FASC. 2

ON THE CAUCHY PROBLEM FOR THE EQUATION OF ONE-DIMENSIONAL NON-STATIONARY FILTRATION WITH NON-CONTINUOUS INITIAL DATA

BY

TADEUSZ ŚLIWA (WROCŁAW)

We consider the following Cauchy problem:

(1)
$$\frac{\partial u}{\partial t} = \frac{\partial^2 \varphi(u, x)}{\partial x^2} \quad \text{on } S = \{(x, t) : x \in \mathbb{R}, t > 0\},$$

$$u(x,0) = u_0(x) \quad \text{on } R,$$

where $\varphi(u, x)$ is a given function defined on $H = \{(u, x) : u \ge 0, x \in R\}$. Here and in the sequel $\partial \varphi / \partial x$, $\partial \varphi / \partial t$ are the derivatives of $\varphi(u(x, t), x)$ with respect to x, t, respectively, and φ'_u , φ'_x the derivatives of $\varphi(u, x)$ with respect to u, x.

It is well known that the problem (1), (2) not always has a classical solution. A function u = u(x, t) is said to be a weak solution of the problem (1), (2) in S if u is bounded, continuous and non-negative in \overline{S} , $\varphi(u, x)$ has a bounded weak (distribution) derivative with respect to x on S, and satisfies the integral identity

(3)
$$\int_{\overline{S}} \left[\frac{\partial f}{\partial t} u - \frac{\partial f}{\partial x} \frac{\partial \varphi(u, x)}{\partial x} \right] dx dt + \int_{-\infty}^{\infty} f(x, 0) u_0(x) dx = 0$$

for all f which are continuously differentiable in \vec{S} and vanish for large values of |x| and t.

Oleĭnik et al. (1) have shown that if u_0 is a bounded continuous nonnegative function on R, $\varphi(u_0(x), x)$ is lipschitzian,

(4) $\varphi \in C^5(\operatorname{Int} H)$ and all the derivatives of the fifth order of $\varphi(u, x)$ are lipschitzian in any compact subset of $\operatorname{Int} H$,

⁽¹⁾ О. А. Олейник, А. С. Калашников и Чжоу Юй-Линь, Задача Коши и краевые вадачи для уравнений типа нестационарной фильтрации, Известия Академии наук СССР, серия математическая, 22 (1958), р. 667-704.

- (5) $\lim_{x\to\infty} \varphi(u,x) = +\infty$ uniformly with respect to $x \in R$,
- (6) the functions φ and φ'_u are continuous on H and bounded for bounded u,

(7)
$$\varphi(u, x) > 0, \varphi'_{u}(u, x) > 0 \text{ for } u > 0, \varphi(0, x) \equiv \varphi'_{u}(0, x) \equiv 0,$$

then there exists a unique function u defined on \overline{S} and satisfying (3). Moreover, u satisfies equation (1) in a classical sense in a neighborhood of any point of S at which u is positive.

We observe that the boundedness of the function $\partial \varphi/\partial x$ implies that the function $\varphi(u_0(x), x)$ is lipschitzian. Thus, when we look for a solution in the case of a non-continuous function u_0 , we must modify the above-given definition of the solution.

In this paper we give a definition of the weak solution of the problem (1), (2) which preserves its sense for non-negative functions u_0 of class $L_{\infty}(R)$, and we prove the corresponding existence and uniqueness theorems for the problem (1), (2).

Definition. Let $u_0 \in L_{\infty}(R)$ and

$$\inf_{x \in R} \operatorname{ess} u_0(x) \geqslant 0.$$

A function u = u(x, t) defined on S will be called a weak solution of the problem (1), (2) if

- (i) u is a bounded continuous non-negative function on S;
- (ii) there exists a constant p>1 such that $\partial \varphi/\partial x\in L_p(K)$ for each compact subset $K\subset \bar{S}$;
 - (iii) for every $\varepsilon > 0$ there exists $\tau > 0$ such that

$$\int\limits_{0}^{z}\left|rac{\partial arphi(u\left(x,\,t
ight),\,x
ight)}{\partial x}
ight|\,dt$$

for almost every $x \in R$;

(iv) for every $\tau > 0$

$$\frac{\partial \varphi(u(x,t),x)}{\partial x} \in L_{\infty}(R \times (\tau,+\infty));$$

(v) for each function $f \in C_0^1(\overline{S})$ equality (3) holds. THEOREM 1. Assume $u_0 \in L_{\infty}$,

$$\inf_{x\in R} \operatorname{ess} u_0(x) \geqslant 0,$$

and let the function $\varphi(u, x)$ satisfy conditions (6) and (7). Then the problem (1), (2) has at most one weak solution.

Proof. At first we prove that equality (3) holds for any function $f \in C_0^0(\overline{S})$ for which $\partial f/\partial x$, $\partial f/\partial t \in L_\infty(\overline{S})$. Let $\{f_n(x,t)\}$ be a sequence of functions of class C_0^1 , which is uniformly convergent to f(x,t), and let the supports of all f_n $(n=1,2,\ldots)$ and of f be contained in a compact set $Q \subset \overline{S}$. We also assume that the sequences $\{\partial f_n/\partial x\}$ and $\{\partial f_n/\partial t\}$ are weakly convergent in $L_q(\overline{S})$ $(q=1/(1-p^{-1}))$ to $\partial f/\partial x$ and $\partial f/\partial t$, respectively. Note that (3) holds true if we replace f by any f_n . Since $\partial \varphi(u,x)/\partial x \in L_p(Q)$ (for some p>1), we obtain in the limit the equality (3) also for the function f(x,t).

Let us assume that the problem (1), (2) has two different solutions $u_1(x, t)$ and $u_2(x, t)$. From equality (3) written for $u_2(x, t)$ and for $u_1(x, t)$, respectively, we infer

(8)
$$\int_{S} \int \left[\frac{\partial f}{\partial t} (u_{1} - u_{2}) - \frac{\partial f}{\partial x} \frac{\partial}{\partial x} (\varphi(u_{1}, x) - \varphi(u_{2}, x)) \right] dxdt = 0.$$

Let $\{a_n(x)\}$ be a sequence of functions which have the following properties: $a_n(x) = 1$ for $|x| \le n-1$, $a_n(x) = 0$ for $|x| \ge n$, $0 \le a_n(x) \le 1$ for $n-1 \le |x| \le n$, the functions $a'_n(x)$ for $n=1,2,\ldots$ are uniformly bounded.

With the help of $a_n(x)$ we define now a new sequence of functions $\{f_n(x,t)\}\ (n=1,2,\ldots)$ by putting

$$f_n(x,t) = egin{cases} a_n(x) \int\limits_T^t \left[arphi(u_1(x, au),x) - arphi(u_2(x, au),x)
ight] d au & ext{for } t < T, \ 0 & ext{for } t \geqslant T. \end{cases}$$

where T > 0 is an arbitrary constant. It is easy to verify that $f_n \in C_0^0(\overline{S})$ and $\partial f_n/\partial x$, $\partial f_n/\partial t \in L_\infty(\overline{S})$. Therefore, equalities (3) and (8) hold for each function f_n .

Equality (8), with f replaced by f_n defined as above, is of the form

(9)
$$I_{1,n}+I_{2,n}+I_{3,n}=0,$$

where

$$\begin{split} I_{1,n} &= \iint\limits_{S_T} a_n(x) [\varphi(u_1,x) - \varphi(u_2,x)] (u_1 - u_2) dx dt, \\ I_{2,n} &= -\iint\limits_{S_T} a_n \Big\{ \int\limits_{T}^t \big[\varphi(u_1(x,\tau),x) - \varphi(u_2(x,\tau),x) \big] d\tau \Big\} \big[\varphi(u_1,x) - \varphi(u_2,x) \big] dx dt, \\ I_{3,n} &= -\iint\limits_{Q_n} a_n' \Big\{ \int\limits_{T}^t \big[\varphi(u_1(x,\tau),x) - \varphi(u_2(x,\tau),x) \big] d\tau \Big\} \bigg[\frac{\partial \varphi(u_1,x)}{\partial x} - \frac{\partial \varphi(u_2,x)}{\partial x} \bigg] dx dt \end{split}$$

and

$$Q_n = \{(x, t) : n-1 \leq |x| \leq n, 0 < t \leq T\},$$

 $S_T = \{(x, t) : x \in R, 0 < t \leq T\}.$

Since

$$I_{2,n} = -\frac{1}{2} \int_{S_T} a_n(x) \frac{\partial}{\partial t} \left\{ \int_T^t \left[\frac{\partial \varphi(u_1(x,\tau),x)}{\partial x} - \frac{\partial \varphi(u_2(x,\tau),x)}{\partial x} \right] d\tau \right\}^2 dx dt$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} a_n(x) \left\{ \int_T^0 \left[\frac{\partial \varphi(u_1(x,\tau),x)}{\partial x} - \frac{\partial \varphi(u_2(x,\tau),x)}{\partial x} \right] d\tau \right\}^2 dx,$$

we may write equality (9) in the form

(10)
$$I_{1,n} + \frac{1}{2} \int_{-\infty}^{\infty} a_n(x) \left\{ \int_{T}^{0} \left[\frac{\partial \varphi(u_1(x,\tau),x)}{\partial x} - \frac{\partial \varphi(u_2(x,\tau),x)}{\partial x} \right] d\tau \right\}^2 dx$$
$$= -I_{3,n}.$$

Each summand on the left-hand side of (10) is non-negative and increasing with n. The right-hand side of (10) is bounded (uniformly with respect to n), thus the summands on the left-hand side have a finite limit. It follows that the function

(10')
$$w(x, t) = [\varphi(u_1, x) - \varphi(u_2, x)](u_1 - u_2)$$

is integrable on S_T .

Tet

$$\begin{split} Q_{n,\tau} &= \{(x,t): n-1 \leqslant |x| \leqslant n, \, 0 < t \leqslant \tau\}, \quad Q'_{n,\tau} &= Q_n \setminus Q_{n,\tau}, \\ h(x,t) &= \alpha'_n(x) \Big\{ \int_T^t \left[\varphi \big(u_1(x,\tau), \, x \big) - \varphi \big(u_2(x,\tau), \, x \big) \right] d\tau \Big\} \times \\ &\times \left[\frac{\partial \varphi (u_1, \, x)}{\partial x} - \frac{\partial \varphi (u_2, \, x)}{\partial x} \right]. \end{split}$$

It follows from property (iii) in the Definition that for each $\varepsilon > 0$ there exists τ (0 < τ < T) such that

$$\Big| \int\limits_{Q_{n,\tau}} \int\limits_{h(x,t)} h(x,t) dx dt \Big| \leqslant \varepsilon.$$

Hence we have

$$I_{3,n} \leqslant \varepsilon + \Big| \int\limits_{Q'_{n,\tau}} \int\limits_{h(x,t)} h(x,t) dx dt \Big|.$$

Let A, B, C be the numbers such that

$$|a_n'(x)| \leqslant A \quad ext{ for } x \in R, \ n = 1, 2, \ldots;$$
 $\left| rac{\partial \varphi(u_i(x,t),x)}{\partial x}
ight| \leqslant B \quad ext{ for } x \in R, t > au, i = 1, 2;$ $\left| arphi_u'(u_i(x,t),x)
ight| \leqslant C \quad ext{ for } (x,t) \in S, i = 1, 2.$

Using the Cauchy inequality we obtain

$$\begin{split} \Big| \int\limits_{Q_{n,\tau}^{'}} h\left(x,t\right) dx dt \Big| &\leqslant 2ABT \int\limits_{Q_{n,\tau}^{'}} |\varphi(u_{1},x) - \varphi(u_{2},x)| dx dt \\ &\leqslant 4ABT^{3/2} \Big\{ \int\limits_{Q_{n,\tau}^{'}} [\varphi(u_{1},x) - \varphi(u_{2},x)](u_{1} - u_{2}) \varphi_{u}^{'}(\bar{u},x) dx dt \Big\}^{1/2} \\ &\leqslant 4ABC^{1/2} T^{3/2} \Big\{ \int\limits_{Q_{n}^{'}} w(x,t) dx dt \Big\}^{1/2}, \end{split}$$

where $\bar{u}(x)$ lies between $u_1(x)$ and $u_2(x)$.

The function w(x, t) is integrable on S_T , therefore the integral on the right-hand side of the inequality above converges to zero as $n \to \infty$. Since ε is arbitrary, we infer that

$$\lim_{n\to\infty}I_{3,n}=0.$$

Therefore, each number on the left-hand side of (10) tends to zero as $n \to \infty$. It follows that

(11)
$$\iint_{S_T} w(x,t) dx dt = 0,$$

where w is given by (10').

Since w is non-negative and continuous on S_T and T is arbitrary, equality (11) implies w = 0, and hence $u_1(x, t) = u_2(x, t)$ for $(x, t) \in S$.

Remark. Note that if the function u(x, t) is a weak solution in the sense defined by Oleřnik et al. (op. cit.), then the function u is also a weak solution in our sense.

Thus, if u_0 is continuous, non-negative and bounded and if the function $\varphi(u_0(x), x)$ is lipschitzian, then both solutions are the same and there is no necessity to distinguish them.

Hereafter we assume that the function $\varphi(u, x)$ satisfies conditions (4)-(7).

We shall now prove the existence of a solution of the problem (1), (2).

From our assumptions imposed upon φ and from the implicit function theorem it follows that the equation $\varphi(u, x) = v$ defines

$$(12) u = \Phi(v, x)$$

in a unique way.

Putting (12) into (1) we get

(13)
$$\frac{\partial^2 v}{\partial x^2} = \Phi'_{\mathbf{v}}(v, x) \frac{\partial v}{\partial t},$$

where the function $\Phi'_v(v, x)$ is positive and bounded for $a \le x \le b$ and $v \ge \mu$ (for any positive μ and any a and b).

We now consider equation (13) in the domain $G = \{(x, t) : a \le x \le b, t \ge 0\}$ with the following boundary conditions:

$$v(x, 0) = v_0(x) \quad \text{for } x \in [a, b],$$

$$v(a, t) = v_0(a), \quad v(b, t) = v_0(b) \quad \text{for } t \geqslant 0.$$

We assume that

$$0 < m \le v_0 \le M \text{ on } [a, b], \quad v_0 \in C^3([a, b]),$$

$$v_0''' \text{ is lipschitzian}, \quad v_0''(a) = v_0''(b) = 0.$$

Due to the assumptions above we may use Lemma 1 in the paper by Oleïnik et al. (op. cit.) from which it follows that there exists a solution v(x, t) of the problem (13), (14) such that v together with its derivatives $\partial v/\partial t$, $\partial v/\partial x$, $\partial^2 v/\partial x^2$ is continuous on G. Furthermore, all the derivatives of v, which appear in the equations obtained by differentiating the equation (13) four times with respect to x and once with respect to t, are continuous in Int G. Moreover, the following inequality holds:

$$(16) m \leqslant v(x,t) \leqslant M \text{for } (x,t) \in G.$$

LEMMA 1. We assume that the function v_0 satisfies (15), $\varphi(u, x)$ satisfies (4)-(7) and for every N > 0 there exists a constant a > 0 such that

(17)
$$\frac{\varphi_{uu}^{\prime\prime}(u,x)}{\varphi_{u}^{\prime2}(u,x)} \geqslant a \quad \text{for } 0 < u \leqslant N, x \in R.$$

Then the solution v of the problem (13), (14) satisfies the inequality

(18)
$$\frac{\partial v(x,t)}{\partial t} \geqslant -\frac{1}{at} \quad \text{for } x \in [a,b], t > 0,$$

where the constant a depends upon

$$N = \sup_{[a,b]} u_0, \quad u_0 = \Phi(v_0, x).$$

Proof. Differentiating both sides of equation (13) with respect to t we obtain

(19)
$$\frac{\partial^2 v'}{\partial x^2} = \Phi_{vv}^{"}v'^2 + \Phi_{v}^{'2}\frac{\partial v'}{\partial t} \qquad (v' = \frac{\partial v}{\partial t}).$$

It follows from equality (12) that $\Phi'_v = 1/\varphi'_u$ and $\Phi''_{vv} = -\varphi''_{uu}/\varphi'^3_u$, thus we may write equation (19) in the form

$$\frac{\partial v'}{\partial t} = \varphi'_u \frac{\partial^2 v'}{\partial x^2} + \frac{\varphi''_{uu}}{\varphi'^2_u} v'^2.$$

Put

$$v'=z-rac{K}{1+aKt}, \quad ext{where } K=-\inf_{[a,b]}v'(x,0)\geqslant 0.$$

The function z satisfies the equation

$$\frac{\partial z}{\partial t} = \varphi'_u \frac{\partial^2 z}{\partial x^2} + \frac{\varphi''_{uu}}{\varphi'^2_u} \left(z - \frac{K}{1 + aKt}\right)^2 - \frac{K^2 a}{(1 + aKt)^2}.$$

Since $v'(x, 0) \ge -K$ for $x \in [a, b]$ and v'(a, t) = v'(b, t) = 0 for $t \ge 0$, we have $z|_{\partial G} \ge 0$, which together with (13) implies that $z(x, t) \ge 0$ on G. Therefore

$$\frac{\partial v(x,t)}{\partial t} = z(x,t) - \frac{K}{1+aKt} \geqslant -\frac{1}{at} \quad \text{for } x \in [a,b], t > 0.$$

LEMMA 2. If the assumptions of Lemma 1 hold true and if for any N > 0 there exist constants λ and β ($\lambda > 0$, $0 < \beta < 1$) such that

(20)
$$\varphi'_{u}(u, x) \geqslant \lambda \varphi^{\beta}(u, x) \quad \text{for } 0 < u \leqslant N, x \in R,$$

then

$$\left|\frac{\partial v(x,t)}{\partial x}\right| \leqslant \max\left\{\frac{2M}{x-a}, \frac{2M}{b-x}, \left(\frac{8M^{1-\beta}}{3a\lambda(1-\beta)t}\right)^{1/2}\right\}$$

$$for (x,t) \in IntG,$$

where

$$\pmb{M} = \sup_{x \in [a,b]} \pmb{v}_0(x).$$

Proof. Let $(x_0, t) \in \text{Int} G$.

(a) Assume that

$$\frac{\partial v(x_0,t)}{\partial x} > 0.$$

If

$$\frac{\partial v(x,t)}{\partial x} > \frac{1}{2} \frac{\partial v(x_0,t)}{\partial x}$$
 for each $x \in [x_0,b]$,

then

$$M \geqslant \int\limits_{x_0}^{b} \frac{\partial v(x, t)}{\partial x} dx \geqslant \frac{\partial v(x_0, t)}{\partial x} (b - x_0),$$

and hence we infer

$$\frac{\partial v(x_0,t)}{\partial x} \leqslant \frac{2M}{b-x_0}.$$

Now assume that

$$\frac{\partial v(x_1, t)}{\partial x} \leqslant \frac{1}{2} \frac{\partial v(x_0, t)}{\partial x}$$
 for certain $x_1 \in [x_0, b]$

and

$$\frac{\partial v(x,t)}{\partial x} \geqslant 0 \quad \text{for } x \in [x_0,x_1].$$

From equation (13) and from inequalities (18) and (20) we infer that

$$\frac{\partial^2 v(x,t)}{\partial x^2} \geqslant -\frac{1}{a\lambda t} v^{-\beta}(x,t).$$

Multiplying both sides of this inequality by $\partial v(x, t)/\partial x \ge 0$ and integrating with respect to x over the interval $[x_0, x_1]$, we obtain

$$\left[\frac{\partial v(x_1,t)}{\partial x}\right]^2 - \left[\frac{\partial v(x_0,t)}{\partial x}\right]^2 \geqslant -\frac{2}{a\lambda(1-\beta)t}\left[v^{1-\beta}(x_1,t) - v^{1-\beta}(x_0,t)\right],$$

whence

$$\frac{\partial v(x_0,t)}{\partial \dot{x}} \leqslant \left\lceil \frac{8M^{1-\beta}}{3a\lambda(1-\beta)t} \right\rceil^{1/2}.$$

(b) In the case $v(x_0, t) < 0$, we prove in a similar way that either

$$\left| \frac{\partial v(x_0, t)}{\partial x} \right| \ge \frac{2M}{a - x_0}$$
 (i.e. $\left| \frac{\partial v(x_0, t)}{\partial x} \right| \le \frac{2M}{x_0 - a}$)

or

$$\left| \frac{\partial v(x_0, t)}{\partial x} \right| \leq \left[\frac{8M^{1-\beta}}{3a\lambda(1-\beta)t} \right]^{1/2}.$$

Then (a) and (b) together give our lemma.

Assume now that $u_0 \in L_{\infty}(R)$ and $\inf_{x \in R} \operatorname{ess} u_0(x) \geqslant 0$. Put

$$N = \sup_{x \in R} \operatorname{ess} u_0(x), \quad M = \sup_{x \in R} \varphi(N, x)$$

and let a, β, λ be the corresponding constants appearing in (17) and (20). We observe that the boundedness of $\varphi'_u(u, x)$ for bounded u (condition (6)) implies that $M < \infty$.

Let

$$X_n = n + \frac{2M\sqrt{n}}{A}$$
 $(n = 1, 2, ...), \text{ where } A = \left[\frac{8M^{1-\beta}}{3a\lambda(1-\beta)}\right]^{1/2},$

and let $\{v_{0,n}(x)\}$ be a sequence of functions which have the following properties for any n:

$$v_{0,n} \in C^3([-X_n, X_n]),$$

 $v_{0.n}^{""}$ satisfies the Lipschitz condition on $[-X_n, X_n]$,

$$0 < v_{0,n}(x) \leqslant \varphi(N,x) \text{ for } x \in [-X_n, X_n],$$

$$v_{0,n}^{\prime\prime}(-X_n)=v_{0,n}^{\prime\prime}(X_n)=0,$$

 $v_{0,n+1}|_{[-X_n,X_n]}$, $v_{0,n+2}|_{[-X_n,X_n]}$,... tends to $\varphi(u_0(x),x)|_{[-X_n,X_n]}$ in $L_2([-X_n,X_n])$.

Let $v_n(x, t)$ be such a solution of equation (13) defined in the domain $\{(x, t) : x \in [-X_n, X_n], t \ge 0\}$ that

$$v_n(x,0) = v_{0,n}(x) \quad \text{for } x \in [-X_n, X_n],$$

$$(22) \quad v_n(-X_n, t) = v_{0,n}(-X_n), \quad v_n(X_n, t) = v_{0,n}(X_n) \quad \text{for } t \ge 0.$$

From (21) it follows that

(23)
$$\left|\frac{\partial v_n(x, t)}{\partial x}\right| \leqslant \frac{A}{\sqrt{t}} \quad \text{for } -n \leqslant x \leqslant n, 0 < t \leqslant n,$$

where the constant A depends upon $\varphi(u, x)$ and N and is independent of n.

In the proof of existence of the solution of the problem (1), (2) (see below) we show that the sequence $\{v_n\}$ contains a subsequence which tends nearly uniformly on S to a function v(x, t) and that the function $u(x, t) = \Phi(v(x, t), x)$ is a solution of the problem (1), (2).

We preced this by proving the following

LEMMA 3. Let $u_n = \Phi(v_n, x)$, where v_n is a solution of the problem (13), (14) and Φ is defined by (12). Then there exist a natural number n_0 and a function $\varrho(s, x)$, continuous and increasing with respect to s and defined for $s \ge 0$, $x \in R$ ($\varrho(0, x) \equiv 0$), such that

$$|u_n(x,t')-u_n(x,t)| \leqslant \varrho\left(\frac{t'-t}{t},x\right)$$

for $x \in [-n, n]$, $0 < t < t' \leq n$ and $n \geq n_0$.

Proof. We have $\varphi''_{uu}(u, x) > 0$ for u > 0 and $x \in R$ (this follows from inequality (17)). Therefore the function $\varphi'_{u}(u, x)$ for each $x \in R$ is increasing with respect to u, so we can write

$$\varphi(u+u',x)-\varphi(u',x)\geqslant \varphi(u,x)-\varphi(0,x)$$
 for $u'\geqslant u\geqslant 0, x\in R$,

which gives

$$\varphi(u+u',x) \geqslant \varphi(u,x) + \varphi(u',x)$$
 for $u \geqslant 0, u' \geqslant 0, x \in \mathbb{R}$.

This inequality allows us to write

$$|v_n(x,t') - v_n(x,t)| \geqslant \varphi(|u_n(x,t') - u_n(x,t)|, x)$$

for $x \in [-X_n, X_n]$, 0 < t < t'. Let

$$\boldsymbol{M_1} = \sup_{x \in R} \varphi_u'(\boldsymbol{M}, x)$$

and let n_0 be the least natural number for which $n_0 \ge (M/4A)^2$. If $x_0 \in [-n, n]$, $0 < t < t' \le n$, then it follows from (25) that

$$|v_n(x_0, t') - v_n(x_0, t)| \ge \varphi(|u_n(x_0, t') - u_n(x_0, t)|, x_0).$$

The both functions $v_n(x, t')$ and $v_n(x, t)$ satisfy the Lipschitz condition with respect to x on [-n, n] with a constant A/\sqrt{t} . It follows that (cf. inequality (23))

(26)
$$|v_n(x,t')-v_n(x,t)| \geqslant \frac{1}{2} \varphi(|u_n(x_0,t')-u_n(x_0,t)|,x_0)$$

for $x \in [-n, n] \cap [x_0 - \Delta, x_0 + \Delta]$, where

$$\Delta = \frac{\varphi(|u_n(x_0, t') - u_n(x_0, t)|, x_0)\sqrt{t}}{4A}.$$

Since $\varphi'_u(u, x)$ is bounded for bounded u and $x \in R$, we obtain

$$|\varphi(u',x)-\varphi(u,x)|\leqslant M_1|u'-u|$$
 for $u\leqslant N, u'\leqslant N$ and $x\in R$,

which together with (26) gives

(27)
$$|u_n(x,t') - u_n(x,t)| \geqslant \frac{1}{2M_1} \varphi(|u_n(x_0,t') - u_n(x_0,t)|, x_0)$$

for $w \in [-n, n] \cap [x_0 - \Delta, x_0 + \Delta]$.

Assume that $n \ge n_0$. From the definition of n_0 it follows that either $x_0 + \Delta \in [-n, n]$ or $x_0 - \Delta \in [-n, n]$.

From Green's formula we get

$$\int_{\partial \Omega} u_n dx + \frac{\partial v_n}{\partial x} d\tau = \int_{\Omega} \left[\frac{\partial u_n}{\partial t} - \frac{\partial^2 v_n}{\partial x^2} \right] dx d\tau = 0,$$

where $\Omega = \{(x, \tau) : x_0 \leqslant x \leqslant x_0 + \Delta, t \leqslant \tau \leqslant t'\}$. Hence we infer that

(28)
$$\int_{x_0}^{x_0+\Delta} [u_n(x,t') - u_n(x,t)] dx$$

$$= \int_{t}^{t'} \left[\frac{\partial v_n(x_0 + \Delta, \tau)}{\partial x} - \frac{\partial v_n(x_0, \tau)}{\partial x} \right] d\tau \quad \text{for } n \ge n_0.$$

The difference $u_n(x, t') - u_n(x, t)$ has a constant sign on $[x_0, x_0 + \Delta]$ (see (27)), therefore due to inequality (27) we may write

$$\Big|\int_{x_0}^{x_0+A} [u_n(x,\,t')-u_n(x,\,t)]dx\Big| \geqslant \frac{\varphi^2\big(|u_n(x_0,\,t')-u_n(x_0,\,t)|\,,\,x_0\big)\,\sqrt[p]{t}}{8A\,M_1}.$$

From (23) it follows that

$$\left|\int_{t}^{t'} \left[\frac{\partial v_{n}(x_{0} + \Delta, \tau)}{\partial x} - \frac{\partial v_{n}(x_{0}, \tau)}{\partial x} \right] d\tau \right| \leqslant \int_{t}^{t'} \frac{2A}{\sqrt{\tau}} d\tau = 2A \frac{t' - t}{\sqrt{t}},$$

whence (see also (28))

$$\frac{\varphi^2\!\!\left(|u_n(x_0,\,t')-u_n(x_0,\,t)|,\,x_0\!\right)\sqrt{\bar{t}}}{8A\,M_1}\leqslant 2A\,\frac{t'-t}{\sqrt{\bar{t}}},$$

which gives

$$\varphi(|u_n(x_0,t')-u_n(x_0,t)|,x_0)\leqslant 4A\sqrt{M_1\frac{t'-t}{t}}.$$

So for $-n \leqslant x \leqslant n$, $0 < t < t' \leqslant n$, $n \geqslant n_0$ we have

$$|u_n(x,\,t')-u_n(x,\,t)|\leqslant\varrho\left(\frac{t'-t}{t},\,x\right)=\varPhi\left(4A\sqrt{\frac{M_1}{t'-t}}\,,\,x\right).$$

It is easy to verify that the function $\varrho(s,t)$ satisfies the conditions of the lemma.

THEOREM 2. Let $u_0 \in L_{\infty}(R)$,

$$\inf_{x\in R} \operatorname{ess} u_0(x) \geqslant 0,$$

and let u_0 satisfy conditions (4)-(7), (17) and (20). Then the problem (1), (2) has a weak solution u(x, t), in the sense given in the Definition, with the following properties:

(a)
$$0 \leqslant u(x, t) \leqslant N$$
 for $(x, t) \in S$, where
$$N = \sup_{x \in R} \operatorname{ess} u_0(x);$$

(b) for t > 0 the function $\varphi(u(x, t), x)$ satisfies the Lipschitz condition with respect to x, with a constant A/\sqrt{t} , where

$$A = \left[\frac{8M^{1-\beta}}{3a\lambda(1-\beta)}\right]^{1/2}, \quad M = \sup_{x \in R} \varphi(N, x)$$

and a, β, λ are constants from Lemmata 1 and 2;

(c) there exists a function $\varrho(s,x)$ defined for $s \ge 0, x \in R$ which is continuous and increasing with respect to $s(\varrho(0,x) \equiv 0)$ and such that

$$|u(x, t') - u(x, t)| \leq \varrho\left(\frac{t' - t}{t}, x\right)$$
 for $x \in R, t' > t > 0$;

- (d) u satisfies equation (1) in the classical sense in any neighborhood of every point of S at which u is positive;
- (e) on each finite interval [a, b], u(x, t) tends weakly in $L_2([a, b])$ to $u_0(x)$ as $t \to 0$.

Proof. Let v_n be a solution of (13), (22) and let

$$G_n = \left\{ (x, t): x \in [-n, n], t \in \left[\frac{1}{n}, n\right] \right\}.$$

From Lemmata 2 and 3 it follows that the functions $\{v_{n+k}\}$ for k = 1, 2, ... are uniformly bounded and uniformly continuous on G_n .

It is easy to verify that the sequence $\{v_n\}$ contains a subsequence $\{v_{n_k}\}$ which is convergent uniformly on each G_n .

We shall only sketch the proof of this fact.

From the sequence $\{v_n\}$ we choose a subsequence $\{v_{m_k}\}$ which is convergent uniformly on G_1 . Denote the first element of this subsequence by v_{n_1} . Now, from v_{m_2}, v_{m_3}, \ldots we choose a new subsequence which is uniformly convergent on G_2 . We denote the first element of this new subsequence by v_{n_2} . Proceeding in this way we obtain a subsequence $\{v_{n_k}\}$ which has the desired properties.

Let

$$v(x,t) = \lim_{k \to \infty} v_{n_k}(x,t), \quad u(x,t) = \Phi(v(x,t),x) \quad \text{for } (x,t) \in \mathcal{S}.$$

By the definition of v_{n_k} , v(x, t) (as well as u(x, t)) is continuous on S. It follows from the remarks above and from (23) that

(29)
$$\sup_{x \in R} \operatorname{ess} \left| \frac{\partial v(x, t)}{\partial x} \right| \leqslant \frac{A}{\sqrt{t}} \quad \text{for } t > 0.$$

This inequality implies conditions (ii) (for any $p \in (1, 2)$), (iii) and (iv) from the Definition and condition (b) from Theorem 2.

Since the functions u_n satisfy (24), condition (c) from Theorem 2 holds.

Since the functions $u_n(x,t) = \Phi(v_n,x)$ satisfy (1) on $[-X_n, X_n] \times [0, +\infty)$ and since $0 \le u_n \le N$ on the boundary of this domain, by Theorem 12 in the paper by Oleı̃nik et al. (op. cit.) we have $0 \le u_n(x,t) \le N$ for $x \in [-X_n, X_n]$, $t \ge 0$. Hence $0 \le u \le N$ on S.

Let $f \in C^1_0(\overline{S})$ and let K = supp f. The sequence $\{\partial \varphi(u_{n_k}, x)/\partial x\}$ (beginning with some k) is contained in $L_p(K)$ and is bounded in $L_p(K)$ -norm (for $1), therefore it is weakly compact. Thus there exists a subsequence <math>\{\partial \varphi(u_{n_{k_i}}, x)/\partial x\}$ weakly convergent in $L_p(K)$ to $\partial \varphi(u, x)/\partial x$. Equality (3) holds true for $u_{n_{k_i}}$; by passing to the limit as $i \to \infty$ we infer that (3) also holds for u.

In this way we have proved that

(30)
$$\int_{\tau}^{\infty} \int_{-\infty}^{\infty} \left[\frac{\partial f}{\partial t} u - \frac{\partial f}{\partial x} \frac{\partial \varphi(u, x)}{\partial x} \right] dx dt + \int_{-\infty}^{\infty} f(x, \tau) u(x, \tau) dx = 0$$

for any $f \in C_0^1(R \times [\tau, +\infty))$ and $\tau > 0$.

From this and from (29) we infer that u(x, t) is a weak solution of the problem (1), (2) in the sense defined by Olenik et al. in the domain $R \times [\tau, +\infty)$. This solution takes the value $u(x, \tau)$ for $t = \tau$.

Part (d) of the theorem follows from Theorem 2 in op. cit.

We have only to prove (e). Since $C_0^1([a, b])$ is a closed subset of $L_3([a, b])$, it suffices to prove that

(31)
$$\lim_{\tau \to 0} \int_{-\infty}^{\infty} h(x) [u_0(x) - u(x, \tau)] dx = 0 \quad \text{for any } h \in C_0^1(R).$$

Let $h \in C_0^1(R)$ and let f be a function with $C_0^1(\vec{S})$ such that f(x, 0) = h(x) for $0 \le t \le \tau$.

From (29) and from (3) we get

$$\int_{0}^{\tau} \int_{-\infty}^{\infty} \left[\frac{\partial f}{\partial t} u - \frac{\partial f}{\partial x} \frac{\partial \varphi(u, x)}{\partial x} \right] dx dt + \int_{-\infty}^{\infty} f(x, \tau) [u_0(x) - u(x, \tau)] dx = 0,$$

$$\int_{-\infty}^{\infty} h(x) [u_0(x) - u(x, \tau)] dx = \int_{-\infty}^{\infty} h'(x) \left(\int_{0}^{\tau} \frac{\partial \varphi(u, x)}{\partial x} dt \right) dx.$$

The right-hand side of this equality tends to zero as $\tau \to 0$, so (31) holds true.

INSTITUTE OF MATHEMATICS WROOLAW UNIVERSITY

Recu par la Rédaction le 24. 11. 1977