FASC. 1

ON GRADIENT FIELDS

BY

GRZEGORZ ŁUBCZONOK (KATOWICE)

Let $f: U \to R$, where $U \subset R^n$ is open, be a C^p -function, $p \ge 1$. Let $x \in U$ be a singular point of gradient field grad f. We consider the following question proposed by R. Thom (oral communication of V. I. Arnold): Does there exist a trajectory $\gamma(t)$ of grad f such that

$$(1) \quad \lim_{t\to\infty}\gamma(t)=x, \ \lim_{t\to\infty}\frac{\gamma'(t)}{\|\gamma'(t)\|}=a \quad \text{or} \quad \lim_{t\to-\infty}\gamma(t)=x, \ \lim_{t\to-\infty}\frac{\gamma'(t)}{\|\gamma'(t)\|}=a,$$

where $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^n , $a \in \mathbb{R}^n$?

THEOREM. Let $f: U \to R$, $U \subset R^n$ open, be an analytic function and let $x \in U$ be a singular point of grad f. Then there exists a trajectory of grad f with properties (1).

Proof (based on the Curve Selection Lemma for semianalytic sets (1)). Suppose that $x = 0 \in \mathbb{R}^n$, f(0) = 0. Consider a semianalytic set V defined by

(2)
$$V = \{x \in U : \operatorname{grad} f(x) \neq 0, \operatorname{grad} f(x) || x\},$$

where | denotes linearly dependent vectors. Then

$$0\in \overline{V},$$

since the set of regular values R_f of the function f is dense in R.

For each $c \in R_f$ the set $M_c = \{x \in R^n : f(x) = c\}$ is a closed submanifold in R^n . Then the function $y = ||x||^2$, $x \in M_c$, has a minimum for some $x_c \in M_c$. Hence we have $x_c || \operatorname{grad} f(x_c)$. This proves (3).

Now, by the Curve Selection Lemma there exists an analytic curve with the properties

(4)
$$\varphi: (-\varepsilon, \varepsilon) \to V, \quad \varphi(0) = 0, \quad \varphi((0, \varepsilon)) \subset V.$$

⁽¹⁾ See F. Bruhat et H. Cartan, Sur la structure des sous-ensembles analytiques réels, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris, Série A, 244 (1957), p. 988-990.

^{7 -} Colloquium Mathematicum XLIV.1

By the definition of V we have

(5)
$$\operatorname{grad} f(\varphi(t)) \| \varphi(t), \quad \operatorname{grad} f(\varphi(t)) \neq 0, \quad \lim_{t \to 0^+} \frac{\varphi(t)}{\| \varphi(t) \|} = a \neq 0.$$

For a small r > 0 the intersection $\varphi \cap S_r$ of the curve φ with the sphere $\{\|x\| = r\}$ is a single point p_r . Let $b \neq a$ be a vector linearly independent of $\varphi(t)$ for $0 < t < \eta$. Put $\psi(t) = tb$ for t > 0 and $q_r = \psi \cap S_r$. Consider a local diffeomorphism Φ defined as follows:

Construction of Φ . By (4) and (5) there exists a C^{∞} regular parametrization $\varphi(s)$ of $\varphi, \varphi'(0) = a$. Consequently, for small s the equality $r(s) = \|\varphi(s)\|, s \geqslant 0$, defines a regular parametrization of φ in some interval $[0, \varepsilon)$ and $\varphi'(0^+) = a$. Let us consider a positively oriented base $a, b, v_1, \ldots, v_{n-2}$. Then the rotation in the plane $\{p_r, q_r\}$ is well defined by the condition that $q_r, p_r, v_1, \ldots, v_{n-2}$ is positively oriented. Thus $\Phi(x) = A(r)x, r = \|x\|$. The matrix A(r) depends on cosine of the angle between the vectors q_r, p_r and, consequently, it is a C^{∞} -function for $r \geqslant 0$.

We put
$$g(x) = f(\Phi(x))$$
. Then

$$\operatorname{grad} q(rb) \| b$$
, $\operatorname{grad} q(rb) \neq 0$ for $r \in [0, \varepsilon)$.

Indeed, each point $x \in V \cap S_r$ is a critical point of the restriction $f|_{S_r}: S_r \to S_r$ and, consequently, by (6) the restriction $g|_{S_r}$ has a critical point at each x = rb, $r \in [0, \varepsilon)$. Consequently,

(7)
$$\operatorname{grad} g(rb) = \sigma(r)b, \quad \sigma(r) \neq 0, \ r \in (0, \varepsilon).$$

Let us introduce a new parametrization r = r(a) such that

(8)
$$\operatorname{grad} g(r(a)b) = r'(a)b.$$

Equality (8) implies $r'(a) = \sigma(r(a))$, which is solvable for $a \in R$. Therefore, a curve $\tilde{\gamma}: a \to r(a)b$ is a trajectory of grad g.

The local 1-parameter groups defined by grad g and grad f are conjugate by diffeomorphism Φ . Hence $\Phi^{-1}(\tilde{\gamma})$ is a trajectory of grad f with properties (1). This proves the Theorem.

Remark. Let $f: R^2 \to R$ be a C^{∞} -function with $\operatorname{grad} f(x) = 0$ for $x \in C$, where C is the logarithmic spiral $r = e^{\varrho}$. Then $\operatorname{grad} f(0) = 0$ and there exists no C^1 -curve $\gamma: [0, \varepsilon) \to R^2$, $\gamma(0) = 0$, $\gamma \subset R^2 \setminus C$, with properties (1) when x = 0.

Reçu par la Rédaction le 13.12.1977