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We consider the following Cauchy problem:

+

ou  Pp(u,d) _ )
(1) = o on 8 = {(z,%): xeR,t> 0},
(2) (@, 0) = uo(#) on R,

where @(%, ) is a given function defined on H = {(u, ) :% > 0,2 € R}.

Here and in the sequel d¢p/ox, dp /ot are the derivatives of q:(u(m, t), )
with respect to ®,t, respectively, and ¢,, ¢, the derivatives of ¢(u, 2)
with respect to u,»

It is well known that the problem (1), (2) not always has a classical
solution. A function v = u (@, ¢) is said to be a weak solution of the problem
(1), (2) in 8 if % is bounded, continuous and non-negative in S, ¢(u, z)
has a bounded weak (distribution) derivative with respect to # on 8,
and satisfies the integral identity -

(3) f / [af o a"”(gm @) dod -+ f (@, 0)uy(2)dw = 0

for all f whlch are continuously differentiable in 8 and vanish for large

values of |»| and ¢.
Olelnik et al. (1) have shown that if %, is a bounded continuous non-
negative function on R, p(u,(), #) is lipschitzian,
(4) @ € C°(Int H) and all the derivatives of the fifth order of ¢(u,®)
are lipschitzian in any compact subset of IntH,

() O. A. Oaettank, A.C. KanamurkoB & Umoy I0#-JInns, 3adava Kowu u
Kpaestie sadavu 048 ypasHenull muna necmayuonaprod dussmpayuu, WsBectEa AKa-
nemmm Hayk CCCP, cepmsa maremarmueckas, 22 (1958), p. 667-704.
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(5) limgp(u, #) = + oo uniformly with respect to z € R,
U0

(6) the functions ¢ and ¢, are continuous on H and bounded for
bounded wu, ;

(7) p(u,z) >0, ?’;(“9 z) >0 for >0, ¢(0,2) = 9’;(0’ z) =0,

then there exists a unique function u defined on S and satisfying (3).
Moreover, u satisfies equation (1) in a classical sense in a neighborhood
of any point of 8 at which « is positive.

We observe that the boundedness of the function 0dp/dr implies
that the function cp(uo(a;), m) is lipschitzian. Thus, when we look for a solu-
tion in the case of a non-continuous function %,, we must modify the
above-given definition of the solution.

In this paper we give a definition of the weak solution of the problem
(1), (2) which preserves its sense for non-negative functions %, of class
L. (R), and we prove the corresponding existence and uniqueness theorems
for the problem (1), (2). _ '

Definition. Let u, € L, (R) and "

inf essuy(2) > 0.
zeR

A function v = u(x,t) defined on S will be called a weak solution

of the problem (1), (2) if
(i) » is a bounded continuous non-negative function on §;

(ii) there exists a constant p > 1 such that dp/ox € L,(K) for each
compact subset K < §;

(iii) for every & > 0 there exists z > 0 such that

at<e

fl 39’(“(“’7 1), w)
J | o

for almost every « € R;
(iv) for every v >0

a‘l’(“(wy i), w)
ox

(v) for each function f € 03(8) equality (3) holds.
THEOREM 1. Assume %, € L,

GL,,(R X (7, -I-oo));

inf essu,y(2) = 0,
zeR

and let the function p(u, z) satisfy conditions (6) and (7). Then the problem
(1), (2) has at most one weak solution.
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Proof. At first we prove that equality (3) holds for any function
feC3(8) for which 0f/dw, of (0t € L, (8). Let {f,(x,t)} be a sequence of °
functions of class Cj, which is uniformly convergent to f(z, t), and let the
supports of all f, (» = 1,2,...) and of f be contained in a compact set
Q < 8. We also assume that the sequences {of, |0} and {0f, |0t} are weakly
convergent in Lq(g) (g =1/(1—p7")) to of/o» and &f/dt, respectively.
Note that (3) holds true if we replace f by any f,. Since d¢p(u, 2)/0z € L,(Q)
(for some p > 1), we obtain in the limit the equality (3) also for the
function f(z, t).

Let us assume that the problem (1), (2) has two different solutions
U, (@, t) and u4(x, t). From equality (3) written for u,(w, t) and for u,(z, t),
respectively, we infer

of o
(8) Lf[% (ul—us)—%; =g (P (1, 2) —@(us, w))] dwdt = 0.

Let {a,(x)} be a sequence of functions which have the following
properties: a, () = 1 for |[z|<n—1,a,(®) = 0 for |2|>n,0< a,(2) <1
for n —1 < |#| < n, the functions a,(®) for n» =1, 2,... are uniformly
bounded.

With the help of a,(r) we define now a new sequence of functions

{fu(@, t)} (n =1,2,...) by putting
$
fala, ) = [“»(wgf [pls@, 7), 2) —glua(@, o), all e for t<T,

0 fort>1T,

where T > 0 is an arbitrary constant. It is easy to verify that f, e C3(8)
and of, /0w, of,|0t € L, (8). Therefore, equalities (3) and (8) hold for each

function f,.

Equality (8), with f replaced by f, defined as above, is of the form
(9) Il.n+12.n+13,n =0,
where

L, = _ff a, (@) [p(%y, @) — @ (ug, ) (4, — u,) ddt,
Sp

¢ .
Iz.n = _ff au{ f[‘?(ul(wr 7), w)_?’(“a(my 1), w)]df} [p(uy, 2)—
8 T
) — @ (us, v)]ddt,

Ly = "’i‘! a::{gf[?’(un(“’r ".);‘”)—‘P("a(w, t),w)]dt}[@% -

_ Op (ug, ”)] dwdt
or
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and
Q= {(@,0):n—1<|o|<n,0<t< T}

8p ={(®,t):xeR, 0<t<<T}.
Since

L= =g [[ o] Tf[@"’(“l‘;; 28 Soleal®: 2] ol gy

3 [l _tngn.pe

we may write equality (9) in the form

_ 1 £ : op(us (2, 7), )  Op(ug(w,7), ) 2
O R e

IS = _Ia.”n

Each summand on the left-hand side of (10) is non-negative and
increaging with n. The right-hand side of (10) is bounded (uniformly
with respect to ), thus the summands on the left-hand side have a finite
limit. It follows that the function

(10°) w (@, 1) = [p(t, @) — (U, @)] (U — U5)

is integrable on Sj.
Let

Q‘n,t = {(w) t):”_lglw|<”)0<t<1}7 Qi'l,‘l' =Qn\Qu,t’

¢
h(z,1) = a;(-’”){f lo(v1(@, 7), @) —p(us(, 7), w)]df} X
T
Op(ty, @)  Op(uq, @)
% [ T ow ]

or

It follows from property (iii) in the Definition that for each &> 0
there exists v (0 < v < T) such that ’

| [f h(w,t)dwdt|<s.
Qn,z

Hence we have
La<e+| [[ hio, t)dodt].

oﬂr,f
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Let A, B, C be the numbers such that

lap(@)| <A for zeR, n=1,2,..;

<B forxzeR,i>7,t=1,2;

3(])(%4 (@, 1), .’L‘)
ox

|lpu(ws (@, t), 2)| <€ for (w,8) €8, =1,2.

Using the Cauchy inequality we obtain

| ffh(m,t)dmdt|< 24BT fj 1@ (%g, @) — p(ts, 7)| dodt
; .

n,t Qn.r

< 44BT*{ [ [p(41, 2) — (s, 2)] (s~ )9l @) dodt]

L

< 4,4301/21'3/2{ [[ wa, t)dmat}"’,
3

where % (x) lies between u,(z) and u,(z).

The function w (=, t) is integrable on 8, therefore the integral on the
right-hand side of the inequality above converges to: zero as #» — oo.
Since ¢ is arbitrary, we infer that '

. limI,, = 0.

Therefore, each number on the left-hand side of (10) tends to zero
a8 n — oo, It follows that

(11) [[ w(,t)dedt = 0,
Sp

where w is given by (10').
Since w is non-negative and continuous on S, and T is arbitrary,
equality (11) implies w = 0, and hence u,(x,t) = uy(z, t) for (z,1?) € 8.
Remark. Note that if the function u(w,?) is a weak solution in
the sense defined by Oleinik et al. (op. cit.), then the function # is also
a weak solution in our sense.

Thus, if 4, is continuous, non-negative and bounded and if the func-
tion ¢(ug (), #) is lipschitzian, then both solutions are the same and there
is no mnecessity to distinguish them.

Hereafter we assume that the function ¢(u, x) satisfies conditions
(4)-(7).

We shall now prove the existence of a solution of the problem (1), (2).
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From our assumptions imposed upon ¢ and from the implicit function
theorem it follows that the equation ¢(u,x) = v defines

(12) u = P(v, x)
in a unique way.
Putting (12) into (1) we get
L)
o’

where the function &,(v, ») is positive and bounded for a <o < b and
v > u (for any positive x4 and any a and b).

We now consider equation (13) in the domain @ = {(#,?):a < < b,
t > 0} with the following boundary conditions:

, ov
(13) = Dy(v, a’)W’

v(w, 0) = vo(x) for » € [a, b],
(14)
v(a,t) = vy(a), o(b,1) = vo(b) for t>0.

We assume that

0<m<v<Mon [a,b], v,€0C([a,bd]),
(15)
v, is lipschitzian, v, (a) = vy (b) = 0.

Due to the assumptions above we may use Lemma 1 in the paper
by Olelnik et al. (op. cit.) from which it follows that there exists a solution
v(, t) of the problem (13), (14) such that » together with its derivatives
ov|ot, ov|0x, P v|0x® is continuous on G. Furthermore, all the derivatives
of v, which appear in the equations obtained by differentiating the equation
(13) four times with respect to # and once with respect to ¢, are continuous
in Int@. Moreover, the following inequality holds:

(16) m<o@,l))< M for (w,t) €@.

LEMMA 1. We assume that the function v, satisfies (15), ¢(u, ) satisfies
(4)-(7) and for every N > O there exists a constant a > 0 such that

Pu (U, @)
(17) X or 0<u< N,zeR.
Pu (U, @) - f ’
Then the solution v of the problem (13), (14) satisfies the inequality
ov(z,t)

1
(18) = —= for z €[a,b],t>0,

where the constant a depends upon

N = supu,, u,= DP(v,y, ).
[a,0]
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Proof. Differentiating both sides of equation (13) with respect to
t we obtain
&*v’ ", sy OV’ , Ov
e A iy 1 ..

It follows from equality (12) that &, = 1/p, and P,, = —e¢../ps,
thus we may write equation (19) in the form

3‘0' ’ 32 v' + 2‘% 01’.
u

(19)

W
Put

K where K info'(2,0) >0
C——— = — info'(2 .
1+ aKt’ @

The function z satisfies the equation
oz, oz + Pu . K \ Ka
a Par T R 1+aKt] ~ (1+aKt)}

Since v’ (@, 0) > — K for # € [a, b] and v'(a,?) = o’'(b,t) = 0 fort> 0,
we have z|sg = 0, which together with (13) implies that z(x, t) > 0 on G.
Therefore

ov(z,t) K 1
‘ % _z(m,t)—l_'_aKt;—; for » € [a,d],t> 0.

LEMMA 2. If the assumptions of Lemma 1 hold true and if for any N > 0
there exist constants A and B (A > 0, 0 < B < 1) such that

v =2—

(20) q’&(%,d))?hp‘(%,&?) Jor 0<u< N,»eR,
then
21) ov(o, t) < ma.x: °2M 2M ( 8 M4 )"’:
( ow | w—a’ b—a’\ 3ad(1—p)t
Jor (z,t) € Int@,
where
M = sup vy(x).
z€{a,b]

Proof. Let (w,, t) € Int@.
(a) Assume that
0v (2o, 1) >

P 0.

It
ov(z,t) S i@v(wo,t)
ox 2 ox

for each x € [w,, b],
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then

v (

b
@, 1) 00 (@, ?)
>
M;_%f o du

ow

(b—a,),

and hence we infer
00 (g, t) < 2M
w b—wy

Now assume that

do(@, 1) _ 1 Bo(ay, 1)

% 2 % for certain z, € [z, b]

and
ov(, ?)
ox

From equation (13) and from inequalities (18) and (20) we infer that

=0 for o€ [z, ].

Po(z, ) 1
o’ > = at

Multiplying both sides of this inequality by 9v(w, t)/d» > 0 and inte-
grating with respect to # over the interval [,, #,], we obtain

(@, ) [ oo, ) T 2 _ i
[ ox ] _[ O ] >~ ai(l—p)t (' (2,,8) — ' (0,0)],

v P (z,1).

whence

" do(@, 1) <[ sy’ ]"’
o |L3aA(1—p)t]

(b) In the case v(w,,?) <0, we prove in a similar way that either

ov(,, t)> 2M Pe. | 9 (a,, t) < 2M )
o . a—a, |  ow To—a
or
o (@4, t) - sM*—F ]"2
. Ox ’\[3az(1—p)t '

Then (a) and (b) together give our lemma.
Assume now that w,e€ L, (R) and inf essuy(®) > 0. Put
. zeR

N = sup essuy(v), M = supgp(N, o)
zeR zeR
and let a, B, 4 be the corresponding constants appearing in (17) and (20).
We observe that the boundedness of ¢, (u, ) for bounded « (condi-
tion (6)) implies that M < oo.
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Let

2MVn sM'—# ]l/2
X, =n+ ’

< (n =1,2,...), where 4 =[3a/‘l(1—ﬁ)

and let {v,,(«)} be a sequence of functions which have the following
properties for any n:

Yo,n € 03([ _-Xn) Xn])’

v, Satisfies the Lipschitz condition on [ —X,,, X, ],

0 <, (7)< (W, ) for ze[—X,, X,], )

v:):n( - Xn) = 'v:):n(-xn) = 07

Vomirll-Xp. %00 Vomiali-x,,x,0--- tends to g(u,(a),2)|-x, x,; in
Ly([— X, X,]). o

Let v, (2, t) be such a solution of equation (13) defined in the domain
{(z,t): 2 e[—-X,, X,], t= 0} that

‘””(m, 0) = ’vo,n(w) for w € [_an Xn]’

(22)
”n( —X»’ 1) = 'vo,n( _Xn)7 ”n(xfn t) = "o,u(Xu) for t>0.
From (21) it follows that
v, (2, 1) A
(23) _—é?v_’— <7£- for —n<o<N,0<t<n,

where the constant A depends upon ¢(w,2) and N and is independent
of n. ‘

Tn the proof of existence of the solution of the problem (1), (2) (see
below) we show that the sequence {v,} contains a subsequence which
tends nearly uniformly on § to a function v(x,?) and that the function
u(z, 1) = O(v(z, 1), ) is a solution of the problem (1), (2).

We preced this by proving the following

LEmMMA 3. Let u, = D (v,, ), where v, 18 a solution of the problem
(13), (14) and D is defined by (12). Then there exist a natural number n,
and a function (8, x), continuous and increasing with respect to 8 and defined
for 8= 0, » € R (¢(0, ) = 0), such that
(24) lu’n(wy t’)—un(w, t)l\<9(t i ! ’w)

foree[—n,n],0 <t<t < nand n=n,.

Proof. We have ¢, (%, #) > 0 for « > 0 and # € R (this follows from
.inequality (17)). Therefore the function ¢, (u, ) for each @ € R is increasing
with respect to %, 80 we can write

p(u+u, ) —p(u', 0) > p(u, 5)—p(0,2) for W >u>0,sck,

11 — Colloquium Mathematicum XLIV.2
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which gives
e(ut+u,z) > p(u,z)+e(u',2) for u=>0,u">0,z€eR.

This inequality allows us to write
(25) 00 (@5 V') — 0n (@, 1) = @(lthy (@, V') — Uy (@, )], @)

forve[—X,, X,], 0<t<?.
Let

M, = supg, (M, z)
zeR

and let n, be the least natural number for which n, > (M /44)%.
I 2y e[—n,n], 0 <i<t < n, then it follows from (25) that

lv,,(wo, t') —'v,,(wo, t)l = q’(lun(ww t') _un(a’or t)'? “’o)-

The both functions v, (, ') and v, (z, t) satisfy the Lipschitz condition

with respect to ¢ on [ —n,n] with a constant A/l/- It follows tha.t (cf.
inequality (23))

1
(26) 19 (@, ) —0a(@, )| =5 @ (1% (@05 ') — U (@9, 1)1, @)

for z € [—n, n] N[z, — 4, 2+ 'A], where

@ 1% (@0, t') —ty (4, 2)], a’o)'/i .

a4 =
44

Since ¢, (u, x) is bounded for bounded # and » € R, we obtain

lp(vw', @) —@(u, )| < M,|u'—u| for u<N,w'<N and v€R,

which together with (26) gives
1
(27) [un (2, t') — up (2, 1)| > M, @ (1t (@05 ') — g (@0, 1), o)
for o e[—n,n]N [©,— 4, 2o+ 4]
Assume that » > n,. From the definition of n, it follows that either

To+de[—n,n] or vy— A4 €[ —n,n].
From Green’s formula we get

fu do+— %0 = dr —ff[ azv"]dwdr — 0,
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where Q2 = {(z,7): @< @< 2+ 4,t<T<t}. Hence we infer that
zo+4
@) [ [ua(o, )= un(a, )]do

Zo

_ f"[av,.<wo+a,r> 90, (@, 7)

o ]d‘t for n = n,.

The difference u, (x, ') —u,(x,t) has a constant sign on [®,, ¥y+ 4]
(see (27)), therefore due to inequality (27) we may write

z9+4

f[un(w V) —u, (2, t)]dwl 914 B0y ¥)—Un (@0 D), @) Vi

8AM,

From (23) it follows that
¢
f[av(w.,u ) 7) av(wo,r)] fz-{ g —24 ¥t
i T

whence (see also (28))

@14, (@ 2') — 1ty (@0, V)], ) Vt ' —t
8AM, vVt

which gives

' —t
‘P( [ty (Dgy ') — Uy (@0, ¥)I “’o) <44 .'/Mx 3

So for —n<2 n,0<t<t’ n, n = n, we have

== ¢(4AVM1 ¥ t,w).

It is easy to verify that the function (s, ?) satisfies the conditions
of the lemma.

THEOREM 2. Let u, € L, (R),

[ (@) T') —Uup (2, 8)| < @

inf essuy(z) > 0
zeR o
and let u, satisfy conditions (4)-(7), (17) and (20). Then the problem (1), (2)
has a weak solution u(w,t), in the sense given in the Definition, mth the
Jollowing properties:
(a) 0 < u(x,t) < N for (w,1) € S, where

N = sup essu,y(w);
zeR



844 : T. SLIWA

(b) for t > 0 the function «p(u(m, t), &) satisfies the Lipsohitz condition
with respect to x, with a constant A /}/t, where
_ [ Y el
3aA(1—p)
and a, B, A are constants from Lemmata 1 and 2;

(c) there exists a fumction o(8,x) defined for s> 0,x € R which 1is
continuous and increasing with respect to s (o(0, x) = 0) and such thai

1/2
] y M = supgp(¥, )
a2€R

4

t'—1t
lu(z, t')—u(z, t)] < g( ’ w) for e R,V >1>0;

[

(d) u satisfies equation (1) in the classioal semse in amy neighborhood
of every point of S at which u is positive;

(e) on each finite interval [a, b], u(z,1t) tends weakly in Ly([a, b])
to uy(x) as t — 0.

Proof. Let v, be a solution of (13), (22) and let

G, ={(w,t): vel[—mn, n],te[%, 'n]}

From Lemmata 2 and 3 it follows that the functions {v,,,} for
k =1,2,... are uniformly bounded and wuniformly continuous ¢n @,.

It is easy to verify that the sequence {v,} contains a subsequence
{v,,} Which is convergent uniformly on each @,.

We shall only sketch the proof of this fact.

From the sequence {v,} we choose a subsequence {v,, } which is con-
vergent uniformly on @,. Denote the first element of this subsequence
by v,,. Now, from 9, , ¥y, ... We choose a new subsequence which is
umformly convergent on G;. We denote the first element of this new
subsequence by v,,. Proceeding in this way we obtain a subsequence
{¥s,} Which has the desired properties.

Let

v(z,t) = hm'vnk(w t), u(@,t)=ov@,t),s) for (z,t)eh.

k—>o00

By the definition of v, , v(», t) (a®» well a8 (2, ?)) i8 continuous on 8.
It follows from the remarks above and from (23) that

ov(x, t)
ox

A
(29) sup ess <= forit>0.
zeR Vi

This inequality implies conditions (ii) (for any p € (1, 2)), (iii) and (iv)
from the Definition and condition (b) from Theorem 2.



COAUOHY PROBLEM FOR FILTRATION 345

Since the functions u, satisfy (24), condition (c) from Theorem 2
holds.

Since the functions u,(z,t) = ®(v,, «) satisfy (1) on [-X,, X,]X
X [0, +oc) and since 0 < u,< N on the boundary of this domain,
by Theorem 12 in the paper by Olelnik et al. (op. cit.) we have 0 < %, (=, t)
KNforeze[—X,,X,],t=>0. Hence 0 <« < N on 8.

Let f € 05(S) and let K = suppf. The sequence {9¢(%,, , %) /dx} (begin-
ning with some k) is contained in L,(K) and is bounded in L,(K)-norm
(for 1 < p < 2), therefore it is weakly compact. Thus there exists a sub-
sequence {&p(u,,k‘, x)/0x} weakly convergent in L,(K) to Op(w, @)/0x.
Equality (3) holds true for g5 by passing to the limit as ¢ - oo we infer

that (3) also holds for .
In this way we have proved that

1o o dp(u, ) 3 _
(30) f f[;t—u—a—wT]dwdt+ _£ f(@, D@, 1)do =0

for any feCy(R X [v, +o0)) and 7> 0.

From this and from (29) we infer that «(x,t) is a weak solution of
the problem (1), (2) in the sense defined by Oleinik et al. in the domain
R X [t, + o0). This solution takes the value u(z, 7) for ¢t = =.

Part (d) of the theorem follows from Theorem 2 in op. cit.

We have only to prove (e). Since Ci([a, b]) is a closed subset of
Ly([a, b]), it suffices to prove that

T - 00
\

(31) lim h(2) [uo(x) —u(x, v)]de = 0 for any h e Ci(R).

-0
-0

Let h € Cy(R) and let f be a function with C}(S) such that f(z, 0)
= h(@) for 0<tI< . .
From (29) and from (3) we get

YTy of op(u;w) ®
!_.!; [Eu—%_—aw_] dwdt+_£ f(@, 7) [uo(2) —u(®, 7)]do = 0,

i.e.

f h(@) [ty (%) — (@, 7)]do = f‘h'(w)(f&’—g‘a:w—)dt) .

The right-hand side of this equality tends to zero as = — 0, so (31)
holds true.
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