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Uniformly smooth partitions of unity
on superreflexive Banach spaces

by

K. JOHN (Prague), H. TORUNCZYK (Warsaw) and
v. ZIZLER (Prague)

Abstract. It is proved that a real Banach space X is superreflexive iff X admits
partitions of unity formed by functions with uniformly continuous differential.

Partitions of unity of the kind mentioned in abstract on separable
superreflexive spaces are constructed in [18]. We will work in real Banach
spaces.

Tt us recall that a Banach space ¥ is said to be finitely representable
in a Banach gpace X ([10]) if for each finite-dimensional subspace Fc¥X
and each & > 0 there is an isomorphism T of F onto some subspace of X
with ([T} 1T < 14-e.

For & > 0, an e-tree T in a Banach space X is a set of points xy = X,
i,j=0,1,2,..., j< 2, such that for each such i, j,

Ty = 3 (@ip1,0+ Di1,9541) and @5 — B0l 2= &

([9], [10]). If ¢ is allowed to be only < =, then we speak on an n-¢ tree Ty ,.

A Banach space X is superreflexive ([10]) i only reflexive Banach
spaces ¥ are finitely representable in X. This is the ease iff X admits
an equivalent norm which is both uniformly convex and uniformly gmooth
([6]) and iff for each &> 0 there is an # such that no n-¢ tree T, , lies in
the unit ball B, of X ([10]).

A bounded subset B of a Banach space X is called dentable ([16])
if for each ¢ > 0 there iy an f e X* and & > 0 such that '

diam {w € B, f(2) > supf— 0} < .
B+

A norm -] on X is said to be rough ([13], [14]) if there is an & > 0 such
that for every » € X and every 6 > 0 there isavelX, o<1 with |l -+ o]
= |l +t| — & for each [i] < |joll-

The following definition will be suitable in this note.

DeFNmoN 1. I (X, |i]) is a Banach space, K, §,n>0,0<1,
and |-| < K|-| is a pseudonorm on X, then a dual tree D(K, &, "1, 6, 7)
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is a set of points w; € X, 4,j = 0,1, ..., j< 2, such that for each such i, j,

@y = § (@105 F Brrroi01)y a0 Byppiall < 26
and
0855 -+ 8 (@;.11,07 — Bg5)| = |y 86 18] —

for any |¢| < 1.

If 4 is allowed to be only < n, we speak on the dual n-tree D, (K, ¢,
[*1s 8y 7).

Dual trées ean easily be constructed e.g. in I;.

All the differentials of maps: X — ¥ are taken in the Fréchet sense
and their continuity, uniform continuity and so on, is taken in the sense
of X - L(X,¥) (L(X, Y) is the Banach space of all bounded linear op-
erators of X into Y with its supremum norm).

N (R) denote the set of all positive integers (all reals, respectively).

‘We summarize the known results and the results of this note in

- TemorEM 1. The following properties of o real Banach space X are
equivalent: .
(i) X s superreflexive.

(ii) X admits a real-valued function with bounded nonempty support
and uniformly continuous differential.

(il For any open cover % of X, there is a locally finite partition of
unity on X subordinated to % amd formed by functions with uniformly conti-
nuous differential.

(iv) Negation of : There is an & > 0 and K > 0 such that foranyn eN
and any 8 € (0, 1) and 9 > 0 there is a pseudonorm |- | < K ||* || on X and o dual
tree D, (K, &, ||, 8, 7n) = X.

Proof. (i) = (ii) easily follows from the Enflé renorming theorem ([6])
of superreflexive Banach spaces mentioned above. If ||-|| is & uniformly
Fréchet differentiable norm on X and ¢ ¢ 0°(R) with ¢(0) > 0, @(t) =0
for every [t| > 1, then ¢(|l»|?) is the desired function.

(i) = (iv). We use a variant of an argument of E. B. Leach and
J. H. M. Whitfield ([14]). Assume that non(iv) holds for some K >0
and ¢e(0,1) and that X admits a real-valued function with uniformly
continuous differential and such that f(0) = 0, f(») =2 for ||| > K.

Choose 6 € (0, &) from the uniform differentiability of f to e, so such
that ‘

“fleth) —f@) <f (@)h+elh]| for each e X, heX, |h|< 4.

Now choose a positive integer n and a real number # > 0 such that ned < 2,
#(s8—n) >1. Let D (K,¢,||,8,9) = {n;} « X be a dual tree. Con-
gider the funetion f;(2) = f(z —2y,) on X. We bave, fori,j =0,1,2,...,
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j<2tig<n—-1,
fi (“"ﬁ +1 (“’1+1,2;‘ - wij)) < fulwy) +fi (mij)(t (®41,2 — i})) + &8

for any |t < 1. So, choosing t=--1 dependent on the sign of f; () (4y,25—
— ), We have

Fil@ppa00) < fo (@y)+ed  or fi (@i g1,0040) < Silwy)+&8.

So, since fi (%) = f(0) = 0, by induetion on ¢, we have that thereisaj < 2"
guch that fy (#,,) < ned < 2. On the other hand, since for each allowed ¢, j

4y 8@y 1,05 — Bip)| 2 03] + [H] 80 — 7,
we have similarly that
[@4] 2 |go| +1 (8 —1n) > [@ool +1.

Thus, [0,y — Dol 2 (1/E) 0,5 — @o0) > K~ and Sy — @) = frl@ny) < 2,
a contradiction.

(iv) = (i). If X is not superreflexive, neither is X* ([107), so, by an-
other result of R. 0. James ([9]), there is a Banach space (¥, || ||) with some
e-tree T, in its unit ball B, which is finitely representable in X. The
e-tree T, is & nondentable set, 8o (see e.g. [4]) neither is B, +convT,U(—T,)
whieh is & unit ball of some norm |||-||| on ¥ for which 4[-{ < l[[-HiI< (-1
Thus ||| |]|*, the dual norm on Y*, is rough for some s < 1 ([12]).

o, for each # € N and each 4 €(0, 1), n> 0, we can construct a dual

tree D, (L, &, |\ ll, 0, n) = {#};} = Y*. Namely, choose m.{w = 0, @}, —such

a point that |||o}]|| = 6. Then, having chosen a;; for i < k; chooge for

@1 4,§ < 2%, by the roughness property of [jj-[||*, ave el <1
. guch that

ey, s F 2011 > ||| g ll1* -+ Hle—n  for each-[H] < [ gl11* = 8.
Now put @)y = @h_y,y + 00, Tap1 = Ber,y — 0v. We have
01,5+ (@05 — Bhmr, M1* = 11T, +200I1* > e g1 1% -+ 18] 82— 7

for any [t < 1.
L; lEn\c Y be such a finite-dimensional subspace of ¥ that for.the

restrietion map Re: Y* — H; we have ~
Ref, el = @ = &)l s 1*

' i Al
for each fespD,(L,s, lli*lll,8,n), wWheree < min(1, 7 (max |{laylll
Let I': (5,,, ||1-)1|)L;’Y*’be an isomorphism into X* such that BTy =1,
1T~ < 1+¢ < 2 and define for s € X,

Lk
= 12" @ i1y -
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Then |o| <2l| for z € X. Let us put a; = 3(I*) 'Reayy, for i<n,
j < 2. Then

05 — @4 0041]l < 6
and

145+ 8 (@ig1,25— Bg)| = }|[[Re(aiy + 2 (@ p.1,09—20)) || [Gz, 10100
2 (1—¢) |||w£j+t(m£+1,2j‘“w«:'j”H?Y,nl-m)*
= F I+ 801,05 — 2| 1* — B max [ |[[* > 3]yl |1* -+ 8] e/2 —n
= | [Reayll[* + [t /2 —n= |ay] + [¢]¢/2 — 1.
So, {#;} =D,(2,¢/2,]-1,6,7) is a dual tree in X; non (iv) holds.
Therefore (i)« (i) < (iv). Obviously, (iii) = (ii). 8o, to complete the

proof of Theorem 1, it remains to show (i) = (iii). This will be done in
three lemmag.

Lemwva 1. Let 8 be a ving of continuous real-valued functions on a Banach
space X satisfying the following eonditions.

(i) For each 8, <= 8 with {suppf, fe8,} discrete in X and suppf
bounded for each fe8,, there is a g8 with suppg = ) suppf (where
suppf = f~H(R\ {0})). 7%50 .

(i1) For each nonmegative f e 8 and & > 0 there 18 a geSwith0<<g<1
and g=(0) =f71(0) and g' (1) = f~Y<s, o).

) (%'ii) If Uy, U, are open subsets of X with disjoint closures and fe 8
savisfies f(w) = 0 for & ¢ U,V U,, then the Jumction fy € 8, where

f)  for w¢U,,

(@) :{0 Jor welU,.

Then X admits S-partitions of umity (locally finite, subordinated to -

any open cover) on X iff {suppf, f e S8} contains a o-discrete basis of the

topology of X. ’
Proof. Let {suppf, fe 8} contain a o-discrete basis of the topology

of X and let % be a cover of X by open bounded sets. We will construct

& locally finite partition of unity 8, = 8 with suppf refining for each f € §,.
Under our assumption, there are subsets 8, ieN of 8 such that

¥ = {suppf, f e 8;} is a discrete refinement of % and U 7 covers X.

i

By (i), there are functions g, ¢ § with suppg; = |Jsuppf for i e N. We
can assume without loss of generality that g, > g&(otherwise replace g,
by gi). Let g, €8 be such that 0 < g, <1 and 95 (0) = g;*(0), g7 (1)
= g; (<174, 0)) ((ii)). Let 7 — (%, §,) be a bijection of N onto N xN.
We. put hy =0 and h, = Ginins A = hn(L =Ry y) oo (L =) (similaxly
as i [18]) and A, (w) = 4,(2) it z e suppf and 4, ,(x) =0 i @ ¢ suppf,
forrneNa,ndfeSin‘ .
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Since § is a ring, 4, &8 for all n e N; moreover, it follows from (iif)
and the discretness of {suppf, fe 8, }that 4, ;e Sforalln e Nand fe 8, .
Furthermore, suppi, ;< suppf and therefore {suppi,,, neN, fe S,.:}
refines %. So it remains to be checked that {A, ., n e N, fe 8;,} is a locally
finite partition of unity.

Given o € X, there is a neighborhood U of » such that h U =1
for some #. To see this, it suffices to take i,j e N so that g (@) > 1ff
and n 8o that (1, j,) = (¢, §); we may thenlet U = {&’ e X, ¢,(«') > 1[j}.

Therefore it follows that 4,| U =0 for all but finitely mamy #'s and
ginee '

(=D)L =hg) . (I=ly) =1 —Ay— ... =],

we infer that {%,, k e N} is a locally finite partition of unity. Moreover,

{suppf, f € 8;,} is diserete in X and 34, ; = 1, for each ke N, and thus
{Arys keN,fe 8;,} 18 a locally finite partition of unity of X subordinated
to #.

The converse implication in Lemma 1 is clear. As any metrizable
space, X hag o-diserete coverings %,,n ¢ N such that | J%, is a basis of
the topology of X (see e.g. [7]). It §, = 8, n € N are partitions of unity
subordinated to %,, then | {suppf, fe8,} is a o-discrete basis of the
topology of X.

To use Lemma 1, we will need the following lemma.

LrvmA 2. For any superreflexive Banach space X there is a homeo-
morphio embedding H of X into 1o(I") for some I which is a differentiable map
with the differential uniformly continuous on bounded sefs of X.

Proof. We use some arguments of [2]. First, for any superreflexive
Banach space X there i3 a p €(1, co) and a one-to-one, norm 1 linear
operator T' of X into I,(I") for some I It follows by the use of the result
of J. Lindenstrauss on the existence a projectional resolution of identity
in reflexive gpaces ([1]) and the result of R. C. James ([11]) that for each
superreflexive Banach space X there is a p € (1, oo) such that for each
such projectional resolution {P,} of identity on a subspace ¥ of X, we
have (3/(Ppp—P)@lP)? =2(] for any #e Y. Now, working with
the clasy B, of all superreflexive spaces which havep as this index, we can
eapily show the exigtence of T by use of the natural injection u: X (3@

®(P,.,—P,) X), and the induction on the density of X.

So, let T: X —1,(I') be a one-to-one, norm 1 linear operator. Further
we follow the argument of 8. Mazur ([15]). Let s =(r—2)/2 >p+1
be an even integer. Congider the one-to-omemap ®@: 1, (I") = L(I') defined by

Pa(y) = a"™(y).
We will show that @ ig differentiable with differential uniformly conti- -

3 — Studia Mathematica LXX, 2
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nuous on bounded sets of I, (I'). For this, first observe that for k, h e1,(I"),
Lm iY@ (% +1h) (7) — P (k) (7))
i—-0
= lm e (T +10)™ (y) = K7 (7)) = $r&(y)" "2 h(y) ely(T).

-0

Furthermore, whenever %, h el,(I), [kl <e¢, B <d<1, then Hknlamg o,
Bl < 6 and by the use of the Hélder inequality and the inequality
l0° —b°| < s la—b|(|a|+ [b]))* " for @, b € B, s € N, we can estimate

37 B+ B)* (9) B (y) — 3% ()b ()lyery < 17 (B BY () — B ()

<% 5 Z B )I(1(F +B) ()] 4 ()]

< T (Do) (3 (e on+reie) " “

789
<5 @+ Bliery + [l )~ < 8 79-2°7 (0 +1)" + 0o,

Now, similarly as in [17], define

H: X>1,(I'vl) (1¢I)
by
Ho = (9Tw, o)),
where [|-|| is a uniformly Fréchet differentiable and uniformly convex

norm on X ([6]) and &, T as above in this proof.
Then H is one-to-one with differential uniformly continuous on
bounded sets of X. 8o, to complete the proof of Lemma 2 it remains to
" show that H is a homeomorphism into I,(I'ul). If limH(a,) = H(z)
in I,(I'ul), »,,2€X, then by the form of &, limTu,(y) = Tw(y) for
each y € I" and lim |jo,| = [o|. Since, moreover, X ig reflexive and T one-
to-one, we have lima, = # in the weak topology of X. Thus

2 |lzll 2 limsup o, + 2l > liming {w, + ol > 2 [jo|

by the wealk-lower semieontinuity of ||| By the wniform convexity of |-

we have limy, =« in X. Thus, to finish the proot of Theorem 1, it sutfices
to show

-+ LevnA 3. Let X be a sw@eweﬂemve Banach space and let H: X — 1, (I'U1)
be a homeomorphic embedding constructed in Lemma 2. Let wi(8),1 =1, 2,
8 > 0 be moduli of continuity of H, H' om the unit ball of X, respectively.

Let 8 be a ring of all real-valued functions f on X which are Fréchet differen~
tiable and have the following property :

icm
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For each fe 8 and n e N there is o constant ¢, (f) > 0 such that ihe
moduli of conmtinuily o, (8) of f,f', respectively, on the n-ball B,(0) = X
satisfy . '

wl(8) < 6, (f)max wi(8) §>0.

for

Then 8 satisfies (1)-(iii) of Lemma 1 and {suppf, f € 8} contains a o-discrete
basis of the topology of X.

Proof. Using the fact that uniformly continuous map on a ball in
a Banach space is bounded, we casily see that § is actually a ring. Also,
let us observe that H, H' have the property defining the ring 8, because
of their /2 (r/2—1) positive homogeneity, respectively.

(i) £ 8, = 8 and {suppfs,,f. € 8o} discrete in X, and suppf, bounded
for f, € 8y, then by multiplying f,’s by some constants ¢, > 0 we ensure
that all ¢,f., ¢.f. have moduli of continuity < w,(d) =max wi(8) for
8> 0. Then define ¢

) = {fa(w) for @ esuppfs,
@) = 0 for @eX\ | suppf..
FaeSp

Since {suppf., f. € 8o} is discrete, f is well defined, locally depends onone I
and thus is differentiable. Moreover, if »,y € X, |w—y| < 8, @ esuppfs,
y e suppfy, f # o, then

1F@)—f@)] = lfe(@) —Fa(@)] < [fa@)|+ fs(@)
= |fu (@) —fa@)I+ 1 fa () — S (2)] < 200,(8);
gimilarly for f’ and the other choice of «,y € X. Thus fe 8 and supp f

= U suppf..

Ta&S0

(i) Tt fe8, &> 0, take a function g: R—~> R, g0, which is Lip-
schitz together with its derivative and g((—o0,05) =0, 9(¢ey. 00)) =1.
Then g(f) € S is the desired function for (ii). i

(i) ¥ fed and Uy, U,,f, are as in (iii) of Lemma 2, and’ we X,
then if @.¢ U, there is aneighborhood 0; = X of « such that fi =fon 0y,
go fy is differentiable at #. If 2 & U,, then there is a neighborhood 0, = X
of @ with f, = O on 0,, so f, is differentiable at #. Moreover, if x, y € B,(0)
c X, |z —yl < 6, then whenever #,y ¢ Ua,

fal@) —fi @) = |f(@) —F ()] < 0 (f) mAx 0 (8).

Similarly for f. If @ e U;,y e U,, then fi(y) = 0 and, by the simple
connectedness argument, there is a point « on the line segment leyyp e X
guch that u ¢ U,VU,. So, then

@ —Fi@) = Ifi (@ —Ff@)] = If @) —F W) < e,(f)maxwi(d).
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Similarly for f. If o ¢ U,0U,, ye U,, then
fi@) =fily) = fil®) =fi(y) =0.
The same happens if 2, y € U,.

So, it remains to show that {suppf,fe S} containg a o-discrete basis
of the topology of X. By the use of the Stone theorem on the existence
of a o-discrete basis of the topology of X formed by open bounded sets
(ct. e.g. [7]), it suffices to show that for any open bounded set 0 « X
there is an fe 8 with O = suppf. For it take H(0) < I,(I'Ul1) and an
open bounded set 0; < §,(I'V1) with 0,nH(X) = H(0). By a result
of J. Wells ([18], Th. 2, Cor. 2) there is a function f,: I,(I"'ul) - R with
Lipschitz derivative f; with Oy = suppf,. Take f =f,(H): X - R.
Then O = suppf and considering the estimation

(1f (B (@) (@) b —F'(HL () E ()|
< | (E @) || K (@) — B (o) +|f/ (B @) ~ (B (@)))| - 12 (3]

we may easily derive that f e §. This completes the proof of Lemma 3 and
Theorem 1. .

We end the paper with a remark that it was proved in [3] that there
is no real-valued function with bounded nonempty support and Lipschitz
differential on 1,(N) for p < 2.
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