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The ideal boundary of a domain in C"
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Stefan Bergman in memoriam

Abstract. We shall introduce a compactification of a domain in the space C", based on
the notion of the Bergman function. This compactification is invariant under biholomorphic
mappings, and for those domains in C which can be mapped onto the unit disc it reduces
to the classical Carathéodory compactification. The present paper presents a refinement of
some of ideas in [8]. Our results can be used to unify and simplify some known theorems
on boundary correspondence under biholomorphic mappings. In particular, we give a new
prool of a theorem of Vormoor [9].

1. Classes of proportional functions. Let D be a domain in C". The
Fréchet space of all functions which are holomorphic in D will be denoted
by H (D). We shall denote by H*(D) the subset of H(D):

H*(D) = {feH(D), f # 0}.
The functions f, g € H* (D) will be called proportional if there exists a complex
constant ¢ # 0 such that
f=cg.

This is an equivalence relation in the space H*(D). The set of all equiva-
lence classes will be denoted by PH (D)

PH(D) = {[f], feH*(D)}.
We shall need the following well-known fact, see [6].

THEOREM 1. Let R be an equivalence relation in a topological space X.
Let us consider the sct of all equivalence classes

X/R ={[f], feX}

with the standard topology. That is to say, a set W is open in X/R if and
only if the set

U={/,[f1e¥}
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is open in X. This is the largest topology in X/R for which the canonical
mapping

X>f—[f]€ X/R
is continuous. For each A < X define AR ¢ X and Ay < X by

AR = U f], 4= U L[fl
(N=4

feA

Then the following conditions are equivalent:

(i) the canonical mapping is open;

(ii) for each open set A = X the set A® is open in X,

(ili) for each closed set A — X the set Ay is closed in X.

In the particular case we are concerned with we can prove

LEMMA 1. The space H*(D) with the relation of proportionality satisfies
conditions (i), (1) and (iii) of the previous theorem. In particular, the cano-
nical mapping from H* (D) onto PH (D) is open.

Proof. It is enough to show (iii). Assume that A is a closed subset
of H*(D), and that a sequence f,e A, m=1,2,..., such that [f,] < 4

converges to fe H*(D). We have to show that [f] < 4. An element in
[f] can be written as ¢f with ¢ # 0 and we see that

¢of = limcf,€ A,

since cf,,€ A for each m, and A4 is closed in H*(D).

This yields

COROLLARY 1. Assume that [ f]e PH(D), and U;, i = 1,2,..., is a basis
of neighbourhoods of f in H*(D). Then the sets n(Uy), i =1,2,..., form
a countable basis of neighbourhoods of [f] in PH(D).

Proof. Consider a neighbourhood U of [f]. By the definition of
topology in PH(D) the set U = {f,[f]1eU} is an open set in H*(D)
which contains f. By assumption, there exists i such that feU;, < U. It
follows that [ f]en(U;) < ¥ and the proof is completed.

The following fact will be often useful in the sequel:

COROLLARY 2. The sequence [ f,,] € PH (D) converges to [ f]1€ PH (D) if and
only if there exist constants c, # 0, m = 1,2,..., such that the sequence
Cmfm converges ta f in H* (D).

Proof. The condition is sufficient, since the canonical mapping is con-
tinuous. To prove necessity, consider a basis U;, i = 1,2,..., of neigh-
bourhoods of f. For m > M; we have [f,]en(U;), and there exist con-
stants ¢, such that

cf,,f,,,e U,', m > Mi'
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With no loss of generality we may assume that U;,, < U;, and M; < M;;,
for i = 1,2,... Define

C,,.=C,i,, for M;<m<Mi+1.

Then ¢, f,e U; for m > M; and c,f,, converges to f.

CoRrOLLARY 3. Let T: H*(D,) - H*(D;) be a continuous mapping, such
that for each f and g proportional in H* (D) the functions Tf and Tg are
proportional in H*(D,). Then the mapping Py: PH(D,) = PH(D,) given by

Pr[f]1=1[T1]
is continuous. .

Proof. Assume that [ f,] converges to [f] in PH(D,). By the previous
corollary there exist constants ¢, # 0 such that c,f, converges to f in
H*(D,). It follows that Tc,f, converges to Tf in H*(D,). Since, by
assumption

(Temfm] = [Tfml,

it follows that

Prfn] = [Tful

converges to Pr[f] = [Tf] in PH(D,). Hence P; is continuous.
We need one more
LEMMA 2. The proportionality relation in H*(D) is closed.

Proof. Let us consider functions f,,gm,m =1,2,..., in H*(D), such
that for each m

f'll = cm gm’ cm # 0,

and limf, =f, limg, = g in H*(D). We have to show that f and g are
proportional. By passing to a subsequence we may assume that c, con-
verges to a (possibly infinite) number ¢. The case ¢ = 0 cannot occur,
since it implies f = 0. Similarly, ¢ = oo implies that 1/c, converges to 0
and g £ 0. Therefore ¢ is a complex non-zero number and f = cg. This
implies

COROLLARY 4. The space PH (D) is a Hausdorff space.

Proof. This follows from a general theorem, since the equivalence
relation is closed and the canonical mapping is open, see [6].

2. The invariant compactification. The Bergman function of a domain
D < C" will be denoted by K,(z, t); see [1].

DeFiNiTION 1. Let D be a domain in C". A compactification of D is
a homeomorphism

qg: D- X
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onto an open dense subset in a compact Hausdorff space X. We say that
compactifications ¢;: D —» X;, i = 1,2, are equivalent if there exists a homeo-
morphism w: X; = X, of X, onto X, such that the diagram

g — X, )
is commutative. This is indeed an equivalence relation in the class of all

compactifications of D.

It is interesting that a rather large class of domains in C" admits
a “natural” compactification, defined in terms of the Bergman function.

DEerFINITION 2. We shall say that a domain D < C” admits the invariant
compactification if the following conditions are satisfied:

(i) for .each te D the function
z— Kp(z,t)

belongs to H*(D);
(i) the mapping p: D - PH(D) given by

p(t) = [Kp(z, 0]
has a relatively compact image, and élcﬁncs a homeomorphism of D onto
an open subset of D = p(D).
In this case the compactification
p: D—D

is called the invariant compactification, for the reason which will become
clear later. The compact set

D\p(D)
is called the ideal boundary of D.
Remark 1. Condition (i) states that for every point te D there exists
a function :
feL>H(D) = H(D)n L*(D)

such that f(¢) # 0. This condition is obviously satisfied if D can be mapped
biholomorphically onto a bounded domain, but, in general, it may fail even

if the space L2H (D) is not trivial. For example, in a complete 2-circular
domain D = C?

D= {zeC? |z < lzy|™Y, |z,] < 1}
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the equality K,(z,t) = 0 in D holds for every ¢t = (ty, t;) such that ¢; = 0.

Remark 2. The mapping p in condition (ii) is always continuous, and
it is one-to-one if D can be mapped onto a bounded domain. Therefore
the most essential part of this condition consists in verifying that if U is
open in D, then p(U) is open in D, and that D is compact.

The examples of domains which admit invariant compactification are
often based on the following

THEOREM 2. Assume that a domain D — C" has the following properties:
(i) for each te D the function

z- KD(zai)

belongs to H* (D);
(ii) there exists a compactification of D
qg: D- X
such that the mapping poq~' extends to a one-to-one continuous mapping
w: X — PH(D).
Then D admits invariant compactification p, an'd both compactifications
q and p are equivalent.

Proof. Note that w maps a dense subset gq(D) onto p(D). It follows
by continuity -of w that w(X) = D. On the other hand, w(X) is compact,
and therefore closed in PH (D). Since p(D) = w(X), it follows that D < w(X).
Hence w(X) = D. By assumption, w is one-to-one and continuous. It is
also closed, since it maps compact sets onto compact sets. It follows that
w is @ homeomorphism. Since g is a homeomorphism of D onto an open
dense subset of X, the composition p = wogq maps D onto an open dense
subset of D, and therefore '

p: D> D
is a compactification of D. Finally, p and g are equivalent, since p = wogq.

3. The invariance under biholomorphic mapping. The name “invariant
compactification” is justified by the following

THEOREM 3. Consider a biholomorphic mapping
h: Dl g Dz,

where D, and D, are domains in C". If D, admits invariant compactification,
then D, admits invariant compactification. Furthermore, if

pi: Dy—-D,, p:D,-D,
are invariant compactifications of D, and D,, respectively, then the mapping

p,ohopi': p(Dy) = p,(D,)
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extends to a homeomorphism of D, onto D,,
E: DAI ad DAz.

Proof. The proof is based on the following rule of transformation of
the Bergman function, see [1],

Kp,(z.D) = Kp, (h(2), h(1) det k' (2) det K (2),

where h' denotes the holomorphic Jacobi matrix of h. Consider the mapping
T: H*(D,) - H*(D,) given by

Tf = (foh) det It

It is a homeomorphism, and both T and T~ satisfy the assumptions of
Corollary 3. It follows that P, is a homeomorphism of PH (D,) onto PH(D,).
Furthermore, by the rule transformation of the Bergman function, the
following diagram

Dl —’Dz

Pt P2
Pr
ﬁl e Dz
is commutative. It follows that D, = P; D,. Since, by assumption, p, is
a homeomorphism of D, onto on open dense subset of the compact space
D,, the space D, is also compact, and p, = Pro p,0h is a homeomorphism

of D, onto an open dense subset of D,. Therefore p, is the invariant
compactification of D,. Since

p,ohopy! = Prl,

the right-hand side gives the desired extension of the left-hand side to
a homeomorphism of D; onto D,. The proof is completed.

4. The case of a product domain. In this section we use a formula due
to H. Bremermann [4]

Kp,xp,(z, 1) = Kp, (24, ;) Kp, (23, t;)

to show that the study of the ideal boundary in the product domain
D = D, xD, can be reduced to an examination of both factors D, and D,.

THEOREM 4. Assume that D = D, xD,. Then D admits invariant com-
pactification if and only if both D, and D, admit invariant compactification.
Furthermore, if p;: D, » D,, i = 1,2, are invariant compactifications of D, and
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D,, then the invariant compactification of D is equivalent to the product
mapping p, Xp,: D - D, x D, given by

(p1xp2) () = (p1 (1), p2 ().
Proof. The mapping S: PH(D,)x PH(D,) - PH(D) given by

S([fl], [fz]) = [f1f2]
is one-to-one. Indeed, if g, e H*(D,), g, € H*(D;) and ¢ # 0 are such that

Hhf=cq1 9.

then in view of the fact that both f, and g, vanish on closed nowhere
dense sets, there exists a, e D, for which f;(a,) # 0 and g, (a,) # 0. Substi-
tuting z = (z,, a,) in the above equation we see that [ f;] = [g,]. Similarly
[f2] = [g,]. Hence S is one-to-one. Also S is continuous, as can be easily
seen in view of Corollary 2.

We shall show that the image of S is closed in PH(D) and S~ is
continuous. Of course, it will be enough to prove that if the sequence

S([ff"], [fzm]) = [flm zm]

converges to [ f] in PH (D), then the sequence [f{"] converges in PH(D,)
and the sequence [ fJ"] converges in PH(D,). In view of symmetry we may
proved only the first part of the statement. By assumption, there exist

constants ¢, # 0, m = 1,2,..., such that the sequence c, f{" f;" converges
in H*(D) to f:

8) lim cofPf7 = .
Consider the set of all a,e D, such that the function ge H(D,) given by
g(z)) = flz1,ay)

vanishes identically. This set is closed and nowhere dense since f # 0 in D.
It follows that we can find a,e D, such that for all m = 1,2, ...

fi'(a,) # 0,

and, moreover, g€ H*(D,). Substituting z = (z,, a,) in (1) we see that the
sequence

cmf (@) T

converges to g in H*(D,). Hence [f™] converges to [g] in PH(D,).
We have proved that S™! is continuous.

We shall now show that conditions (i) and (ii) in the definition of the
invariant compactification are satisfied in D if and only if they are satisfied
in each of the domains D, and D,. This holds obviously for condition (i)
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in view of the Bremermann formula. Therefore we need only consider
condition (ii).. Note that the closed image of S contains D since it contains
p(D). The Bremermann formula shows that the diagram

DIXDZ =

Py *pP2 4

DIXDZ : —;D

is commutative. It follows that S(D, x D,) = D. Therefore p is a compacti-
fication of D if and only if p, x p, is a compactification of D, x D,, and this
is equivalent to the condition that p; is a compactification of D, for i = 1, 2.
Finally, the above diagram shows that the invariant compactification p is
equivalent to the compactification p, x p,.

5. Exceptional sets. Let D be a domain in C". Consider a subdomain
Dy = D such that for each z, te D,

KDO(Z,E) = KD(Z9?)'
In such case we say that the set D\D, is negligible or “exceptional”.

THEOREM 5. If D admits invariant compactification, then D, also admits
invariant compactification. Furthermore, if p: D — D is the invariant compacti-
fication of D, then the invariant compactification of D, is equivalent to the
compactification

p: Dy — p(Dy).

Proof. We shall show that the compactification p of D, satisfies the
assumptions of Theorem 2. Since a function fe H*(D) does not vanish
identically on Dy, condition (i) is satisfied by D,. Also, we may consider
the mapping T: H*(D) » H*(D,) defined by

Tf=f|D0-

By Corollary 3 the mapping Py: PH(D)— PH(D,) is continuous. It is also
easy to verify that Py is one-to-one. For te D, consider the element

Po(t) = [Kp,(z,1)]
in PH (Dy). Note that on p(D,) we have

poop~! = Pr.
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The right-hand side defines the desired extension of the left-hand side to

p(Dg). It follows that condition (ii) is satisfied, and by Theorem 2 the
compactification p of D, is equivalent to the invariant compactification

of D,.

6. Regular domains.

DEeFINITION 3. A bounded domain D < C" is called regular if its Eucli-
dean compactification

id: D> D

is equivalent to the invariant compactification of D.

Regular domains are important in view of the following

THEOREM 6. Consider a biholomorphic mapping

h: Dl b Dz,
where D, and D, are regular domgins in C". The mapping h extends to
a homeomorphism h: D, = D,.

Proof. Since D; is regular for i = 1,2, the mapping p; extends to
a homeomorphism of D; onto D;. In view of ‘Theorem 3, the extension
of h can be defined as

h = p;lohop,.

On the other hand, we have
THEOREM 7. Consider a biholomorphic mapping
h: Dl i Dz,
where D, and D, are domains in C", 4nd D, is regular. If h extends
to a homeomorphism
h: D, - D,,
then D, is regular.

Proof. The domain D, is bounded since D, is compact. We have to
show that

p:: D, - D,
extends to a homeomorphism of D, onto D,. Since
p, = hop,oh™?,
the extension is given by the right-hand side.

For product domains we can prove

THEOREM 8. Let D = D, xD,. Then D is regular if and only if both
D, and D, are regular.

Proof. It is enough to consider the case when both D, and D, are
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bounded and admit invariant compactifications p;: D; — D;. In view of
Theorem 4, it is enough to prove that the Euclidean compactification of
D is equivalent to the compactification

(p1Xpy): D> D1 xﬁz

if and only if, for i = 1,2, p;, extends to a homeomorphism p;: D; - D,.
The sufficiency of the condition is obvious. In order to prove necess1ty,
assume that p, x p, extends to a homeomorphism ¢ of D, x D, onto D, x D,.
Set g = (q,, q,)- Since g, (t,,¢t,) is independent of ¢, in D, and continuous
in D,, we have g, = q,(t;) in D, and similarly q, = g,(t,) <in D,. Hence
g = q;Xq, in D, xD,. Since q is a homeomorphism of D, x D,, it follows
that each ¢;, i = 1,2, is a homeomorphism of D, onto D,. Obviously, g; is
a desired extension of p;.

The proof is completed.

We now pass to the situation considered in Theorem 5.

THEOREM 9. Let D and D, be domains in C" for which the assumptions
of Theorem 5 are satisfied. If D is regular, then D, is regular.

Proof. By assumption, p extends to a homeomorphism of D onto D.

It follows that p maps homeomorphically D, onto p(D,). In other words,
the Euclidean compactification of D, is equivalent to the compactification

p: Dy — p(Dy).

By Theorem 5, the latter compactification is equivalent to the invariant
compactification of D,. The proof is completed.

We end this section with the following easy corollary to Theorem 2,
which gives a necessary and sufficient condition for regularity.

THEOREM 10. Let D be a bounded domain in C". Then D is regular if
and only if p: D > PH(D) given by

p(t) = [Kp(z, )]
extends to a continuous one-to-one mapping of D into PH (D).

Proof. If D is regular, then by the definition of equivalent compactifica-
tions p extends to a homeomorphism of D onto D. Conversely, if p extends
to a continuous one-to-one mapping of D into PH (D), then the Euclidean
compactification of D satisfies the assumptions of Theorem 2. Therefore D
admits invariant compactification, and this compactification is equivalent to
the Euclidean compactification of D. Hence D is regular.

7. Examples.

ExaMmpLE 1. Every strictly pseudoconvex domain D < C” with smooth
boundary is regular. Indeed, from a deep result of L. Boutet de Monvel
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and J. Sjostrand [3] it follows immediately that K,(z,t) is smooth as
a function of (z,t)e D x D, with the exception of the set

{(t,t), te bdD},
and that for each te bdD we have
lim Kp(z,t) = .
z—1

Ii follows that D satisfies assumptions of Theorem 10, with p: D — PH (D)
given by

p(t)= [KD(Z’?)]f tED'

Note that for tebdD and ¢ € D such that t' # t we have p(t) # p(¢),
since Kp(z,t) and Kp(z,t) are not proportional. In fact, for z close to t
the first function becomes infinite, while the second approaches a finite
number K, (t,t). Note that in the case when both D, and D, are strictly
pseudoconvex with smooth boundaries Theorem 6 reduces to a theorem of
N.. Vormoor [9].

ExampLE 2. Every domain D = C bounded by a finite number of analytic
Jordan curves is regular. Indeed, one can show [2] that K,(z,t) is real

analytic on D x D with the exception of the set {(t, ), t € bdD}, and the for
each te bdD the holomorphic function '

zb Kp(z, t)

has a pole of second order at t. The proof in [2] is based on the Schwarz
reflection principle, and the following identity due to M. Schiffer:

-2 32Gp(z,t)
7 0z ot

where G, denotes the Green function of D with pole at t. From the above
properties of the function K (z, t) the regularity of D follows as in Example 1.
In particular, the unit disc is a regular domain. Therefore the invariant
compactification of the unit disc is equivalent to the classical Carathéodory
compactification. Since both compactifications are invariant under biholo-
morphic mappings, it follows that for each domain D = C the Carathéodory
compactification is equivalent to the invariant-compactification.

ExampLE 3. Every domain D < C bounded by a finite number of Jordan
curves is regular. Indeed, such a domain can be mapped biholomorphically
onto a domained bounded by analytic curves in such a way that the mapping
function extends to a homeomorphism of closed domains. The regularity of D
now follows from the previous Example and Theorem 7.

ExAMPLE 4. Every complete circular bounded domain D < C" such that
rD o D for each r > 1 is regular.

KD(Z, t_) =
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Recall that a set E < C" is called circular (respectively complete
circular) if for every ze E and every weC such that |w| = 1 (respectively
lw| < 1) the point wz belongs to E. A complete circular domain D = C”
contains the origin. The Taylor series at the origin of the function fe H(D)

@ f= i F,,

where F,, is a homogeneous polynomial of degree m, converges uniformly
in a neighbourhood of every point ze D. This can be seen by considering
a complex plane which passes through 0 and z. On the compact set r ™! DcpD
series (2) converges uniformly, and therefore also in the L?>-norm. Since homo-
geneous polynomials of different orders are orthogonal on the complete
circular set r~!D, it follows that

1f17-10 = Y IFull>-1p.
m=0

When r approaches 1, we can use the Lebesgue monotone convergence
theorem for series to obtain

If13 = X [Ful5.

m=0

In the case when feL? H(D) we have

- 1p+ QIS Ipy-10)*

e M 5 M
|/~ X Falo < |f= X Fa

It follows that series (2) converges to f in L2(D). As a consequence, the
set of all homogeneous polynomials is dense in L? H (D).

Therefore, if P,,, k =1,2,...,k,, is an orthonormal basis in the space
of all homogeneous polynomials of degree m which belong to L? H(D), then
Ppyw.m=1,2,.., k=1,2,...,m, 1s a complete orthonormal system in
L*H (D), and by a general theory [1] we obtain the theorem of H. Cartan:

a "m
Kp(z,1) = Zo ] Zl P (2) P (1),
where the series converges normally for (z,f)e Dx D and in L1*(D) for each
fixed teD.

After these preliminary remarks we can return to our example. For each

r>1 denote D, = r~'D and D) = rD and for (z,t)e D, x D} consider the

function
k

K.z,t) = ¥ ¥ Pui(2)Prul0).

m=0 k=1

The series converges normally as before, since
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Pm.k(z) Pm.k(t) = Pm.k(rz) Pm.k (r_l t)

and (rz,r 't)e Dx D. It follows that the series converges normaily in the
open set

U D, x Dy

to a continuous function. Since this set contains D x D, the sum of the
series defines the desired extension of Kp(z,t) to a continuous function
on DxD. Since K,(0,t) = vol D~! for all teD, it follows that KD((_),?)
= vol D! for all teD. In particular, K, (z, t)e H*(D), and

p() = [Kp(z, D], teD,

i1 a continuous mapping. To see that p is one-to-one, we shall prove that
Kp(z,t) # Kp(z, 1) if t' # t.

We already know that a series for Kp(z,t) converges uniformly for
z€27'D, and therefore in L*(27' D). Since P,,, form a complete orthogonul
system not only in D, but also in 27!'D, the series represe-: :
a Fourier development of K,(z,t) in terms of an orthonormal system in
27! D. Therefore, if K,(z,t) = Kp(z,t'), then for each m, k

Pps(t) = Ppy(r).

The linear functions z;, i = 1,2,...,n, can be expressed in terms of
linear polynomials P, ,,...,P,,. It follows that ¢; =1t for i=1,2,..,n
and therefore t' = .

By Theorem 10 the domain D is regular. In particular, every complete
n-circular domain in C", and every classical domain [5] is regular. '

ExampLE 5. The Hartogs triangle
D= {zeC?% |z)| < |z,) < 1}
is mapped biholomorphically by

(z1, z2) 1'”’ (z4/225 22)
onto
hD) = {lwy] < 1}x {0 < Iwyl < 1}.

In view of Theorem 8, h(D) is regular, since the second factor is regular
by Theorem 9. It follows that D admits invariant. compactification. Never-
theless, D is not regular, since h does not extend to a homeomorphism
of closed domains.

In general, it is not easy to decide whether a domain D < C" is
regular. In particular, it would be interesting to settle the question of
regularity for analytic polyhedra, or weakly pseudoconvex domains. On the
other hand, it would be interesting to find an example of a bounded

15 - Annales Polonici
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domain D < C" which does not admit invariant compactification. It should be
noted that Theorem 6 is useful also in the study of the problem of

extending a biholomorphic mapping to a diffefomorphism of closed domains,
see [7].

I would like to express my gratitude to dr J. Chmielowski and dr
E. Ligocka, for their sincere criticism, and numerous helpful remarks
connected with this paper.
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