomorphic type we may assume that there are disjoint clopen sets
{0,: % e N} with 0, > D, for all k. Let X = L(0(Dy) where L is the
linear extension operator given by Lemma 2.3 (with 0 = ).

Since X, is isometric to O (w®™49))  we can consider T|y, 28
an igsomorphism from C (0®Pn0919)) into  ¢(K). By Proposition 2.1
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N
there are o’k families &, and %, with (¢ — 4/16)-measures {»,,: y < w‘“ﬁ’“}
and 1-me?a.sures {84, ¥ << w® "}, respectively, such that there is a Boolean
algebra isomorphism ¢,: %, &, with ¢,(&) < {z: |T1gl(z) > ¢ —7(G)},

(2.2) Poyal({z: [T1l(@) > ¢ —v(@)} —,(@)) < 5/16,

for some 7(&) < 8§/16, and T*pyq = &g, for all G e %, k e N. Here the
sets G in %, satisfy 15 € X, PaN

We wonld like to use | J{%: %k e N} and | {#,: k € N} as our o
families however there is no guarantee that if Fy e #, and Fpe &,
& # k', FpnFy, = @. (Since X,, is supported in 0,, this is automatic :[‘;)r
U{%,: & eN}) Thus we must modify the families {#,: k e N} slightly.
‘We will first find closed sets H, < H, such that {FnHy: F e &#,} contains
an of (k—1)-family #; relative to H; with &—380/4 measures. Then we
will use Lemma 2.2 to replace #;, by a family # relative to K so that all
of its sets are within H,.

Choose an integer 1 such that

(2.3) 0l |H%(U{Hn: n>1, neM}j< 88
and
(2.4) iyl (Hy) < 0o-+6/8  for  y< o®®, kel kx1.

For each % in M let H;, be an open set such that H}, c Hj, < H, and
(2.5) 7, woPle—1)] (Hy) > 7, pofli-1)] (Hyy—6/8.

Pass to a w* neighborhood, {r,,: . <y < w® =1 of ¥, paf(s—1y Sch that

(2.6) [¥eyl (Hy) > 1 wefte—nl (Hie) — 8/8..
Let

G = {Gry: o<y < 0”F
and

Fio = oG Hy: 7, <y < 0’®0)
forallke M, k> 1.
We claim t}Et F1 is an o (k—1)-family with e—38/4 measures.
Since #, is an o”k-family, it is enough to show that |y, (Q”Ic(G‘k,,)nE;)

>£—348/4. We will in fact show more, namely, that if % is sufficiently
large, ’
(2.7) 195,12 (G ) — 92 ) N L) < 58

Suppose that it were not the case that there exists a ko> such that for
allk = k,,

k(P (G ) — 5 (Gry) nf—[;) < 546/8
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for y, <y < w”® Y. Then, we could find a sequence {rg,u* keN}
such that

1 [, M@ (Greia) — @Gy N Hr) = B8/[8.
Since the subspaces X, are disjointly supported,

Iillcn,u({m: 1T1g 4l (@) > e—7(Gryp)}) =0

and thus Lim (g, (Gya)) = 0. This implies that A({re,mis* % e N}, sy
k I
> 56/8, but we also have that

Wi (Hx —Hp) < W) (Hr) = 17 yoic—n! (Hy)+ 6/4
< 0o+ /8 —(0o—0/8)+6/4 = 6/2,

by (2.6), (2.4), and (2.1), and, by (2.0),

}‘({vk,y(k)iﬂfc: keN}, p)<< 8/8.

This contradiction gives us our k,, so that & +is an f (& —1)-family with
(s —36/4)-measures, for all k> k.

By Lemma 2.2 there is an of (b —1)-family &, of subsets of H, with
(e —78/8)-measures. For each & and y, <y < 0?61 let Fy,, be the set
in &, corresponding to @(Gy,)NH; and define

wB(f—
Fr = {Frpy0u(lry): Sy <O =13,

Ti is easy to see that &, is an of (k —1)-family, and since by Lemma 2.2
e l(Pr(Gry) VHY, — By ) < 8/8, F has (e —76/8)-measures.
Let & = {#Fr: kelM, k>Fk} and ¢ = U ke M, b=k}
o~
Clearly & and ¢ are wPt-families with (e — 6)-measures '

{"'k,?: VeSS Y S mwﬂ(k—-l)’ keM, k> Ko}
and 1-measures
wB (i
T, <y <O @0, ke M, k> Ko}y

respectively. Define a Boolean algebra igomorphism ¢: ¥ — F by

By
P(Gry) = Gk,y")%(Gk,;{), <y < of =1, keM, b=k

Then ¢(Gy,) < 9 (Gr,,) = {2 lTlakﬂl(ﬂ"‘) > e —1(Ge)}s
Pgll{@: | T1g, (@) > ¢ —7(Gy,)} —0(Gry))
< g llfe: 1Thg, (@) > 6 —7(G,)} = PulGrn)) +
F 02 Gy) — P () N Ty} < 6/16 +58[8 < 0,
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{by (2.2 and (2.7)), and (@, ,) < §/16 < 4. Thus the proof of Propogition 2.0
is complete.

For our proof of Proposition 2.1 we will need a few technical lemmas.
The first is a purely combinatorial result that was proved in [3]. We
would like to thank Y. Benyamini for pointing out that this lemma could
be used to simplify several of our original arguments.

" LEMMA 2.4. For every &, n € N and ordinal a << o, there is an integer
M = M(k,n) such that if [1, 0] = { J{d;: i = 1,2, ..., %}, then there
is am indew i, such that A; contains a subset homeomorphic o [1, w™].

Our next two lennnag concern w* convergence und ity relationship

to the norm.
) Levmma 2.5. For every ¢> 0, n e N, and ordinal o< w, there is an
integer m = m(n, ¢) such that if 7 = {p,: y < 0™} s o subset of By
(in the w* topology), then there is a subset sf' of </ such that of' is homeo-
morphic to [1, 0] and ||p| — || < & for oll p,v e’

Proof. Let m = M([¢7']+1, n), where M is given by Lemma 2.4,
and consider {y: (i+1)e> gl >1e, y< 0™}, @ =0,1,2,.., "]
Clearly this is a partition of [1, ] and Lemma 2.5 implies that
{y: Go+1L)e> |l = ie, y < 0™} containg a subset homeomorphic to
[1, ™], a8 required.

Levma 2.6. Let K be compact Hausdorff space. Let 6,e> 0,
A = {p,: y< o} for some < o;, and A < Bz stuch that lllﬂllmllvl[! <e
for all u,ved. Then

(i) If f € By, there is a mighborh‘ood Ny of ppin A such that
| [fainl= [faiu,, for all

(i) If I is o closed subset of I and |u gl (F') < 8, then there is & neigh-
borhood N 5 of p g in A such that

(| (F)y< e+, forall pek,.

Proof. Observe that if » is a w* limit point of the net {|u,|: y} o,
v 2 |4 gl- Indeed, given h>0 and & >0 choose geByy) such that
|[hdip gl —[hgdp g < &' Then

[haip gl —& < [hgdu y =Yim [ hgdp, <L [higld|p,
@ ¥ I Iy

< e+, pEN;

<lim [hdlp,| < [ hdr.
¥

On the other hand, [p]| < Timn syl < s ol + &, and thus [l sl — || < &
For (i) we have Y “

[Bin [ 7alu, — f falul| < elif1 < e
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g0 that for y sufficiently large
| [ Fai, — [ fapl| < e+ o

If (ii) were false, an(p) > e+ 6 and thus for some limit point » of
k4

{lml: ytef, PIF) > e+d. But,

(F) < |t ol (F) Hls gl =] (F) < 8+

LiEma 2.7 (Gillis [7]). For every ¢, ¢ > 0 and n € N there is an integer
& =k{n,c, o) such that if {G:1=1,2,..., k} are measurable subsels
of o measure space (2, &, u) where p is o positive measure of total vari-
ation less tham ¢ and p(Gy) = ¢ for 1 =1,2, ..., k, then there are indices
< W) < ... < U(n) such that p({VFym: ¢ =1,2,.. n}) > 0.
" We now have all the tcols we need to prove Proposition 2.2. Two
observations that we will employ in our argument are:
(1) For a nested sequence of clopen sets Jo, G Jon—1 «- SIS d,

”kgl (L, —Lay, )l =1 and thus Hk_=21(1’1hk—1’112k_1) || is bounded, in-
dependent of n.

2) I Fisa ;f)a,vfaymily and for each F € F, there is an p-family & (F)
such that J{G: GeF(F}c F, then FU|J{F(F): Fe For is an

P
y(n+1)-family.

Proof of Proposition 2.1. We assume inductively that the propo-
sition holds for n —1, % > 1, and any 6> 0 and prove it for n. ‘We bave
by Proposition 2.0 that we can take N(d,1) =1, and thus the first step
of the induction has been completed.

Let N = N (8, n) = m{k(N (8/3, n—1)+1), 5/24) where k= k(8T |67
+1, @, 6/24) from Lemma 2.7, N{8/3,n—1) is defined by the
inductive hypothesis, and m is determined by Lemma 2.5. To simplify our
notation let I = N (8/3,n—1)and p = k(l+1). By our choice of N we can
find a closed subset A’ of 4, such that 4 is homeomorphic to [1, "] and
[Ipl—Ip'll| < 6/24 for all »,»" in A’. By Lemma 2.3 we can find a positive
linear extension operator L: C(4") - CO[1, @’Y1, where A" = {z: ™ = &,
for some » € A}, such that TL is an isomorphism of C(4") into C(K) with
W\TLY < |7, and such that (TLY*|, is a homeomorphism onto {6,:Ted"}.

Tn this way we ean assume without loss of generality that T is defined
on O[1, »*?], A is homeomorphic to [1, "], and )

(2.8)

for all »,» ed, |l—l}< 8/24.
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Let X be the subspaee of ([1, w™”] which is the range of the linear
extengion operator L: O([1, o"?]?®%) . ¢[1, w’?] given by Lemma 2.3.
Note that T'L and

B = {u: T"u = ¢, for some 7 €[1, 0]~ and € A}

N
satisfy the induetive hypothesis. Thus there are y(n —1)-families # and @
with (¢ —¢/3)-measures from B and l-measures from [1, w®e-D)
‘respectively, and a Boolean algebra isomorphism ¢: % — & such that

{21 1 T1g|(2) > ¢ —26/3 — 2 (@)} o p(&),
for some z(@)< 6/3, '

(2.9) wo@ ({22 1T16] (2) > e —26/3 — (@)} —p(@) < §/3,
and E*T™uye = vg for all @ e . Formally the sets in & are subsets of
[1, w"”]("‘p‘IS), however we will consider them to be subsets of [1, "]
by the identification G <> suppLig. B

Let D = {z:- 6, = v4 for some G € ¥}. By (an casy modification of)
Lemma 1.0 (b) = (d) we can assume that D is homeomorphic to (1, 0*®Y),
TFor each

€D = {d: deD and d is an isolated point},

G0 (d™, 4] is homeomorphic to [1, w'n] for some EZyp(p—1) and n e N.
(Here @, is the get in % such that v 2 = 92-) Thus we can choose a subseb
B(d) of [a, a]** M 1@, such that F(d) is homeomorphie to [1, w’]
and (@) = {d}. By passing to the subset of B(d) given by Lemma 2.6(ii)
we may asgume that for all u, such that Tu* = 6, for some = c E(d),

(2.10)  |pl({e: 1T16,|(2) > 0 —7(Gy) —20/3+ 5/24} — p(6))

< 83466 = 8/2,
as well. Let L(d): C(H(d)) + C[1, ©"™] be the linear extension operator

given by Lemma 2.8 with 0 = (4, ]Gy, and let X (d) = L(d)(0(B(d))).
As before the operator T'L(d) and the set

B(d) = {u: T = 6, for some e B(d) and ued},

satisfy the inductive hypothesis (n = 1). Thus there arc y-families # (d)
and #(d) with (¢—8/3)-measures from B(d) and l-measures from {4,:
T € H(d)}, respectively, and a Boolean algebra isomorphism ¢(d): ¥(d)
> % (d) such that

{o: | T1gl(2) > 6 —1(@)} > ¢(d) (&)
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for some (@) < §/3,
@11) . kel (Tlgl(@) > o—(@)} —¢(@)(@) < 6/3,

and L(&)*T* Hoay@ = e for oll G € (d). As above we will eonsidt?r the
sets in #(d) to be subsets of [1, w'”]. _ ~ .

We would like to use F Ul J{# (d): d e DX} as our yn-family, but we
do not know that if F e #(d), F < ¢(Gy). Thus we will try to replace # (d)
by some p-family whose sets are subsets of p(Gy). Since we must also ha,wfe
(e — 8)-measures, we may not be able to do this for these #(d)’s. If this

/\ sy -~ e
happens, we will consider other y(n —1)-families and y-families and show
/\ ~ e .
that there must be a y(n—1)family # and p-families & (d) which can
LN . . ;
be modified so that FU( J{F'(d): 4 e DV} is a yn-family with the required
properties.
Consider the set
B = {d: |puaell{®: 1T1gl(w) < c—26/3 —(H)+ 6/24}n
n{z: [Tlel(z) > ¢ —v()}) < 8/6 for all
Ge%(d) and H €% with H > 6}.

(2.12)

T B > DY, we complete the argument as follows: For each d let F(d)
be an open subset of ¢(G;) snch that

(2.13) |l‘q(0a)|(F(d)) > 1l‘w(ad)l(¢(Gd)) —0/24
- : p — — : d)° is a clo-

Observe that § = {#: [Tlg |(#) = ¢—20/3 —7(Ga)+ 5/24}{’\ F(

sed set and thus by Lemma,d2.6(ii) there is a closed w* nelghbor]'mod A (d)

of piyq, such that 181(8) < |ptgiap! (8) + 612 for all u € A7(d). Since

8 < {m: [Tlg,l(@) > c—28/3 —1(Ga)} —F(d),

it follows from (2.9) and (2.13) that [#m(ad)|(5)< 4/3+ 6/24 and hence
that
(2.14)

By Lemma 1.1 there is a p-family contained in & (d) with (8——5/3?-
meagures in A" (d), so without loss of generality, we will assume t}‘m.t this
y-family is & (d) itself. (This poses no problem_for our a,ssumgilnons re-
garding % (d) since we can replace it by the image under gy of the
f&mlllfnfe’gx.;’:?‘(fzg)l {FNF(d): F e 7 (d)}. We claim that &# (@) is a,l;ﬁ-family
with (s— 8)-measures. The “family” properties of the _Z-_fam]ly F(d)
are obviously inherited by #''(d) if we show that FAF(d) #© for all

and F(d) < ¢(Fy)-

|ul(8) < 118/24, for all 4 e (d).
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F e #(d). This in turn will follow from
(2.15) lupl(FAF(d) > s —238/24 for all F e F(d).
We will actnally show more, namely, that ‘
(2.18) lupl(F —F(d) < 156/24.
‘We have that
F—F (@) = Sul{n: |T14,)(2) < c—26[3 — (6 + §/24} 0
Afa: 1TL, 0 (@) > c—(p(@) " ()}).
Thus by (2.14) and (2.12),

lawl(F —F (@) < lugl(8)+ |ugl({@: 1T16,(2) < ¢ —28/3 —(G,) +0/24}n
n{m: T, g1y (2) > ¢~ 2lp(d) " (D)) < 118/24+ 6/6 = 158/24.
Since # (d)has (e— 8/3)-measures, it follows that |upl(FnF(d))>s—

—6/3 —15d/24 = & —234/24, establishing our claim. Note that we ha,ve a8
well that

@17)  Ipgl(fo: 171, 50| (@) > 0 —lg (@7 ()} —(FF(@)))
< 83418624 < 6
by (2.11) and (2.16). ,
X It only remains to replace %'’ (d) by an y-family of subsets of p(Gy), i.e.,
a y-family relative to K. This we can accomplish by Lemma 2.2. Indeed, let
F(d) be an open subset of K such that F(d) c F'(d) < F'(d) < ¢(&,). By
Lemina 2.2 there is a y-family #'"(d), of subsets of F'(d) with (s —286/24 —
— §/24)-measures. Let
(@) ={F'nk: FeF(d), FeF'"'d),
and F' is the set corresponding to Fn M}
and note that |up (F’ NF)>e—0 and

lupl({o: 1715 1| (@) > 0 =(p(@) ™ (F))} —F'nF) < o,
since |ppl(FNF(d)—F') < 8/24 and F(d) satisties (2.15) and (2.17).
Let
@ = 9u(U {#(d): d D)

and
F' = FU(J{F' (d): deDO)),

and observe that they are both ?n-families. (Everything is obvious except
perhaps (6) which follows from F <« F'(d) =« F'(d) < ¢(Gy).)

{vg: GeFtU{rg: G e9(d),d e DV}
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and
{Boiy G € GY{up: FeF(d), d e DV

are 1-measures from the point masses and (¢ — 6)-measures from A4, respect-

ively, which makes ¢’ and &', ’;;’b*fﬂvmi]ieﬂ with the appropriate measures.
Define ¢': ¥’ - F' by
, [p(@ it Ge9,
¢ (G) = P
le@)(@ne@)(@ i Gedd).

(Here ¢(d) (@)’ € #'"'(d) and corresponds to ¢(d)(G)n F(d) under Lemma
2.) Olearly ¢’ is & Boolean algebra isomorphism and we have already
verifed the measure theoretic requirements. Thus if B > D°, we are done.
Ii B DO, then there is o d € D, and a set Ge%(d) and He &,
such that H » G and

Ieael{{z: 1T1gl(2) < ¢—268/8 =7 (H)+ 6/24} N
n{z: Tlgl(2) > ¢ —(@)}) = 8/6.

By Lemma 2.5 we can find » clopen neighborhood A4 of g, in 4 such
that for all p e &

(218) lul({z: |Tigl(e) < e—168/243n{w: |Tlgl(2) > c—=(G)})

> 6/6—38/24 = 6[24
and thus
|ul({@: 1Tl —T1g| > 6/4}) > 6/24.

Let J(1) = H and J(2) =&

We now repeat our earlier argument using subspaces of C[1, o™}
which are supported in I, = J(2)n{y: 6, € T*4"}. First we observe that
Ifpe—0+0) £ @ and thus we can choose & subset B of Ipre—2-1)
such that B is homeomorphic to [1, v*’']. As before we use Lemma 2.3
to find a subspace of C[1, w'?] isometric to C(B) and an extension ope-

AN
rator L. We apply the inductive hypothesis to T'L to get y (n — 1)-families &7
and %, just as before ((2.9)). Let D = {y: 8, = vz for some @ € ¥} and
for each d € D@, let: G(d) be the set in &, samsfymg 8q = Yg(g)- For each -
such ¢ we then find s subset E(d) of ((d~, d1n&(d))w (o204 such that
B(d) is homeomorphic to [1, v’] and B{d)®) = {d}. Again we apply Lemma
2.3 to get an extension operator L(d): O(E(d)) — C[1, »’®] and use the
induetion hypothesis (on TL(d)) to get y-families & (d) and #(d) as before
((2.11)). Let B be defined as in (2.12). If B > DY, we complete the argu-
ment as we indicated earlier; if not, we get clopen sets @ and H such that
G S H S J(2) and we get a measure pygq (for some d € D) guch that

i!‘«p(a)(a)l({w: {T1y —T1g| () >6/4}) 8/6.
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Since T*pay e € A N{8,: v €J(2)}, by (2.18),

\ [Bpayen! (&3 1Thym — Tyl (2) > 8/43) = 8/24

as well. By the same argument as before we can find a neighborhood
N (1) Of pyaye in A such that

lal({w: 1Ty —Tlgl(2) > 8/4}) > 8/24  for all p e ¥ (1).

Let J(3) = H and J(4) =6

By our choice of p we can carry oub this process To== E(8|T) 67+
+1, a, 5/24) times, if we do not succeed at somo stago. Thus “we would
have eclopen sets J(1) 2 J(2) % ... 2 J(2k) and a measure p in A4 such
that for each 4,1 <i <k,

L“I({m: |T1 g i1y — T Lyzny) () > 5/4}) > 0/24.

By Lemma 2.7 and the definition of k there are [1L+ 8T 4717 of the sets,
{w1 | TLygiyy — Tlygyl (@) > 0/4}, @ = 1,2, ..y k, which have a common
point, say %,. Also for at least hall of these (T yai—1y — Ty a) (%0)
> 8/4 or for at least half (T1ym—s)—Lls0) (@) < —56/4. For sim-
plicity let ug assume that the value at @, is larger than d/4 for Go==1,2,...
aeeyBoy B 3= F[1-48HT) 6711, Then

1 P
IlTj(lJ(zi—l)"lJ(Zi)) ”>l Zo’(TlJ(zi—l)—-Tl.f(ﬁ))(wo)’
= b

61
> 25 [L+81T1 6] > T, ‘
but

= 1.

iy
H 2 Lyei-y —Loes
=1

This contradiction ghows that we must have B = D@ at some stago.

3. Technical lemmas. In the previous sections we have proved severa

icm

results relating the Wolfe index to subspaces of ([0,1] isometric to

Cp(w®”). This raises the question of the relationship between the Wolfe
index and the Szlenk index as applied in [2]. Those results were obtained
only for ((w®) and an example was produced [1] to show that the direct
generalization of those results was impossible. In Section 4 we will present
that example with a new (and shorter) argument which malkes use of the
Wolfe index. It will follow then that there is a subset L of Bo.,(a;wz , for
which (the Szlenk index) 7(%, B, oa@Y’ L) > »? but for every &> 0,
Pfe, 806" (LU —L)} =@ for n suiliciently large.

B
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In this section we will prepare the way for the presentation of the
example by proving several lemmas of a general nature. As motivation
for the lemmas let us note that the example is obtained by choosing a sub-
set I of the probability measures on [1, m"’g) such that Lu {0} (in the w*
topology) is homeomorphie to [1, co‘”z] and such that the map T: 0,,(w“’2)
— Qy(L) defined by (Tf)(1) = I(f), for all I € L, is surjective. By Theorem
0.3 it is sufficient to show that for every &> 0 P,[e, co(+L)) =@,
for n sufficiently large, in order to conclude that I does not norm a sub-
space of 0o (") isomorphic to Go(w“’z). Our primary goal in this section
is to show that it is sufficient to prove that P,,(s, L) =@, for n suif-
ficiently large. )

LeyMA 3.0. Let K be a countable compact metric space and let &> 0.
For every 6> 0 and ordinal a<< wy, if {#,: y < 0*} s a subset of By
satisfying I”],a,,"-——“/z?,||| < & for all v,y < ° then there is a constant c,
a closed subset A of [1, ©*] homeomorphic to [1, o*], and elements {»,: y € A}
of Boys such that for all y € A

1) lipy —mli<e+d;

2} Il = e lipall — 9.

Proof. By replacing {u,: y < w"} with a set {z,: y < 7} such that g,
hag tinite support and |ju, —u, < 6/2, for all y, we may assume that each g,
has finite support. With this assumption we will show that we can choose
¢ = |lg .l

For the cage ¢ = 0, the lemma is trivial, so assume that it is true for 8
and we will prove it for a = f+41.

N
Let g o =3 004, {®(1),(2),...} = K. Because K is countable
n=1

and therefore totally disconnected, we can choose disjoint clopen sets
G,,n =1,2,..., N such that z(n) € &,, for each . For each n let E u,
= :u'y]Gn .

Choose an integer %, such that |B,uli> |IB,ull(1l—d/4) for all
y> ok, and n =1,2,...,N. For each k >k, choose an ordinal y
such that (R, u,l > (Ryup g ll(L—38/4) for all p, y, <y < k.

Bach of the sets {u,: y,<<y < ok} satisties the inductive hypo-
thesis, and thus, there are sets A < (3, ©’k], and measures {»,: p € 4.}
such that 4 is homeomorphic to [1, o] and for all y € 4,,

Il = Nl
and
v, — gl < sup{[l i —lapl: 7 < 7, ¥ < &k} + 8/4
for all k> k.
Choose k, >k, such that for all y e | U{d,: k> k;}

(8.1) (@) —a,) < |, 6/4, n=1,2,.. V.

4 — Studia Mathematica 70. 1
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Foreach y e | J{A4;: & > k,}let

N
v, = Zan”R"(w;)!(n)“"an(a);)c(n)’

=]

where £(n) = sgna, and (v,)" —(»,)” is the Jordan decomposition of Py

‘We have that

N
Pl = D) 1anl = s, el
and et

Iy — w1 <<l v I, — a1
For each n

B (7, — )

= 18, [(1)" (@) 17 () () — & (1) (5)"™ (G| + ) (@) — ()%™ (@)
= [lay | = () (6] a] — () (@) + (@) — |ay)

< 21a,|8/4+ ) (G,) — la,],

because
() (@) > 6(m)vy(6,) > £(n)a, — |a,| /4 = |a,]| (1 — 8/4),
by (8.1). Hence, if y € 4, for & > k,,

N
Iy =24l = D IR (=) + I\ (G n =1, 2, ..., N}

na=l

N ) N
<(812) ) lanl+ Iyl — 3 10l < (812) ey oll+ i ll — 1t

n=1 n=1

Also

Py — ol < sup{{lla, | = el 92 < 7, 7' < 0P} -+ 84
< sup {luells < v < B} — g, I+ 8/4+ 8/4.
Combining these estimates we have that
I, — )l < % ll/»,,,.,ll—k‘-‘E Foup {llpll: 7 <7< OB} — |l ol < O
3 < ol < 0-+¢,
irt;?:hga:trn(;la;rg lf;)a,rvﬁe Tj}lﬁ.(}ﬂ?ﬁf@p:g:é ;ﬁr the case when a is a limit ordinal

LeMwMA 3.1. Let K Ife a compact metric space and let L be o countable w*
closed subset of the_posmvs elements in Bogy - Suppose that for some o<
and &> 0, P,(s,coL) %@, then P,(s, L) % @. '

icm

C(K) norming subsets of C[0,1] 51

Proof. By Lemma 1.0(d) there is an o-family {G,: y < "} with
e-measures {x,: » < &} < coL. Because I is countable, for each y, u,
hed

is a (possibly infinite) convex combination of elements of I, L.e., p, = Sl

o
&=

wherel; € I, 4,; > 0, for all 4, and 3 4,; = 1. Choose for each y e[1, @]
. i=1

an element I(y) in the expansion of u,, i.e, L(y) =¥ and 2,; # 0, such
that 1(y)(G,) > &. We claim that there is a w* closed subset 4 of [1, °]
such that {G,: y e A} is an ofamily with e-measures {i(y): ¥ € A9},

Obgerve that if {y2; < [1, "0, limy; =y, and w*liml(y) =1,

then | G, < @,, for some i, and UG,) = liml(y,)[G, 1> & It follows. from
i=ig ey

this that
) 7 e L, T} #0

and thus the set 4 ean be easily constructed by induction.

Our next lemmas almost achieves our goal. The difficulty is that 0
is izt the w* closure of the set we construet in Section 4. However, this
problem is not diffienlt to overcome and we leave it until Section 4.

LEMMA 3.2. Let L be a w* closed countable subset of {12 pu € Bogyss 1> 0}
for some countable compact metric space K. Suppose that the evalualion map
T: ¢(K)—>C(L) defined by (Tf)(T) =1U(f), for all 1eL, is surjective.
Then, there is an &> 0 such that P,(e, €0(+ L)) # @, for all y < o if and
only if there is an & > O such that P,(¢'; L) + O for all y < o°.
™ Proot. Clearly i P,(¢,L) #@, P,s,c0(+L)) #@, thus one
direction is trivial. Assume P, co(+ L)) # @, for all y < o and let
a,} 0’ From Lemma 1.0 it follows that for each n, we can find an a,-
family with s-measures {v, ,: ¥ < "} in ¢0( % L). By Lemma 2.5 for each
% e N we can find an integer n(%k) such that {yg,: ¥ < ™9} contains
a subset {r.,: y < 0*} such that

gl — Dol << /NI

(IT*Y| < oo because T is surjective, and thus T* is an isomorphism.)
Moreover, by Lemma 1.1 we may assume that we have an a,-family
Gyt ¥ < @0} 80 that {u,,: 7 < ¥} are agsociated e-measures.

For each y < 0™, let 7;,, = T" 'y, and note that

Htk,v - Tk,y'“ < ”T*_IH ””Ic,'y _Vk,y’” < 3/85

tor all y,y’ < o™ Thus by Lemma 3.0 there are a closed subset 4 of
[1, ™], homeomorphic to [1,w™], a constant c¢,, and measures {pryt
¥ E-A} < BC’(L)‘ such that “‘Pk,y'—rk,y"< ‘9/4 and qulc,v“ =0 > “Tk,wakll—
—¢/8, for all y € A. Observe that

]T*‘Pk,vl (Gk,y) = ]”k,v‘ (Gk,y) - IT*‘I"R,V _T*Tk.yl(Gk.‘.V) =& HT*HSM’ = 36/4'
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Consequently, {G,: y e A} is an o, family with 3¢/4 measures {T%, :

y € A} such that |lp, | = ¢, for all y € 4. ’
Next note that it follows from Lemma 2.6(i) that if o is a w* closed

subset of {u: u e C(L)" and l|ul = ¢z}, (k fixed), then the wnap p-— |u]

is w* continuous from « to C(L)*. Hence {T* l@,l: v € A} is homeomor-

phic to [1, »™*] and

-T* l(pk,?] (G/c.y) ->" IT$¢ln,vl(ch,7) > 36/4’

forally e A. Thus {G,: y & A} is an o-family with 3¢/4-measures {T%p, |:
yeA} in L. ’

By Lemma 1.0, Poy(3¢/4, c0L) # @ for each keN, and so by
Lemma 3.1, P, (3¢/4, L) # @, for each keN, as well. Because ot
P,(3s]4, L) # @D for all y < 0% and the proof is complete.

Out next lemma will be used to show that P,,(e, L) =@ for n suffi-
ciently large, where L is the set constructed in Section 4.

Before stating the lemma we need an additional definition. XIf u

N

=‘21 a;0,, t;eF, for some compact Hausdorff space F, then a family
of d.isjoint open sets {4;: i =1,2, ..., N} will be called a distinguishing
Family for p, if for each ¢ there is an ordinal o; such that 4% = {1}

Levmma 3.3, Let {G,: y < 0} be an w family with s-measures {k,:
¥ < 0°} = By where F is homeomorphic to [1, o*™]. If

m N
.l .
bpw = > 3 Ay,
1=0 j=1
with
ty € F(3) = FEH _Flt+)  for 1 <jS N, 0<i<m,
and

b {Ap Ij K N, 0 i< m)

s a digtinguishmg Jamily for E ,, then for every o6 >0 and integer N
there ewists a subset of of [1, w®) homeomorphic to [1, w™] such that

el (U{4ynF(3)nGy: LK< Ny, 0<i<m}) < 8, for all fedt.

!?roof. We will use induction on N. Suppose N == 0. For cuach
and j let r,; be the unique integer such that ‘
ty & (i) — P (@)™ = gt plettd,

Let
<

o =max{ry: L<j< N, 0<<ig<m}

icm°

C(K) norming subsels of C[0, 1] 53

and .
A =U{dynF(): 1<j< N, 0<<i<m}.

Consider tht map T: O(F)— 0(A) defined by If = fl.-

Note that AT = @ and thus, by the result of Bessaga and Pel-
czyriski [8], there is no isomorphism from O(e®) into 0(4). Tt follows
from Theorem 0.2 that {G,: y < 0”} with the measures {k,[4: ¥ < 0}
is not an o-family with é-measures. Hence there is an ordinal y, such that
1k,0|(G,,0nA)< 8, as required.

Now assume that the result is trug for ¥ —1. By Theorem 0.1 there
is an integer M such that Py (6, T*Byuy) = B. {G,: y €[1, ")}
is an o family with e-measures {k,: » € [1, *1¥*9} and so by the induc-
tive hypothesis we can find a subset & of [1, ©®]®*) such that {
is homeomorphic to [1, o™ '] and |k|(G,NnA4)< 6 for all y esf,. For
cach y € #® we can find a sequence (y,) = [1, ©"]* such that U{&,,:
neN}c @, and y,—y. Because Py (8, T"Bguy) =@, for each =,
Ik, | (G, N4) < & for some ordinal 7, = 7,(y) such that &, = @, . Clearly
limz, = y and thus the union of o, and {r,(y): y e &, n €N} is the
required set . ’ :

4. The example. We now present the example of a subset L of B 0 (@
such that P,,(e, co (LU —L)) = @ but the Szlenk index 7(}, Ba., oty L}
> b

To construct the set L, it is convenient to use a space K homeomorphic
to [1, m“’z]. To this end we need some additional notation.

For each a€[l, w®)%) let F, be a compact Hausdorff space. We
define >, ¥, to be the set

a<a®

U{F.: aell, 0" NulL, 0]
with the topology generated by sets of the form
UF.: Bi< a< Bo}Y([L, 0°100(By, o)) W(U{Ge: aell, ®®1%9})

where By, fa€ [0, »®+1] and for each a,@, is an open subset of F,.
It is easy to verify that 3 F,is a compact Hausdorif space.

a<w

Intuitively, this topology is the natural topology obtained when one
replaces the isolated points of [1, ©®] with the compact Hausdorff spaces F,,
a & [1, »®1%0). For example, if each F, is homeomorphicto [1, »°], then >

a<a®
P, is homeomorphic to [1, @®*]. (One may view this topology as the
procupine topology on

Y = U{F.: acll, 0L, 0]


GUEST


54 D. E. Alspach
with index space [1, »“], and selection §: [1, ©®]— ¥ defined by

a if
8, where 8, is any point of F, if

w(l)
S(a):[ ae[lzw] ,
1 ael, w40,
See page 327 of [6] for details.) Also we will need the one point compacti-
fication of a topological space F which we will denote by pt(F).
Our space K will be pt( |_J K,,) where the spaces (K,)7.., are digjoint

el
and defined induetively as follows:

Let K, = [1, »°]. For each o € [1, " PO lot 7'(2, a, 1) and F'(2, o, —1)
be homeomorphic to K. Define

E@2,1) = ) F(2,0,1)
a<w®

and
K2, —1) =pt(U{F©2,a, —1)=F(2, a, —=1): a e[L, o”]"Y}).
The space K, is the space obtained by identifying the point in K (2, 1) 2

W:’ith the pointin K (2, —1)*in the disjoint union of K (2, 1) and K (2, —1)..
Flg:ure 1 below gives an intuitive picture of K,.

F(2,0¢,~1)

/ / F(Z, B;‘1)
~
F@2,71 F(2,e,1) -

F(2, 81 F@E, 7, -1

Fig. 1

The horiz?nta:l line represents Ki” which is homeomorphic to [L , 0"
For each isolated point of K{™ there is a subset of K, homeomorphic

to [1, ©”] with the isolated point corresponding to «®. Three such subsets -

are represented‘b'y the three parallel slanted segments terminating in K.
Also for each isolated point of K there is a segment terminating at

‘the right end point of the segment representing K. Thege segments
represent

pt(U{E@, a, =1)—F(2,a, —1)*: ae[1, 0*]"®}).
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Suppose we have defined K,,. For each a € [1, »®1%® let F(n+1, a, 1)
and F(n+1, a, —1) be homeomorphic to K, . Define

E(n+1,1) = } Fln+1,q,1)
a<w®
and
Kn+1, —1)

= pt(U{F(n+1, e, —1)—F(n+1,a, —1)®™:ac[1, w®170}).
Let K,., be the space obtained from the disjoint union of K(n+41,1)

and K(n+1, —1) by identifying the point in K(n+1,1)0+D) with
the point in K(n41, —1)*". We illustrate K, in Figure 2.

- -
- ~—

F(3, 8.1 F(3,0t,~1)

F(3,e0,1)
Fig. 2

As in Figure 1 the horizontal line segment represents KS"’”, a subset
of K, homeomorphie to [1, »°]. The areas encircled by dotted lines in-
dicate subsets homeomorphic to K, which correspond to the isolated points
of K. The right hand endpoint of the horizontal| line segment rep-
resents the attaching point of K(4,1) and K(4, —1).

Note that K, and K(n,1) are homeomorphic to [1, »*"] and that
K (n, —1) is homeomorphic to [1, »*® 9] Perhaps the easiest way to
see this is to observe that each space is a countable compact metric space
and thus by the Mazurkiewicz-Sierpinski Theorem [9] is determined by
its derived sets. ,

We will need some notation for the points of each K,. Since the
space K, is composed of copies of K, ;, we will label the points of K,
using the labeling of K,_,. K, is homeomorphic to [1, ®*] so let K,
= {(1, a): a< »®}. (Precisely speaking, we are defining a homeomorphism
and labeling the points of K, via the homeomorphism.) Next congider K,.
Denote the single point in K{*» by (2, ») and recall that the rest of K,is

[K(2,1)—E @, VUK, —1)—K(2, —1)®].
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Let .
(K2, 1)~K(@, 1)@ = {2, a): ¢ < 0},

([1;(2,1)—1((2,1)(“2’]‘?") is homeomorphic to [1, ®”).) The remaining -
points of K, are points of F(2,a,1)~F(2,a, 1) or F(2, a, —1)—
—F(2, a, —1) for some ae[l, »*]%. Since each is homeomorphic
to K,—E® let

B2, a,e)=F(2, 0,6 = {2, a5, 8): (1, ) e Ky~ K{”}
for ¢ =1 or —1.
__ Suppose the pointis of &,_, have been labeled and consider X, . K~
is hqn%eomorphic to 1, @*], so let EKe(-1) - {(n, a): a < w”}. The
remaining points of K, belong to F(n, a, &) —F(n, a, e)°@= for ¢ =1
%r t——l and a € [1, *]%. Bach of these homeomorphic to K., — K@@=,
' ‘

Fn,a, ) —F(n, a, ) = {(n,a,6,): (n—1,BekK,, —-—Ifg‘"_("l‘“‘))}

fore =lor —landaell, 0”140, (Here § is a tuple.)

W’ef will defme.the subset L of By gy as follows: For each integer
7> 0, integer 8, with #—1> s >0, and s--1-tuple (ap, ay, ..., a,) such
that o; € [1, ©®P® for 0 << i< s and a, e [1, &®) lot

1 o .
ln, ap, ag,y ..., qp) =_2'§IT(6('”‘7 wm)+2 2 B(ny oy 81y Uy aony by alc))
) k=0 g =21 )
where %:tlnlealls the sum over all choices of signs and 4(¢) is the point
Brl=
mass measure at t. Also let I(n, 0®) = d(n, w*). Our set L will be the

o
w*-closure of | ) L, where
n=1 .

L, ={ln,ap, ay, ..., 0): ag&[1, 0P for 0<i<s
and g, €1, 0”),8 = 0,1,2, ..., n-1}U{l(n,; 0®)}.
[ ——— }

Note 1.:11341; UL neN} = {L,: n e N}U{0} since lel, is
supported n K, . To see that L is homeomorphic to [1, w0**] we only need
to show that I, is homeomorphic to [1, ©®*] for each n.

Define a map ¢,: L, - [1, o®*] by

‘Pn(l('"'; Gag Gyy +eny aa))
= @®n—=1) (ao__,l) +a)"'("'2)(al—-1)+ cee R ww(n-c——).)a'
for a; e [1, 01", 0<i<s and aq,e[1,0”),8 =0,1,2,...,n—1 and

() (n,.w‘”)) = 0. We leave it to the reader to verity that this is a homeo-
morphism. ‘
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Let us examine the set I more closely. First observe that the Szlenk
index %(}, Boyzy, L) = @? (see [14] for definitions). Indeed, if we let
Q.(e; Boymys L) denote the ath, ¢ Szlenk set, then 9 < @.(%, BC,o (oY) L)
for all o < w? Since I is homeomorphic to [1, @], I % @ and thus
1(4) By, o) L) > @*.

Actually we can prove as lightly stronger result. Define an oper-
ator T: Oy(K)— Co(L) by Tf() = U(Tf), i.e., by evaluation. We claim
that T i onfo. (From the properfies of the Szlenk index [14], it would
follow from this that the Szlenk index is not less than %) To show
that this is the case, we will establish that T* is an isomorphism.

Observe that T%8, =1 for each [eL and hence range T* < [L].
Moreover [L] = [M] where

M = U{E“ 2 (M, Gy By Byg enny Egy Cg)t

ne=l 8=l
o, e[1, P for 0<r<s,qell,0”, s =1,2,..,n—1

or g1, w®] for s =0}

The measures in M are disjointly supported so that [M] is isometric to 7, .
We define an inverse § for T* as follows: Let
8, if m = 6(a”,n) for some neN,
2al(n,ao,a1, ...,as) - 61(7.,,::0,&1,...,03_1)
. 1
S(m) = it m =——s€r=2i1 O(y Gy £y Cyy «vey Esy Og)
for some (a,)57% = [1, 1%, a,e[1,0"),
8§ =0,1,2,..,0—1,
n=1,2,...

and extend linearly. Olearly 8] < 3 and an easy computation shows that & *

is an inverse for T*.

We are now ready to show that for every > 0, there is an integer
such that Pwn(b‘, co ( :I:L)) = @. First observe that it is sufficient to show
that for every & > 0 there is an integer n such that

Pos, o0 £U{Ly 1<r<s})) =0 forall s.

Indeed, if P, (e, co (+IL)) +#@, for all n, then as we argued in the proof
of Lemma 3.2 for each n thereis an on-family {,: y < "'} with e-measures
{u,: ¥ < @™} in G (L) such that [l — lul| < &/8, for all y, y' < o™
Fix n and choose s sufficiently large so that

18 gonl(U{Lr: 1 <7 < 8Y) > e onll — £18-
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Because \J{L,: 1<r<
such that

8} is clopen, there is a meighborhood A4 of u ,,

eyl (Ui 1<
for all w, € 4. Congequently

Ll ({2 8 < 73) < llpll —

{G,n(U{L: 1<r<s}): yye}

is an wn family with 3/4 measures {u,lo,. 1cran’ #y €47} In €0( £ J{L,:
1 <r < s}). By Lemma 1.0

P, (3804, 65( £\ U{L,: 1<r <

proving our -claim.
Next observe that the evaluation map

T: 0y(E) > O(U{L,: 1<r<s})

is onto and thus by Lemma 3.2 it is gufficient to show that for every ¢ > 0,
there is an integer n such that P, (e, U{L: 1<r<s}) =@, for all s.
Because each set [, is open, it follows as well that we need only show
that P,, (¢, L,) = @, for all 7. This will be a consequence of the following
result: - )

PROPOSITION 4.0. Let ¥ = {@G,: y < 0} be an w-family of open subsets
of K, with e-measures {f,: y < 0} in L,. Then, there is an ordinal y, < o®
such that p, (G,) < 3p (G ) .

Proof. Let {d;: L<j< Ny, 0<i<m} be a distinguishing family
of open sets for u , (as in Lemma 8.3) such that for each ¢ and j either

< 3}) > ”men“ ‘8/8

It onll +-2/8 < g4
and thus

s}) #@

Ay @, or 4,nG , =@. By passing to an appropriate subset of
{g,: v < @} we may assume that
(4.0) thy(Ag) = pi0(Ag) + for all i and j.

Let N > r-1. Then by Lemma 3.3 there is a subset & of [1, »”] such
that o is homeomorphic to [1, »™] and

(41) s Ufdg K, ()N Gyt 1<G< Ny, 0<i<m}) < &
for all § € /. Because N > ¢+ 1 and L) = @, there is a convergent
gequence {,u,,(”): n € N} with limit x, and a(n) € & for all », puch that
{1}V {am: 1 € N} = LW — Lfo0H0)
for some integer k. '
Let p,, =1Ur
1,2,..

1 (0), B(1), ..., B(s)) where B(3)e(l, w™)®, i =0,
.y 8—1, p(s) € [1, »®), and note that- u_, ¢ LY — L), Indeed,
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e W — Lot by (4.0) and (4.1),
us(G) = p(U{4ygnE, ()G L<F< Ny, 0
for all B e of, contradicting the fact that {u,: y <

It follows then that
He = Y7, v(0), (1), ..

igml)<e

w“’} are s-Ineasures.

‘ . 2r—k—1))
and -
Pty = U1
where z(4) = f(i), 1 =0,1,2, ...
e[l, 0®)™, {=0,1,2,...,r—k—2,
e[l, o).
Congider a point

(1‘, B(0), £(1), ..

(0), T(L)y -ory T(r =k —2), 7(n, r—k—1))
,8—1, 7(8) < B(s),s<r—k—1, (i)
and z(r—k—1), z(n,r—k—1)

o B(D) esUPp g o N Apyis e
Note that

&

5("' 0)75(1)7“"19“))1

‘um"’i"r—-t—l,g 23+1

r—-k—1
1
NE‘A,._‘_IJ =gk 5(”1 7(0), ¢(1),

p=s+1 e(m)=x%1
m<s+1

cy T{l), 1, T(t+1),

—1, ..., =1, 7(s+1), e(s+2), ..., T(P)) +
4 g B, B0}, ¢(1), ooy B,

and
r—k—2

.”'n(n)IA, =1, 2r-k y
p=E+1 #(m)=£1

(";y 7(0), (1), ..., T(0), 1, 7{t+1),

m>s+1
=1, .., =1, 2(s+1), 2(8+2), -, T(P))+
+5,}: 2 3r, ©(0), 8(), -y T(®), 1, T(E+1), =1, ..
s ,
y —1 7(8+1)1£(3+2)7"':E(T—k_l)r(n:r"'k'—l))‘}‘
2r-k6(7 )7 "'75“))*

" Because the sets Gy are disjoint, a(Gopny) = 0 for » sufficiently large.
Observe that

“(I’La A I"a(n))‘.&,._,t_.‘,j = %HMC‘(‘R)IAT—!—IJH
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and thus

:u‘a(n)]Aﬂ(Gu(n)) € oy (AN G o) = S0 (AynG )

for all ¢ and j. Summing over ¢ and § we have that

Hainy (Gam) = 2 oy (AN Cagny) < 2 Bty (A1,;NE o)
[ X -
=3 3 pu(Agn G u) = bi,(@,3),
%7
as claimed.

Now we will show that P,,(1/2" ", L,) = @ for every n and r. Indeed,
if P,,(1/27™% L,) # @, by Lemma 1.0 there would be an wn-family {G,:
y < 0} with 1/2°7" measures {u,: y < 0""} in L,. By repeated appli-
cation of Proposition 4.0 we could find a sequence of ordinals

O =Y, 2 Ypa 2 - 2P0
such that .
(G 2 2ty (G ),
and
G?’k,_l Eﬂ{G,,! Gv < Gvk and Y€ (71:7 'Yk](w(k—l))}y

for k =1,2,..,n.
However, this would imply that

12 u, (@,) =20, (G, ) >2"m, (Gy) > 2.

5. Remarks and open problems. In the previous sections we have
gshown that the Wolfe index provides a necessary and sufficient condition
for an operator on [0, 1] to be an isomorphism when restricted to a sub-
gpace isomorphie to (@), ¢ < w,. One application of this result is to
the problem of determining the complemented subspaces of C[0,1].
The natural guess is that each of these spaces is isomorphic to a C(X)
gpace. Our work here and Rosenthal’s theorem [10] tell us which C(K)
gpace it must be, if it is a C(K) space. Thus the conjecture could be veri-
fied by a positive solution of

ProBLEM 1. If @ is a projection on ([0, 1] and there i an ordinal
a < o, such that for each & > 0 thereisa g < w**' for which Py(z, @*Byg )
=@, is @(C[0,1]) isomorphic to a complemented subspace of C’(w“”“)?

We have shown in Section 3 that the Szlenk index and the Wolfe
index of an operator can be quite different. From the results of [2] and
Corollary 0.5 it follows that if T is an operator on ([0, 1], then there
is an &> 0 such that %(e, By, TBep,y) = o if and only if there js
a 8> 0 such that P, (8, T*Byp,y.) # @ for all #. Thus sometimes the
two indices give the same information. In particular if the conjecture

icm
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about complemented subspaces of O[0,1] is correct, then the indices
must give the same information for projections on cro,1].

ProBrEM 2. Is there a class of operators « on O[0, 1] which contains
the projections such that for any T e« if %{s, By, T*Bep,g) = ®°,
then there is an & > 0 such that Ps(e’, T*Bgp,y) # @ for all f<< ®?

An affirmative solution to Problem 2 would also give an affirmative
solution to our next problem as well (see [3]).

ProBLEM 3. If Q is a projection on C[0,1] and for each £>0,

Pyle, @* (Bop,y+)) =@ for some f< ¥, is Q(C[0,1]) isomorphic to

a quotient of O(w®%)?
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