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0. PRELIMINARIES

For a semitopological semigroup 8 let C(8) denote the (*-algebra of
continuous, bounded, complex-valued functions on 8. In the dual space
C(8)*, the set B8 of multiplicative linear functionals on C(8) is contained,
which, when furnished with the relative weak* topology, is just the Stone-
-Cech compactification of 8 if § is completely regular. The left translate
L,f of f e C(8) by s €8 is defined by L,f(3) = f(st) for all t € S; the right
tramslate R f is defined analogously. A function f e C(8) is called (weakly)
almost periodic provided {L,f:s e 8} is (weakly) relatively compact in
C(8). We quote

THEOREM 0.1. The following assertions about a function fe C(S) are
equivalent:

(i) f is weakly almost periodic.

(i) {R,f:8 €8} is weakly relatively compact in C(8S).

(iii) {L,f:8€8} (or {R,f:8€8}) is relatively o(C(8), BS)-compact
mn C(8).

(iv) Grothendieck’s criterion. Whenever {s,} and {t,,} are sequences
in S such that the limits :

A =limlimf(s,t,) and B =limlimf(s,t,,)
n m

m n

both exist, then A = B.

The reader is referred to [1] or [3] for a proof of this theorem and
a thorough treatment of (weakly) almost periodic functions in general.

* Research supported in part by NRC grant A7857.
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(We note that assertions (i) and (ii) remain equivalent if the word “weakly”
is omitted from them.)

The set of all (weakly) almost periodic functions on 8 is denoted by
AP(8) (W(8)), and forms a left and right translation invariant C*-sub-
algebra of C(8) whose spectrum 8¢ (8%) is a compact topological (semitopo-
logical) semigroup called the (weakly) almost periodic compactification
of 8; a(w) denotes the canonical continuous homomorphism of 8 into
S® (8%).

We also note that each almost periodic function is weakly almost
periodic and, when § is a locally compact group @ (and somewhat more
generally [9], Theorem 8), each function f € W(@) is (both left and right)
uniformly continuous, i.e., given ¢ > 0 there is a neighbourhood V of
¢ € G such that |f(s) —f(f)] < ¢ whenever s"'teV or st 'eV.

Another fact we need about W(@) (G a group) is that W(G) always
admits a unique invariant mean m e W(Q@)*, m(f) = m(L,f) = m(R,f)
for all s €@, fe W(@); and W(G) splits into a direct sum AP (G)DW(GF),
Wo(@) consisting of those functions f e W(@) for which m(|f]) = 0.

LemMaA 0.1. Let Gy and G, be topological groups and leét ¢ be a con-
tinuous homomorphism of G, onto Qy. Then the adjoint ¢* is an isometry of
AP(Gy) into AP(G,), of W(G,) into W(G,), and of Wy(@s) into Wo(G,).

Finally, if @ is locally compact with left Haar measure x4 and admits
an F-sequence (which it will if it is amenable and o-compact [6]), i.e., a se-
quence {U,} of compact subsets of G such that

Uvu, =6
1
and, in particular,

p(sUNT,) p(T,) 1, s€@,
then

p(U,)" [F(8)dp(s) >m(f), feW(G).
Un

1. DIRECT PRODUOTS

Let 8§ =T, x T, be a direct product of semitopological semigroups;
to avoid trivialities we always assume that at least one of 7, and T, is
not compact. It follows directly that every function f in AP(T,) extends
to a function A in AP(8) by the formula

h(s,t) =f(8)7 SETuteTa

(see Lemma 0.1). A similar statement holds for functions in AP(T,). It
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follows from general theory that the C*-subalgebra C,(S) of C(S) gener--
ated by all functions of these two kinds is canonically isomorphic (via:
((ag, Xag,)*)™") to O(T%x T3). If C,(8)= AP(S), then 8° is canonically
isomorphic to T'{ X T7; we write 8* = T'{ x 1.

The following result, generalizing Corollary 4.4 of deLeeuw and.
Glicksberg [6], was proved in [2].

THEOREM 1.1. Let 8 = T, x T, be a direct product of semitopological’
semigroups, where T, has a right identity and T, has a left identity. Then-
8¢ =T xT3.

Remark. An example was given in [2] to show that the hypothesis-
concerning the identities is necessary: if T, = [0,1] and T, = R are
both given left-zero multiplication (st = s for all ¢ and t), then 8§ is also
a left-zero semigroup, AP(S) = C(8) and 8% == T x T5. (It is interesting-
to note that if one adjoins a discrete identity » to T, in this example,.
then Theorem 1.1 implies (T, X ({u}UT,))* = T, X ({u}UT,)*

Things are more complicated for the weakly almost periodic functions..
We begin by noting that the analogue of the first paragraph of this section,
with AP, a’s and o’s replaced by W, w’s and «’s, respectively, holds..
To state the next theorem, which involves ideas in [6] and [10], and a.

part of which was proved in [2], we need some notation. For f € C(T, X T,),
define f, € C(T,) and f‘e C(T,) by

fa(t) =f(3’ t) =f‘(8)7  $ ETl,tGTz,
and put

THEOREM 1.2. Let 8 = Ty x T, be a direct product of semitopological
semigroups, where Ty has a right identity and T, has a left identity. Then-
the following assertions about S are equivalent:

(i) 8 =TY xTY.

(ii) W(8) = C(8).

(iii) Whenever fe W(8) and {85} = T,, {t,} = Ty are nets such that
w(sg) >x €Ty and w(t,) -y €Ty, then the joint limit hmf(sp, ,) €Lisls..

(iv) For every fe W(8), one of A, and B, is relatwely compact (in
the norm topology).

It was shown in [2] that the direct product 8 = T x G satisfies 8%
=T"xG" =T" x @ if G is a compact topological group and T is a semi-
topological semigroup with right identity; it was also shown that, for
the left group 8 = [0,1] X R ((=, 8)(y,?) = (x, 8+1t) for all x,y € [0, 1],
8,t e R),

8%  [0,1]° x R* = [0, 1] X B®.
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It is known that (@ X G)” # G xG” if G is Z or R (see [6] and [2]);
the next result is a mild generalization and shows that (G x @)¥ will seldom
equal G¥ x G (if @ is not compact). See, however, Theorem 2.5 in Seetion 2.

THEOREM 1.3. W, (G X G)\C, (G X @) contains an isometric copy of 1°
if @ = R or Z, or if G admits a continuous homomorphism onto R or Z.

Proof. We first show that if f € W(Z)\C,(Z), then the funection 4 on
Z x Z, defined by h(m, n) = f(n) if m = n, and by h(m, n) = 0 otherwise,
is in Wy(Z x Z)\C,(Z x Z). Consider a sequence {L(mj,,,j)h} = {h;} of left
translates of 2; we must show that a subsequence of this sequence con-
verges weakly in C(Z xZ), and we may assume for a start that one of

the following cases holds:

1. m;—mn; = k a fixed constant independent of j,

2. |m;—ny| - ccas j — oco.

In case 1, if we assume as well that L,,jf — fo weakly in C(Z) and
define hy € C(Z X Z) by ho(m, n) = fo(n) if m = n, and by hy(m,n) =0
otherwise, then h; — L oho weakly in C(Z x Z).

In case 2, suppose that » € $(Z xZ) and {(px, ¢)} = Z xZ is such
that

k—00

Then
limy(h;) = 0;
7

hence h; — 0 weakly in C(Z x Z), and h 6 W,(Z x Z). Now, since f ¢ C4(Z),
there are a net {n;} = Z and a p € Z°\w(Z) such that f(ng) —p(f) #0;
hence ' '
limh(ng, ng) =p(f), limh(ng, n,) =0 for all g
B k4

and Theorem 1.2 implies that ||h —h'|, > |p(f)| for all »’ € 0,(Z X Z).
The proof for Z x Z is concluded by referring to Theorem 4.6 in [4],
where it is shown that, for many groups @, including abelian ones and
hence Z, W,(G)\C,(G) contains an isometric copy of I*.
The proof for R X R can be conducted along similar lines by considering
functions k € C(R X R),

h(8,?) = max{l—|s—t|, 0}f((8+t)/2), f e W(R),
and the last assertion of the theorem follows from Lemma 0.1.

2. SEMIDIRECT PRODUOTS

A topological group @ is a semidirect product if it contains a closed
normal subgroup N and another closed subgroup K such that NNK = {e},
G = NK, and G is homeomorphic to the product space K x N. The group G
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is the direct product of N and K if and only if K is also normal. Also, the
quotient group G/N is always isomorphic to K, and thus every function f
in AP(K) (W(K)) extends to a function A in AP (@) (W(G)) by the formula
h(st) = f(t), se N,t e K (Lemma 0.1). However, in the examples which
follow, only the constant functions on N extend to functions in AP (G)
and only linear combinations of constant functions and functions in Cy(N)
extend to functions in W(@). We remark that for the first group N is
compact, for the second K is compact and the last one has neither N
nor K compact. (Of course, if both N and K are compact, then so is G
and none of the pathologies under consideration here will occur.) Also,
each of these groups has inequivalent left and right uniform structures,
which seems to be at the heart of the matter here: for these groups, many
(left and right) uniformly continuous functions (including all non-trivial
almost periodic functions) on N do not extend to functions uniformly
continuous on G. Thus the (left and right) uniformly continuous functions
on a topological group are not the class of functions uniformly continuous
with respect to any uniformity that behaves “properly” with respect
to the taking of subgroups. By contrast, the left uniformly continuous
functions on @ are precisely those functions uniformly continuous with
respect to the left uniformity of @, and the left uniformity of the topological
group N is the same as the uniformity which N gets by virtue of being
a subspace of @ furnished with its left uniformity; so, it follows from a
general theorem of Katétov [8] (see [7] for the particular case required
here) that every bounded left uniformly continuous function on N extends
to a left uniformly continuous function on @.

2.1. The semidirect product R x R xT. Here R is the set of additive
real numbers, 7 is the circle group and the product in @ = RxXxRxT
is defined by

(z,9, exp[i0])(2', ¥, exp[i0']) = (o +2', y+y’, exp[i(0+ 0’ +ay")]).
LEMMA 2.1. Let f e W(G). Then

lim max{|f(z,y,w)—f(z,y,w):w,w €T} =0.

+y“—>00

Proof. For each 6 > 0, define W, by
W, = {(@, ¥, w): |2| < 4, ly| < J, w—1| < d}.

Let ¢ > 0 be given. Since f is uniformly continuous, there is a 8 =
=d(e) > 0 such that |f(x,y, w)—f(z', ¥y, w’')| < e whenever

(@,y,w) (@, y,w)"" = (w’ -2,y —y, expliy(z _w')]w'lw) eW,
or
(@, y,w)"' (@', ¥, 0') = (2’ —w, 9" —y, exp[iz(y —y')] v’ [w) € W,.

9 — Colloquium Mathematicum XLIV.1
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Suppose that |z| > 2=/, w, w’ € T and ¢’ > 0 is such that ¢’ < é and
exp[id'z] = w/w’'. Then

lf(w’ Y, 'w) —f(:L‘, Y, 'w')|
< |f(w, ¥, w)—f(z,y+ 0, w)| +|f(@, y+ &, w) —f(z, y, w’)] < 2e.

A similar calculation can be done if |y| > 2=/4.

THEOREM 2.1. AP(G) ~ AP(R x R); hence G° ~ (R X R)*.

Proof. The isomorphism between AP(G) and AP (R X R) intended
here takes a function » € AP(R x R) and extends it to a function f € C (@)
by the formula f(z, y, w) = h(z, y). It follows from the remarks at the
beginning of this section that all functions obtained in this way are in
AP(@); and, if fe AP(@) and w, w' € T, then the function

(@, y) >f(x,y, w)—f(z,y,w')

is in AP(Rx R) and in C\(R X R) (Lemma 2.1); hence this function is
zero and f is obtained as above.

THEOREM 2.2. W(G) ~ W(R X R)+ C,(Q).

Proof. Note that the isomorphism intended here is like that of

Theorem 2.1. If fe W(@), then h(x,y) = f(x,y,1) defines a function
he W(R x R), and Lemma 2.1 shows that g, defined by g¢g(z,y,w)

= f(v,y,w) —f(z,¥,1), is in Co(G).
Remarks. (a) The sum in Theorem 2.2 is not direct as

W (R x B)n0,(&) # {0}.

(b) G* can be obtained by adjoining the points of (R x R)*\(R x R)
to G and defining a neighbourhood of such a point p to be a set of the form

(VNo(RXR)V{(z,y,w) eG: w(x,y) €V},
where V is a neighbourhood of p in (R x R)*.

2.2, The semidirect product 7' x C. Here C is the usual additive group
of complex numbers, 7' is the multiplicative group {w e C: |w|= 1}, and
the multiplication in 7' x C = G is given by

(w, 2)(w', 2") = (ww’, wz' +2).

(@ is the Euclidean group of the plane.)

For 0<d<m, let W, = {(w,2): largw| < §, |2| < 6}, where argw
is chosen in the interval ( —m, =] for w € T'. It is easy to check that the
product of normalized Lebesgue measure on T and of Lebesgue measure
on C gives a left and right Haar measure g = ug on G and u(W,) = &%
thus @ is unimodular. A function % € C(@) is uniformly continuous if,
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for each ¢ > 0, there is a 4 = d(¢) > 0 such that |h(u) —h(v)] < e whenever
u = (a, b) and v = (w, z) satisfy

w™! = (ajw,b—azjw)e W, or u'v=(wla,(z—b)a)e W,.

Also, if 6 = d(¢) is a8 above and (w,, 2,) € G is given, then
(a) |h(w, 2) —h(wy, 20)] < 2¢ if [2] = |2,], larg 2[2,| <  and
aTg (w,2/2) — 8 < argw < arg(wyz/z,) + 4,

and, in particular,

(b) [h(wo, 2) —h(we, 2o)| < 2¢ if 2] = |2, |arg2/2e| < 0.

We note that, in faet, [h(w, 2) —h(w,, 2)| < 26 on a neighbourhood
of (w,, 2,) whose Haar measure is greater than 8|z,|8*/x if |2, > 4.

LemMma 2.2. Suppose that a function f on C is the resiriction to C
(= {1} xC) of h e AP(G). Then f is a constant function.

Proof. Since %k is uniformly continuous, let 8 = d(¢) >0 be as
above. It follows that if # > 1/ and |y| < ()2, then

If(@) —f(z+4iy)| = |h(1, x) —h(1, 2+ iy)] |
< |h(1, @) —h(6V®, xe¥®)| + |h(6V®, 2e¥®) —h(1, x4 iy)| < 2.

To see, for example, that the second absolute value in the line above
is less than ¢, note that (1, x+dy)~! (e, z¢'®) is in W, since |arge®/”|
= |y/z| < é and both a:(l—cos(y/w)) and |y —asin(y/@)| are not greater
than z(y2%/22%) < 6/2.

Much as in the last part of the proof of Theorem 2.1, we consider,
for fixed y,y’ € R, the function

& — f(@+iy) —f(@+1y’)
and conclude that f is constant on lines # = const.

By treating R;f in similar fashion, we see that f is constant on lines
y = const as well, which completes the proof.

THEOREM 2.3. AP(@) = C(T); hence G* ~T.

This follows from Lemma 2.2 and remarks made at the beginning
of this section.

The next result is due to Chou [4]. We give a proof of it here, since
the ideas involved will also be used to prove Theorem 2.5.

THEOREM 2.4. W (G)i= AP(G)DCy(G), i.e., Wy(G) = C,o(Q).

Proof. We take an fe Wy(@), f>0, and derive a contradiction
from the assumption that f ¢ Cy(G@). Thus, we assume the existence of a
y > 0 and a sequence {u,} = {(w,, 7, exp[i0,])} = @ withr, — oo and f(u,)
> p for all n. Without loss, we may assume that w, —w, and exp[¢0,] —>w’.
Applying B0 liw,0) t0 f, We may assume that w, =1 and w' = <.
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Finally, using the consequence of uniform continuity (b), we may assume
that f(1, ir,) > y for all n.

We now want to show that, for any fixed y, ug(4,,)/2m — 0asm — oo,
where

A, ={weR: - m<ov<<m,f(l,r+iy)>9/2}

and ugp is Lebesgue measure. For, if not, then there are a sequence {m,}
and a » > 0 such that ugz(4,, ) [2m; = v for all j. It is easy to verify that
the sequence {U,}, where

U; = {(w,2):weT, 2| <my},
is an F-gsequence for @; in particular,

Hence

d = (U™ [ Lyyf(w, 2)du(w, 2) >0,
Uy

the value of the invaria.nt mean at f. However, if 4 > 0 is such that
IL(l wf () _L(l wmf(0) < /8

whenever uv~' € W, or w~'v e W, and L ,,f(1,®) > y/2 for 2 € [x,, x,],
where 0 < 2, < @,, then the consequence of uniform continuity (a) implies
that L(l ‘V)f = ?/4 on

{(w, 2): 2, < |2] < 2, |arg?| < d, argz — 6 < argw < argz + 6},

a set whose Haar measure is 6*(af —a?)/w. It foHows that, for each j;
Lg,)f = 7/4 on a set whose Haar measure is at least twice that of

{(w, 2): 0 < [2] < ¥my, |arg?| < 8, argz — 6 < argw < argz+ 4},

i.e., at least 268%*mj/n; since u(U;) = ~mj, this implies d,> y&%2[2n?
and d; + 0, a contradiction.

The next conclusion we want to draw is that, given k¥ > 0, we can
find an , such that

f(l, 2 +ir,) <9/2, 1<a<k.

But this follows from what was proved in the previous paragraph.
We are now ready to prove that f ¢ W (@), the desired contradiction.
Note that (1, z,+1r,) = (1, )(1, r,), and suppose that the limits

limlimf(1, x; +4r,) and limlimf(lya’rl'i"s)
k n n k

both exist (a8 we may, since we can take subsequences if necessary).
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Then the second limit is not greater than y/2, while the argument in the
proof of Lemma 2.2 shows that the first limit is not less than y, and f
violates Grothendieck’s criterion for weak almost periodicity.

COROLLARY 2.1. G is homeomorphic to T x C,, where C, i8 the one-
-point compactification of C.

We are now ready to prove

THEOREM 2.5. For the semidirect product @ = T x O, let H be the direct
product G X @. Then H® = G@°X G“.

Proof. Since AP(H)= C,(H) = C,(H) (which follows from Theo-
rem 1.1), we will be done if we can show that any f € W,(H), f = 0, satisfies
the condition of (iii) or the condition of (iv) of Theorem 1.2.

If fe Cyo(H), then f satisfies the condition of (iii) of Theorem 1.2;
and, if for each &> 0 there is an M = M (J) such that |f(w, v)| < & for all
v €@ and v = (w, 2) € @ with |2] > M, then f satisfies (iv) of Theorem 1.2.
Indeed, 4, is relatively compact in C(@). After an argument similar
to this last one, we are to the point where we will be done when we show
that assuming the existence of a y > 0 and of a sequence

{(u,, v,)} = {(.('wm 7,€XPp [ign])i ('w;’ r;,exp [7'0";]))] c H,
with f(u,, v,) = y for all n, r, — oo and r, — oo, leads to a contradiction.

So, we make these assumptions and, following the proof of Theo-
rem 2.4, we may further assume that

_ (Uyy v,) = ((1,1r,); (1, 4r,)) for all n

and we can show that, for any fixed 4,y € R, pgr. g(B,)/4m2 -0 a8
m — oo, where

B, = {(w’ z')eRXR: |z|<m, |2 < 'm"f((l, z+14y); (1, w'+iy')) = 7/2,'

Then, still following the proof of Theorem 2.4, we can produce se-
quences in H to show that f violates Grothendieck’s criterion for weak
almost periodicity, which is the desired contradiction.

2.3. The semidirect product R x R. Here R* is the multiplicative
group of positive real numbers and the product in @ = R* x R is

(w’ y)(w'y ?/') = (m" w’.‘/""y)-
(G is the affine group of the line.)
LeMMA 2.3. Let f € WAP(G). Then, for each x> 0, im f(x, y) exists.

g]~»o0

Proof. We may assume that ¢ =1. (If 2 # 1, consider E, f.)
If lim f(1, y) does not exist, then there exist sequences {y,} and {z,,} with

ly|-—>c0
[Yal — 00, |2| = o0, and

(1) ' limf(1,y,) =a #b =lmf(1, 2,).
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Let d = |a —b|. We may assume that
If(l,9,)—a|<d/6 and |[f(1,2,)—bl<d/6 forall m and =.

Sinee f is uniformly continuous, there is a 6 > 0 such that, if u = (a, b)
and v = (x, y) satisfy
v = (z/a, (y—b)[a) eV, or wv”! = (ax,b—yalr)eV,,
where
Vo={(,y): 1" -1 <6, ly'| < 8},

then |f(u)—f(v)] < d/12. It follows that, if |y —y,| < d|y,|, then
FQy ) —fL, ¥ )l < IF X, 9) =Y [Yur DI+ [ (Y [Yn) ¥) —F(1, ¥s)| < d[6.

Note that d|y,| — oo. Similarly, |f(1,y)—f(1,2,) <d/6 if |y —2,|
< 0|2,,| and 9|z,| — oo.
Consider the double sequence

A (@ 9@, 2l mn=r = {FLy Yo+ 2m)}mnmr

Since we can take subsequences if necessary, we may assume that
the limits

limlimf(1,y,+2,) =a, and limlimf(1, y,+2,) =b,
m n n m

exist. Then the calculation at the end of the last paragraph and (1) show
that |a —ay| < d/3 and |b —b,| < d/3; hence a, # b, and f violates Grothen-
dieck’s criterion for weak almost periodicity, which is a contradiction.

Suppose that fe WAP(G) and, in view of Lemma 2.3, consider the
function h € C(G) defined by

h(z,y) =lim f(z,n), (»,y)€@.

Then k is constant on lines # = const and, since it is the pointwise
limit of {L,,f}, is in WAP(G); hence it corresponds to a function in
WAP(R*). Thus ¢ =f—h e WAP(G@) and, by uniform continuity,

lim g(z,y) =0
l¥l—>c0
uniformly on compact subsets of R*.

LuMmA 2.4. The function ¢ = f—h defined above is in Co(G).

Proof. If g ¢ C,(@), there are a sequence {(x,, ¥,)} with 22 +92 — o
and a y > 0 such that |g(x,, ¥,)| = y for all n. We may assume that y = 1;

also, by a remark above and considering g, defined by g(u) = g(u™?)
for 4 € @, we may assume that x, — co. Consider now the sequence {L(zn-v ”)g}.
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Since g € WAP(G@) and we can take a subsequence if necessary, we may
assume that {L(zw,,n)g(l, y)} converges to a limit k(y) for all ¥ € R and that
the limit function k is in WAP(R). We have |k(0)] > 1 and there exists
a A > 0 such that |k(y)| > 2/3 for |y| < A. Now g is uniformly continuous;
80, in particular, if ¢ > 0, there is a 6 > 0 such that |g(x,y) —¢g(z,¥')| < e
whenever |y’ —y|/x < . Hence, if |y —2| <  or else

l(wny+yn)-—(wnz+yn)|/wn < é for all ",

then, putting L, . 10,5 = 9@, %Y +9s) = 9o (y), We have |g,(y) —g,(2)|
< &, i.e., the sequence {g,J is (uniformly) equicontinuous and its pointwise
convergence to k¥ on the interval |y| < 4 is actually uniform. Therefore,
there is an n, such that n >-n, implies

19,.(¥) — k)| = lg(@,, 2,y +Y,) —k(¥)| <1/3 for ly| <4,

i.e., |g(2,, ¥ +¥,) = 1/3 for |y| < Aw,. Let {z,,} = R be a sequence, 2, — oo
and consider the double sequence

{g((l, zm) (w,,, yn))}::,n—l = {g(wni zm+yn)}'
Taking subsequences if necessary, we may assume that both limits

limlimg(@,, 2, +v, and limlimg(z,,2,+9,)
m n n m

exist. It follows that the second limit is 0, while (since Az, — oo) the

first one has magnitude greater than or equal to 1/3. Thus g violates

Grothendieck’s criterion for weak almost periodicity, which is a contra-

diction.

THEOREM 2.6. We have AP(G) ~ AP(R"), whence G° ~ (R*)*. More-
over,
W(Q) ~ W(R*)DC,(6).

Remarks. 1. The first part of Theorem 2.6 is equivalent to the
well-known result that every irreducible finite-dimensional representation
of the group @ is of the form (z,y) — 2% for some x, € R.

2. @” can be viewed as follows. G is homeomorphic in an obvious
way to

{(wyyfz):w>07?/2+(z—1)2 =1,y =0 only if 2 = 0} = H < R8.

G@” is obtained by adjoining the points {(z,0,2):2 > 0} = K and
the points of (R*)“\w(R*); neighbourhoods of a point p of this latter
kind are sets of the form

(VNo(RY))v{,y,2) =« HUK: o(z) € V},

where V is a neighbourhood of p in (R*)”.
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Added in proof (July 28, 1981). Two papers of special relevance
have appeared since the present paper was accepted for publication.

1. Minimally weakly almost periodic groups, by C. Chou, Journal
of Functional Analysis 36 (1980), p. 1-17. Here the author calls a locally
compact group G minimally weakly almost periodic (m.w.a.p., for short)
if W(@) = AP(G)® C,(@) and proves, among other things, that T x C,
the Euclidean group of the plane, is essentially the only noncompact,
connected, solvable, m.w.a.p. group.

2. Weakly almost periodic functions on semisimple Lie groups, by
W. A. Veech, Monatshefte fiir Mathematik 88 (1979), p. 55-68. Here it
is proved that all simple analytic groups with finite center are m.w.a.p.,
and that, if G=G; X G, %X... x4, i8 a product of such groups, then
GY=GY X Q@Y X ... xG¥ (the notation being that of the present paper).
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