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1. Preliminaries. In this notc we show that there exists a functor
S from a category of completely regular spaces into a category of inverse
systems of metric spaces. The functor 8 is injectively adjoint to the functor
of the limits of inverse systems of metric spaces. The maps considered
here are assumed to be uniformly continuous. We use the notion of uniformi-
ty in the covering sense. A family which satisfies all axioms of uniformity
except the axiom of separation is said to be a pseudouniformity. If X is a
completely regular space, then by #% we denote the greatest uniformity
inducing the topology of X. Expressions P> Q and P7 @ stand for
a refinement and a star-refinement, respectively. Some symbols and nota-
tion are taken from [1].

There exists a functor & (see [1]) from the category of pseudouniform
spaces into the category of uniform spaces such that for each pseudouni-
form space (X, #) there exists a uniform map h: (X, %) - (hX, h¥%)
satisfying two conditions: ,

(i) »~ 'A% = u, where h™'h = {h"'Q: Q € h4};

(ii) for each uniform map f: (X, %) - (¥, ¥") into a uniform space
there exists 2 uniform map g¢: (kX, h#%) — (Y, ¥") such that f = gh.

A uniform feathering of a space X in a space ¥ o X is a countable
family 2 of coverings of X consisting of open sets in ¥ such that

P Xcuy and [#]y, = (\{st(z,P): PeP}c X
for each z € X.

2. Properties of a covering type. Let o be a countable family of
relations defined on #%. A pseudouniformity # c #% is said to be an
o -pseudouniformity if for each a € o and each P €  there exists P’ € ¥
811(31 that (P, P) e a and for each P’ € % the relation (P’, P) € a implies
P'% P.
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A topological property A of a space X is said to be of a covering-count-
able type if there exists a countable family o of relations defined on #%
such that

(a) the greatest uniformity #% is an of-uniformity;

(b) for each «f-pseudouniformity % < %% with a countable base
the space hX with topology induced by the uniformity A% has the prop-
erty A.

Let X be a subspace of a space Y. For each pseudouniformity # < #x
we denote by ext,# the set of all extensions, open in Y, of open coverings
belonging to #. Let # be a countable family of relations defined on the
family ext %%. .

A pseudouniformity # < 4% is said to be a ®-pseudouniformity if for
each b € # and P e exty¥ there exists P’ e exty# such that (P',P)ebd
and for each P’ eexty# the relation~(P’,P)eb implies P'|X% P|X
and cly P’ > P.

We say that a topological property B is inherited from a space Y
onto X < Y by small layers if there exists a countable set # of relations
defined on exty¥% such that 4% is a #-uniformity and for each %#-pseudo-
uniformity # < %% the set

[@)extpa = () {8t(2, P): P €exty¥}

hag the property B and [#]ey,« <= X for each 2 € X.

A map f: X - Y is said to be a B-map if for each y € Y the counter-
image f-'y has the property'B.

We shall give two examples of properties of a covering type. Other
examples can be found in [2].

ProrosITION 1. If X is a completely regular space, then AimX = n
18 a property of the covering-countable type. )

Proof. Define a set & = {a,, a;} of relations on #% as follows:

(P'y P) € a, iff P'* P and ordP' < n+1,

(P’, P) € a, iff P'% P and there is no covering P’ € %% such that
ordP” <mn and P > P.

Since the uniformity #% has a base consisting of all locally finite
and functionally open coverings of X, we have dim#y = n iff dimX = ».
Thus %% is an «-uniformity. Now, we shall verify condition (b) of the
definition of a property of the covering-countable type. From the construc-
tion of the functor 4 it follows thit dim% = dimh% (see property (a)
of the functor k). But, if the uniformity A% has a countable base,
then dimiX = dim A%, where the topology of the space AX is induced
by h%. .

A space X is cohomologically locally comnected in a dimension not
greater than n, n < oo, and in a group of coefficients G (written: X e cleg)
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if for each neighbourhood U of a point « there exists a neighbourhood
V < U of « such that the homomorphism of reduced cohomology Alexan-
der-Cech groups H*(U; @) - H*(V; @), induced by the embedding V <= U,
is trivial for each &k < n.

PROPOSITION 2. For each paracompact p-space X, X e clcl and H*(X; G)
= A, for each k < n 18 a property of the covering-countable type.

Proof. Let # = {P,: » = 1,2, ...} be a feathering of X in the Cech-
Stone compactification fX. Define relations a¥ on #% by the condition:
(P',P) edk, iff P'% P, clyz P’ > P, AP (where P denotes the greatest
extension of P € %% open in fX) and for each %’ € P’ there exists » € P
guch that 4’ c % and the homomorphism H*(u; @) - H*(u'; @) is trivial.

Put o = {ak: k< n,m < oo}. Notice that #% is an of-uniformity.
Now, let # = % be an «/-pseudouniformity with a countable base. The
condition ¢lyz P’ > P, AP, P’ P, ensures that a family {st(w, P): P € %}
is a base of neighbourhoods of the set [#], = X, because

[#)a = (" {st(x, P): P e} = (\{clxst(2, P): P e %}

and X is a compact space. This implies that for each neighbourhood U[#]
of the set [»] there exists a neighbourhood V[z] = U[«] of [#] such that
the homomorphism H*(U[z]; @) - H*(V[#]; @) is trivial. Hence, for
each # € X and k¥ <n we have H*([2]; @) = 0 (cf. [3], Theorem 6.6.2).

Now let us consider the space hX with topology induced by the uni-
formity h%. Since the family {st(w, P): P € %} is a base of neighbourhoods
of the set [#]y, the map h: X — hX is perfect and H*(h~'h(2); G) = 0,
zeX, k< n By the Vjetoris-Begle theorem (cf. [3], Theorem 6.9.15),
the map induces the isomorphism H*(hX; @) - H*(X; @), k < n. Hence
we obtain immediately kX € clek and H*(hX; @) = H*(X) = 4,, k< n.

3. MAIN LEMMA. Let X be a completely regular space and assume thai
Y;oX (1 =1,2,...) are spaces in which X has wuniform featherings,
A; (1 =1,2,...) are properties of X of the covering-countadle type, and B,
(t =1,2,...) are properties which are inherited from Y, onto X by small
layers. Moreover, let sf; and B; be countable families of relations on U%
corresponding to the properties A; and B;.

Then for each pair of pseudouniformities ¥,, Uy = U%, having countable
bases, there exists an o~ and B-pseudouniformity ¥ < Ux with a couniable
base such that U, VU, c %.

Proof. Define by induction countable families ¥, = #%. Let ¥/,
= ¥,U¥,, where ¥, c %, and ¥, « %, are countable bases consisting
of open coverings. Fix an extension P (i), open in ¥, of a covering P € % ,.

Suppose that the countable families %, c 4% are defined for each
k < n and assume that extensions P(z), open in Y,, of P are given for each
Pew,, k<n.
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For each pair Py, P, el J{#: k =0,1,...,4} choose a countable
family # (P,, P,;) € ¥% such that for each relation ae A, (i =1, 2,...)
there exists P € # (P,, P,) such that (P, P, nP,) € a and for each relation
be%;, 1 =1,2,...) there exists P’ € #'(P,, P,) having an extension P ()
open in Y, and such that

(P'(i), P,(®)A Pz(i)) €b.
Put

W”+l = UlW(PI,PQ): ‘PliPﬂeU{Wk: k = 0, 1, ...,n}}

and fix an extension P(i), open in ¥Y,, of P € ', ,, (for those P for which
the extensions P(z) have not been fixed yet).

Put # = J{#,.: n =0,1,...}. The countable family #" is a base
for a pseudouniformity ¥ < %, % > %,Y%, and, moreover, % is both
an &;- and %;-pseudouniformity for each ¢ =1, 2, ...

4. A category of inverse systems. Let Top be a category of topological
spaces and continuous maps. Denote by invTop a class obtained from the
category Top in the following way: an object X of the class invTop is an
inverse system X = {X,, p:, Ex} of topological spaces with the bonding
maps pS : X, - X, onto, and a morphism f: X — ¥ between two objects

= {X,, ¥, Bx} and Y = {X,, p!, By} belonging to the class invZop
ig a family of continuous maps

f=1{: X, > Y,,te By}

satisfying Yhe conditions .
(1) for each t € E there exists f; ef for some 8 € Ex;
(2) for each ffef and for each s'>s8 and ' <{t, ff = phfipd €f.
Let f: X - Y and ¢g: ¥ —-Z be morphisms in the class mvTop
Define a composition gf: X —Z by

aof = {(gf)5,: v € E; and some s € By},

where (gf)é = g..ff for some te Ey, ¢, €g, f} € f. The composition (gf)s
does not depend on the choice of ¢t € By. Indeed, consider composltlons
g.fiand gt f2.. Accordmg to (1) and (2), there exist g, € g for some t > ', ¢’
and f e f for some 8’ > s. By (2) we have '

oft = gufipt and gLfY = gufip;.

Since p? is onto, ghff = gb fo..
LeMMA 1. The class invTop i3 a category.
Proof. Put px : X — X,

px = {p¥: 8,8’ e By} for each X = {X,, p!, Ex} € invTop.
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The morphism px is the identity in the class invZTop, since from (2)
it follows immediately that, for each two morphisms f: X - Y and
9: Z—> X, fpx =f and pxg =g.

Now, consider three morphisms, f: X - Y,9: Y -Z and h: Z > W,
belonging to the class invTop. In order to see that h(gf) = (hg)f it suffices
to verify that ¥ (gf)s = (hg)ifs for t' € Ey, ' € BEy. Put (gf)s, = gi-f2
and (hg), = A¥ gt.. for some t’’ € Ey and v’ € E,. According to (1) and (2),
there exist h¥eh, ¢!, €g and f¥ ef for some u>w', w',t>1,t and
8’ = s. Then by (2) we have

hygufi = by g feps  and  Bpgufi = B gufiops .

Since py is onto, hY gh.ff = K¥gifi., ie., (hg)fe = k¥ (gf)s.

Two morphisms f, g: X — Y belonging to the category invTop are
in a relation ~, f ~ g, if for each t € £y and 8’ € Ex there exists 8 € Ex,
s > 8', such that f} = gj.

LEMMA 2. The relation ~ is an equivalence relation.

Proof. It is obvious that f ~ f and that f ~ g implies g ~ f. Suppose
that f{' = ¢ and g = h{". Choose s> s’,s’’. Then

f=fvy = g'p} = gf = g 0} = B P} = .

Thus we have proved that f ~ g and g ~ h imply f ~ h.

LEMMA 3. If f ~f: X > Y and g ~§: Y — Z, then gf ~ gf.

Proof. For each u € E, there exists ¢ € By such that ¢!, = g} and
there exists s € Ex such that ff = f?. Hence (gf)2 = (f)%. Thus gf ~ gf.

For each f: X — Y in invTop put [f] = {f: f ~f} and define a compo-
sition by [¢]1[f] = [¢f].- From Lemma 3 it follows that the composition
is well defined and, moreover,

[fllpx] = P11 = [1 and ([f1lgD[h] = [FUG1RD).

Hence we obtain

LEMMA 4. The class invTop with the objects from the category invTop
and the morphisms [f], where f i8 a morphism from the category invTop,
18 a category.

One can also prove

LEMMA 5. Let X = {X,, p , Ex} € invTop and let B’ = Ex be a cofinal
subset of Bx. Then the object X' = {X,, p% , 8,8’ € B'} is isomorphic to the
object X in the oategory invTop.

A limit of an inverse system {X,, p, Ex} € invTop is the topological
space
X' = lmX = {zeP{X,: s € Ex} :pYw(s’) = x(s) for s'>s, 8,8 € Ex)

with topology induced from the product P{X,: 8 € Ex}.
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For each morphism feinvTop, f: X - Y, put f,: X, > ¥, to be
a map between topological spaces defined by (f.2)(t) = ffx(s). The map
f« i8 well defined because it does not depend on the choice of s € Ex.
Indeed, for s > 8’, 8"’ we have

fo(s') = f7 pha(s) = fiw(s)
and, similarly,
‘ flw(8") = fiw(s).

Hence f¥ z(s') = ff"aq(s"). Moreover, f,« € ¥, since
pi(fa)(t) = PLfiw(8) = frw(s) = foa(t).

The continuity of f{ € f implies the continuity of the map f,.
Notice that if f ~ g, then f, = g., because for each ¢ e E, there
exists 8 € By such that f; = g;, and hence

(fo) () = fiw(8) = giz(s) = (942)(?).

The converse implication does not, in general, hold. However, we have
LEMMA 6. If X i8 an inverse system {X,, p? , Ex} of compact spaces X,
with the bonding maps p%: X, — X, onto, then for each two morphisms
f,9: X > Y in the oategory invTop the relation f, = g« tmplies f ~g.
It can be verified that (fg)e = fage and (px)e = 1x,. Hence we obtain

LEMMA 7. The operation »: invTop — Top (invTop — Top), which
assigns to each object X € invTop its limit X, € Top and to each morphism
feinvTop ([f] eiTvTop) a map f, € Top, i3 a functor from the category
invTop (invTop) into the odtegory Top.

In literature one can find the following definition of a mapping between

inverse systems:
- A mapping (¢,f): X - Y between inverse systems of topological
spaces X = {X,, p¥, Bx}and Y = {¥;, p}, By} i8 a set of maps (g, f)
= {p, f;: t € Ep}, where the map ¢: Hy — Ex is weakly monotonic and
the map f;: X, — ¥, is such that plf; = f,. o3}, for each pair ¢, ' € By,
t=>1. '

Each mapping (¢, f): X — Y induces a map (@, f)e: Xo = ¥, between
the limits.

The following lemmas can be easily proved.:

LEMMA 8. For each mapping (¢,f): X — XY there exists a morphism
Jo: X — X in the sense of the category inv Top such that (p, f)e = fo: Xe > Y,
and f, = (f,)58- |

LEMMA 9. Let f: X — Y be a morphism in the oategory invTop. If each
element of the set By has finitely many predecessors, then there exists a map-
ping (¢, f): X — Y suoh that f, = f.
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5. An inverse expansion theorem. In order to formulate a theorem
on expansions of spaces and maps, consider a new category Top (*, *). An
object of the category is a triple (X, a, b), where X is a completely regular
space, a is a countable family of properties of X of the covering-countable
type, and b is a countable family of properties of type B which are inherited
by small layers. A morphism f: (X, a, ) - (X, o, d) i8 a continuous map
between X and Y. '

Denote by invTop(m) a category of inverse systems of metric spaces
and uniformly continuous maps with morphisms defined as in the category
invTop.

THEOREM. There exists a fumctor S from the catégory Top(», *) into
the category invTop(m) and there exists a natural map ©:1 — S, of the
tdentity fumctor defined on Top(x, ) into the functor 8, = lim8 such that
the following conditions are satisfied:

(1) Each metric space X, € 8(X, a, b) has property A for each A € a.

(2) For each (X, a, b) € Top(*, *), ix: (X, a, b) > 84(X, a, b) i8 a dense
embedding which is onto whenever the uniformity %% is complete.

(3) The composition p,ix 18 a B-map for each B € b (where p,: 8, (X, a, b)
- X,, X, e 8(X, a, b), i3 the projection) and p,ix i3 a perfect map whenever
there exists B € b such that B is the compactness.

(4) For each map f: (X, a, b) - Y., where Y € invTop(m), there exists
a unique (in the sense of invTop) map f': 8(X, a,b) — Y such thatf = f,ix.

A natural map i: F — 9 between functors defined on a category
€ is a class of morphisms {ix: #(X) > ¢(X): X e ¥} such that, for each
morphism f: X —» ¥, 9(f)ix = 1pF(f).

Notice that condition (4) of the Theorem means that 8 is injectively
adjoint to l<11n The functor 8 is unique in the category invTop(s, *),
gince each two adjoint functors are unique up to isomorphism.

Proof of the Theorem. Let (X, a, b) € Top(*, *) and let «&f; and
2, be sets of relations which are determined by A, € @ and B, € b, respec-
tively. For each 4; e a and B; €b the uniformity #% is an &/, and %;-
uniformity. The Main Lemma implies that a set Ex of all «/,- and %#;-pseudo-
uniformities « « %, A, € a, B; €b, having countable bases, is directed
with respect to the inclusion > and, moreover, #3 = | JEx. According
to property (ii) of the functor A, the diagram

(X, a) 22— (8, X, ha)
(X’q’;t)i l lp; a>f,a,pckEy,
(X, f) —2— (ks X, hp)

of pseudouniform spaces and uniform maps is commutative.
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Put X, = h, X with metric induced by the uniformity ka. We have
obtained an inverse system S§(X,a,d) = {X,, p;, a,p € Ex} of metric
spaces X,, a € By, and uniformly continuous maps pz: X, —» X, such
that for each A € a the space X, has the property A.

Maps of the form (X, #%) - (X, a) = (h,X, ha) are B-maps for each
B eb and induce & dense embedding iy: (X, @, d) =« 8,(X, a,b) which
is a homeomorphism in the case where the uniformity #% is complete.

Now, we prove that 8 is a functor. Let f: (X, a, d) - (X', a’, b’)
be a map. For each pair of pseudouniformities a € Fx and o’ € Ex. such
that a o f~'a’ there exists, according to property (ii) of the functor h,
a unique map f3.: X, - X, such that the diagram

(X, uy)—LI— (X', ¥%)
ha ha

(X, ha)—i—-)(h,'x, ha')

commutes.
From the Main Lemma and from the uniqueness of the maps fy,
a€Ex,a’ € Ex.,a>f 'a’, it follows that the family

8(f) ={fe: Xa—>ZXy:a€Ex,a" €Ex,a >f'd,X,e8(X,a,b),
X, e8(X',a,0b)}

is a2 morphism in the sense of the category invZop. It is easy to see that
8(fg) = 8(f)8(g) and 8(lx) = lgx). Thus conditions (1)-(3) of the
Theorem are proved.

Now, we prove that the functor 8 is injectively adjoint to the functor
lim. Let f: (X, a, b)) - Y, be a map, where ¥ = {X,, ps, By}, p5: Y, > ¥,
<
i3 a uniformly continuous map between the metric spaces Y, and X,.
For each a € Ey let a be the uniformity induced by the metric of the
space Y. Put

= {f; X, — Yp’ﬂeEr’ acly,a :’f—lP;lﬂ}7

where p;: Y, — X, is the projection. The family f’ of maps is a morphism
" in the sense of the category invZ'op(m). From the definition of f’ it follows
that f,ix = f. The morphism [f’] is unique in the sense of the category
in_v.’l’op (m), since each map f; € f' is uniquely determined by property (ii)
of the functor h.
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