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Hence (a+bi)f = A2, Ae@Q™ and (a—bi)Vf = A% Henee AA =j
sinee f is positive. Hence

(a-+ bW F+{a—biWF+2f
2 2

Ha V7 AT 244 (A+AY
Va+vi) = a m(" b )

7
wheve (4 +A) V2 & @™°. The proof is complote.
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Kummer congruences for the coefficients of Hurwitz series

by

Cure SNYDER (Orono, Maine)*

1. Intreduetion. In Y. Carlitz [3], it iz shown that Hurmtz series f {@)
pubisfying the differential equation

4
(FPE=1+ D af' (o2

)

possess Kummer congruences, (These concepts are defined below.)
However once the polynemial function ou.the right-hand side of the
above equation has degrée greater than four, Caxlitz’s methods fail te
yield information about Kummer congruences. Nevertheless, he believed
that when f(z) satisfies

(f) = 1+f°

then f has Kummer congruences.

In this article we refiné the machinery developed by Carlitz and solve
the above problem in the affirmative. Moreover we show that of all Hur-
witz series f(w) satisfying in particular

(F) =1+

for m an integer orem:er than 4, only for m = 6 does f have Kummer
CONZIUSNCEH.

Although this is the only application of the maehmery developed
that is given, the metheds may be applied to other Hurwitz series satisfying
more general differential equations.

2. An analysis of the Qp operator. Let R be an integral domain con-
taining Z, the rational integers.

pe——

* Partially supported by University of Maine SBummer Faculty Research Grant.
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DermIrioN 1. A Hurwite series over B (oxr H-series, for ghort) H(w)
is n formal power sevies of the form
> n
Hio) = 3 oyor
Nl
The element a, is catlod the n-th coefficient of H(w).
With respect to the power series operations of addition and multi-
plication, the set of all H-yeries forms an integral domain containing F.
Many of the results here may be obtained almost directly from the
papers of Carlitz. These rvesults will therefore be stated without proof.
ProrosiTion 1. If H{z) is an H-series defined as above and a, = 0,
then for any positive integer

(H ()} = 0 mod (k!).

{The 'congruence is to be considered ideal theoretically.)
Proof. O L. Carlitz [2].
ProPOSITION 2. If H(x) 48 as defined above, 4y = 0, and a, i8 @ unit
in R, then there ewists o unique H-series L(x) such that
H(L(w)) = @ = L{H()).
(L(a) is called the composition inverse of H(®).)
Proof. Of. L. Carlitz [2].

Hyporsesis. Throughout the rest of this paper, with the exception
of the next proposition, we will assumo the following:

with «a, e R.

i n

(1) fle) = Zcﬂ —%—-!-18 an JH-series over B with ¢ = 1.
n=l ' )
(2) The composition inverse A(w} of f(#) has the form.
pad " % 2

1 @ 1 W o
Z {(n —1) Isﬂ;ﬁ— = Z B with &, ell.
1

Towmt . noen

PROPOSITION 3. Suppose f(x) only sotisfios assumption (1) of the
above Hypothesis. Thon assumption (2) is valid if and only if

Alx) ==

F (@) = Z'ti,,f" where  d, e B and dy ==1.

yua{)
(f(2) is the formal power series derivative of S(@) with respect to m.)
Proof. Of. L. Caxlitz [2). | .
PropostrioN 4. For any rational prims p and m =1

%4—@-1) = 0,0, 004 (p). .

icm
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Proof. Of. L. Carlitz [4].

DerFvirion 2. The H-series f() is suid to possess Kummer congruences
at o rational prime p (or “f hag Ke(p)” for short) if and only if for every
positive integer r = 1 and every integer m = #

r

ot = 3 (=1 (’;) O tpppipry = 0 Mod (p7).

Fua)

IE f (&) hag Ke(p) for all primes p, we say f{z) has Kummer congruences.
In order to test f(z) for Kummer congruences we introduce Carlitz’s
£, operator for each prime p.

Derixrrios 3. Let p be a rational prime. Then we define
‘pr: = (Dg_apr)fJ

where D, is the formal differentiation operator with respect to @.
ProOPOSITION 6. For each prime p and posilive inleger r,

=T
f

& '
@af = de oA

Moenf

Proof. Of. L. Carlitz [3].

Thus we may check whether or not f has Ke{p) by considering the
coefficients of £7fmod (p*) for all » 2> 1. We now reduce this problem to
2 one-gtep procedure. :

ProrosITION 6. If D 48 @ prime, then

) . »—1 o0
DETf—0f = bo+ D) bift 4+ D0
=1 mp
where b, e B for all uz=0.
Proof. Of. L. Carlitz [3].

CorOLLARY. Q,f = 3 n,f" where n,c B for all v>0 and 7, = 0(p)
=0 .

Jor »< p.
Proof. G L. Carlitz [3].
THEOREM 1. Let p be o prime. Then f has Kc(p) if and only if

Q,f = M nf  whors 7, =0wmod (p) for all v<p*
vl

The proof will follow by establishing the following lemmas, propo-
sitiony, and covollaries.
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PROPOSITION 7. Lét p be a prime and v o positive integer. Let

2 f = 2 7.

r={
(It follows easily from Proposition § that N e R for all » = 0.) Then
QLf = 0mod (p")  (as aw H-series)
if and only if :
‘ ﬂsr) =z (0 mod (?X(rrorqf,rrt))

for oll v e N where for any integer 2, we define X (2) == max (0, 2) and ord e
ag the evact exponent of p in the prime decomposition of 2.

Proof. By representing £5f ag a power series in @ we obtain .

Qrf — >7( \;‘ (r) (’))
el =i
where ¢ is the mth coefficient of the H-series (f(2))".
T 5" = 0 mod (p=**%") for all » ¢ N, then Proposition 1 applied
to f implies @5f == 0 mod (§").

ml

. m
Conversely, suppose G5f =: 0 mod (), ic. X 7P} =0 mod (p")
N toai}

for all m. Then a stzaightforward indnetion argument on m establishes
the result.

o0
LemMa 1. Let Q20f = 3 ni"f", as above. Then
pumf)

o p=1
QFf = 0f 3 p 1)+ Y (P) S, o Dip Ty,

b b | #.v—l

Proof. We first establish that for all meN

@ 27 = g,1(S r s n D)+

¥ s ) F"lm
+ z,f’*-l 2 o0y — )+ f™ Znim ig¥
JAMI po 1 . Feal

=1
where 8(k) = 3 (f )Dmf"ﬂg,’“if for any & e N. This is proved by induction
fol .
on m. For m == 0, the result follows by the linearity of Q,.
Now suppose it is true for m. We now show it then true for m 1. Since
Q. =fQ, - f""l oS+ 6y —1) for v>1 as is easily verificd, we
have

m Zn::ems? () =™ 2 Sl f R A 2, 4 (v 1))

Hual v
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The right-hand side is equal to

- oc
*1 .
pf ) "%4 (m+1)f " f’“Z%’;’m@ (»—1)-+ melz Wf-?(mﬂ)gpf’

v=ﬂ ¥e=l =1

and this in turn equals

‘Q:ﬂf anﬂ f fm 2 ?7(")0 v—'m’ _1 "fmq 12"‘7v+(m+1)!‘?ﬁf

Ymedl P=ind-2 ywal
o .
By replacing ™ 3 7, 2, () in (1) by the above expression and by com-
ym] ‘

bining the appropriate terms, we obtain (1) fer m--1.
Pinally letting m approach infinity ostablishes the lemma.

PROPOSITION 8. Lt Q5 f == 2 B for all v =1 and define
min{r: 5" 2 0mod (p"} . if {¥: 9P = 0(p")} # O,

- otherwise.,
Suppose v < p*. Then

o)

o) =) —(r —1)p
For r <o jp-rL. '
Proof. We egtablish the propositicn by induction on ». It is clear
for r = 1. Now assume the proposition for », ie. if r<+{/p-+1 then

W = v(“)——(fr —1)p. From this we shall show that »+1<»/p implies
v(” Vo= ) mrp.

By Lemma 1,
-] p-1 o0 .
@) GPf =0, 3 p+utht+ Y (7)) 3wl DD
v () fual vl
o & il €0 "
= (3 Gy £+ 2 () 3 nupirozir.
Keal) Jusfd L ¥, pimail

Tivst, notice that for k< —p,.

2, (G -+ L)nihnfly = 0 mod (p™+)

Jral)

ginee for each § = 0, ..., % j--1 is then less than o) 1n1p1ymg iy
= 0 mod (p") and % —j is less than »{’ so that nf); = 0 mod (p). '
Therefore to ostablish that

o =,

which i equivalont to our goal, we must only consider the second sum on
the right-hand side of equation (2).
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To this end, we have
n—1I ou
L 2 YDt f W ok

INHE=E = BN &)

4=l Fowe X (v~ -1-1}
where 67 e R and X i3 ag defined in Proposition 7. Notice that )
= 0 mod (p) for all » and %. A brute force caloulation ghows that ag o
power series in f,

»n—l

hl — -
32} X i nar gy 2 i
fa] y,vml T (3
whero
k-l.iET_l k41— Xy—p+1)
(3) oy = IR

L Maa]

Now notice that for all &, v+ u < b-+p for all » and p such that
vk +p—Land L€ pu<< b1 —X(v—p-+1). Morcover v+ p == k--p
plvcisely when p—1<»<k--p—1 and g = k—»-p. This implies that

== 0 od (p’“) for all & < +§7) — p, sinee v+ u <<+ 80 47}, = 0 mod (p"),
.umd since 6k+1_ = 0 mod (p).
Now comuiar the crucial value & = #) —p. Then

(")_..1

ak = “T()) 2 5:v—p+1 4

V) — ], I v;:—ul

¥
Wv+,ua (’)‘)__‘:p 1

wlhore E’ is the restriction of the summadtion to those p and » with »--u
< ». But this implies that this second snmumation is congruent to
0 mod(p™™). On the other hand,

771'(,) 5= 0 mod (p").
0

' f*‘)m
We now have only to determine 3‘ idﬁ’_m..l, Since »3p -1,
#=1 %
() > () oirogy = 3 e
Al . Treaptum (=1}

Notics from the left-hand side of (4 (4), the term 65,__(% 1y only ocours if § == p —L
and therefore the only contribution to 82, ,, is in the first term of

(,20) P27 D

Thus 65?_’(,,_;,% pr(v—1) ... (v —p+2), (Remember that D f= :1.%2@,, ")
. . =]
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But then
W1 »i1 ‘ ’3_”““1
D Moy =2 D D r—p 2 =p > (p-D)!
Pa=p—1 v===:p-—1 p=p-]

re=1(p)
. (,.) .
= — mod (p?%).
p[ ; ] (2

(r)
Since 0 < »{? < #V < p?, [ p ];:*é mod (p) and thus

("),_1

Z 6,,_(1,_1) 5= 0 mod {p?).

pam =1

It then follows easily that

(?)__
’7('(2 2 6._(3,_1)9—."-: 0 mod (p"t1).

Ve —]
Therefore »{*™ = —-_p =+ —pr as desired.

UOROLLARY. et Q,f= Z n.f"- Suppose further that there exists v << p?
L 1] .

auch that #, 5 0 mod (p). Then F does not possess Kummer congruences
@t p. ‘

Proof. This ig a direch consequence of Propositions B, 7, and 8 with
the appropriate choice of ».

3

Lovma 2. Let z( )Dj,f”l)”“"f 26""f” for v>1. Then there

axigl polynomials P (X, ..y Xput) epZ 1 S
.oy p—1 independent of » sueh that

Xyl for m=1,...

p—1 -1

3 () oozt = 3 vr—1) o (o=

drm], bl

MAL) ™Dy (Do y +vey D27,

Proof. First, it iy easy to establish that for each ¢ =1, ..., —1

i

DLfr = w(v=1)...

]

(» =M ALY "Dy (Df, .., DIF)

where pm(Xl, X)) e Z[Xy, .0, X]] and i8 mdependent of ». This is
done by induction on ¢ and we shall not carry out the details here.

" B~ Acta Arithmetica 40.2
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Now ‘
-1
3 (¢) pirory
freal
p—1 ’ p—_:!l
= S0 = B () g (Dot DD,
. Men o ]

p—1

Taking ,(Xy, .00y Xpg): = Z(f)?im(xu'“:
i

X)Xy ostablishes the
lemma. .
OoroLrawy. Let 0 be defined as above. Then

8 = O8I mod (p2).

o0
Proof. Let p,(D.f, ..., DE-'f) mkz Opf®. (By the lemma ay,,
v
= 0 mod (p) for all %, m.) Then we have
-1
D wy—1) oo (r—m A1) (Do, oy DI
M)
- 0 p—l
= (2200 e b m Do i) I
Rem ppaal

where a,, is interpreted as 0 if k<< 0. Thus

p--1
8 = _Z v{r—1) eo. (v —M+1) Gy g s
m=1
whereas
p—1
38 = D kD) e+p —1) o 0P~ 1 L) s -
Priom ] N

But this implies that 6% = 6};’?};’) mod (pﬁ) a8 dogired.

Prorosrrion 9. Supposs 2 f = me’ whore 1, == 0 uod (p y for

al; v p° where ¢ 18 o fived dnteger gwme,ﬂ tham 1. Then o 2 ’7(') I
where '

X
g =0mod (px(r*[;?”).

- Proof. The proposition is established by induction on », Tho result
is trug by assumption. if » = 1. Now agsume it true for . We shall then
show it true for r--1. To this end, let the index k = gp®-4 with 0 < ¢ < p%
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We use induction on g to establish the result for »--1. Using equations
(2) and (3) along with the identity

kdp—1 ktl—X(p~p+1) R-+-p n—1
R0 = 2 e 8haeny, Tor k=0
re=l ] =2 PN AKX (1,0~ k—1)
we have
+p n—1
(5) Nt == 2 (7-+1) ’?j+1’1k-j+ 2 7 dﬁ’l(nuk—u .
J=0 el y=max(l,n—k—1)

Now suppose ¢ = 0 so that k= i< p°. We show that R

= 0 mod (p"*). We consider the two summands in (8) separately. From

the hypothesis of the proposltmn and the induction hypothesis on 7,
it is clear that

DAL s = 0mod (p).
j=o '
Moreover, if i-+p < p*, then-

itp n~—=1

Z’ ??(r)

=2 y=mox{l,n~1i~1)

8 giyy = 0 mod (p™1).

Now suppose p°—p < i< p°. We then have two cases to consider.
Oase 1. Suppose m—i—1 =1, Lebt ¢ = s mod (p) for 0 <s<<p—1.
Then

i+p Fho 1 i+p

: — )
2 7 2 ‘5(‘2(11—5—1) = 2 ’? Z 6—(14—«.—1)
n=2 rep il - p=p® youm—i—1
1-!-13
- (r) Z 5(” i 1+#)m0d (Pr-z—l)
'n-=p° H=0
But
i q i (o1
1 sln—i-1d (R—i—1+p) n— W
2‘351" he) 225 1_2 2’45
o0 P umsl Feug 1l pemi
wef(p) PEUD)
3)--1
. ZPe—l a(ﬂ—1—1+2)+ Z (p fel __1)55%—:"14-})1“0& (p%).
© jm0 prar=s]

The above congruence follows by the Corollary to Lemma 2. The Tirat
snmmand in the right-hand side of the above expression ig congruent to
0 mod (p?). Moreover the second summand is also congruent to 0 mod (p?).
This we show by establishing that for each j> s+1,

(6) gn=t=14) = 0 mod (p?) .
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This is acecomplished by noticing that by Lemma 2 6+ ig the coef-
ficient of f/ in the expansion with respect to f of
p—-1

D i1 n—i—14j—1) ...

m=1

fn—i—14+7—m-1)x

X (Dyfy ooy DRI,

Now n—¢—1+47 = p since j = s-+1. Morcover the only posgible nonzero
contribution to 81 oceurs when a—i—1-j—m<j and since
Jj<p—1, wo oblain

Bo—f—Llt+j—ml<p.

Thus (n—2~1+Hn—i—1+j—1L) ... (n—i-14+j—m+1) = 0mod (p).

Since p,, (X4, Xp_1) €pZ[Xy, ..., X, 1], wo have the congruence (6).

These msults establish Cage 1 since thor estriction on 4 implies that

7 =0 mod (p™") for p’<n<i+p by the inductiomr assumption.
Thus

i+ n—1

- . n=g IESPIIY S §

Oage 2. Suppose n—1i—1L << 1, Then an abmm

By nl hics nel
D D iy = 2 1 3 8 iy 0 (97).
— =1 RWW ]

Hence we need on]g? consider p° << n <

PP <
Ag in Oase 1 we are reduced o showing that

i-+p. Bince n—{f—L<1 and

pé-1

2 8¢ == 0 mod (p*).

Ve ]

So
p";_-,l n ph -1
D 00 = ) 3T a0 e 3T pere 4 (¢ —1) 0P mod (p¥).
vesl Jumd  wm] Juenl
veg(p)

Both terms are easily seen o0 be congruent to 0 mod (p®).
These two cages catabligh ﬂhm, if ¢ =0, then

n(vﬂ) == 0 mod (p?'-’-l)

We now assume the proposltmn is valid for & = gp* —M,

L4 P
That is,

ng-hl) == () mod (?X(rﬂ——a)) .

t << p° wo have only the possibility of » = p° and ¢ = p°—1.
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We now show the result holds for & = (g-+1)p°+4, L.e.
ATt = 0 mod (p¥=2y).

Without loss of generality we may asswme # > ¢ (otherwise the con-
gruence i§ already true). Fix &k = (q-+1)p°+i with 0 < i< p°.

We shall gshow that ™ = 0 mod (p"~9) by showing that each of
the summands on the right-hand side of equation (5) is congrucnt to zero
mod {p™).

We have

&
2 G40y = 0 mod ("9,
7m0 ,
for it §< (g-+1)p% then (j-+1)nf2 = 0mod (p™%); and it j > (g-+1)25
then (f+1)77; =0 mod (p™ ¢!} and since k—j <4, -y = 0 mod (p).
Now consider the second summand,

i ] a—1
*
2 "?( ’ &1('1'—)(%—11:—1) .
N=2 v=m&ax(l,n—k—1)

It i+p < p® then 47 = 0mod (p" ). Bince 87, ,_ = Omod( ) the
above expresgion is congruent 0 0 mod (pm 9. '
Now suppose that 4z p*—p. Then

ktp ' n~1
{71 Z i &2 e 1

n=2 ye=max(l, - -~ 1)

k+m n—1
al —_
= Z 1]5[) . 552(11—1.--—1) mod (p™9).
nnlgr2)p? yemmax(l,n—k—1}
As hefore it suffices to show that
.oa~l

8 gy = 0 mod (p?).

yemix(1,n—k—1)

The proof is divided into two cases.

Cage 1, SBuppose n—%—1> 1. Let ¢ ==¢ mod p with 0 K s << p—1L.
Then
n—1 [
5('2( ey == 5(n‘—k-1+n)
v:-a%:—-i o }gﬂ
6(n—k~1+u) I" d(n—)‘a-«l-bp)
uxf{p) awj(p)

»—1

- Z(q+2)pc—16§n—k—l+d}+ 2 ((g‘!+2)p“‘1 —1

i=0 J=F+1

k144
)spmiern
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Tt is immediato that the first sum is congruent to 0 rod (p*). For the second.
summand an argument completely analogous to the one for ¢ = 0 shows
that each 3P~*~'# =0 mod (p?).

Oaze 2. Suppose n—k—1 < 1. Since we need only congider
= (q-]—z) (by (7)), the only possibility occurs when # = (g-+2}p° and
i = p*—1. Heneo as in Oage 2 for ¢ = 0 we need to show that

fe—%

D)6 =0 mod (p%).

from )

But

E—1 PR p—1 '
o =33 6 = Y(g+2)p o (g + 29 ~1) 8P = 0 mod (p%).

yasl fml paml Frl
vei(m)

These two cases and the prewous arguments ostablish that i
= 0 mod (p" % for kb = (g--1)p°+4.
This establishes the induction step and thus the proposition.

o9 .
CororLary. Let Q.f = 3 nf. Suppose that for each » < p?
i} ’

7, = 0 mod (p). Then f has Kummer congruences at p.

Proof. The hypothesis of Proposition & is fulfilled for ¢ == 2. Thus for
each » =1, we have

st [,

7y = 0mod (p

or each v 0. Thus since [»/p?] < ordyy!,
(r) =2 0 mod (pX(r—ordpvl))
for all ¥ = 0. The corollary then follows from Propositions 7 and b.

Tho above results prove Theorem 1.

3. A further analysis of the 0, operater and applications. By Theorem 1,
wo neod only determine #, mod {p) for » < p® in order to check whether
or not f has Ke(p). We now simplify this procedure fLurther.

TaEorEM 2. For any ring B of characterigtic p with wnity, for all
derivations D on R, and for any u e R,

(uDy*(u) = —DP P

Proof. We first claim that if B is any eommutative ring with unity

and wy, ..., %, € B for some fixed positive integer n, then

Ty
X dy DOy

Ayares n"n}o

Dt Dty D .- D(w:D03) . )} = Dhu,

icm
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where the d, arve determined by the polynomial equation:

X (Xt X)) oo (Kt e +E) = ) dﬂlyx

Thig follows easily by an induction argument on ».
Next, we have for any positive integer %

Dy oo D,

-
D Chry

ﬂl....,ﬂn}()
where the ¢, are determined by the polynomial equation:
+X ) = Z Oy X oo X

Blreemslly 0

.

Duy ooouy) =

('X.]._P- e

The proof follows by an induction on k.
Now by the result of G. Baron and A. Schinzel {1]

2 -Xu(l)(Xcr(l) "E_Xo‘(z)) v (Xa(1)+ e +Xa(p—2)) = ('Xl e +

oeSy—1
Then the above two results show that if R is a commutative ring of charac-
terigtic p with unity, then
2 u,(p_,),D(uu,(p_z)D (. . (ZQU(Z)DM&(I)) .- -)) = Dp—n’& (’H;l aee ‘u-p_l).
CIES:D._].

If w,= u for all i, we have (p—1)}(uD)y*(u) =
= —1, we obtain (wD)y*~%(u) = —D?"*(uF™%)
This theorem will greatly simplify the task of determining whether

or not f has Ke(p).
Let f(z) have all the assumptions previously specified. Let

.Dmf = Zdvf’, Dg—lf =Z g’wfv; and . (-—Dxf)pml —_ ng(yp_—l)fy-

r==l) p=0 ye=0

Notice that D, = f'D, where f' = D,f and therefore
DI = (fD)P7f = (FDY ().
Thus by the above theorem
(D7) = —DFH((f ) mod (PRILTD-

X,

D?~ 2!, Sinee (p—1)!

Sinco

DrH(fP) = 2(#4"1 Ap+p -2 P,
we obtain .
(8) o, = (kA1) oo (P — 2, mod (p).

-
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DEFINITION 4. ’
min{v: 5, ¥ 0mod p} if it exists,

P ==

’ otherwise;

o

=p, 427V £ 0(p)}  if it exists,

[min{w po= —1(p), p
Hy =

oiherwige.
ProrosrrioN 10, Let pg and vy be as in Definilion 4. Then

Ho = vy-+Dp 1.
Proof. We have '

i"’?ﬂff"=

Fuall

"Q_'pf = Dm(D;Tu)—IM 613)]' =f’I)f(‘D£ﬂ1f—'Gmf)

[t =) D) a0 ) > af)
pe=l W ()

= S ) o (g 0 A ' mod ()

Jemal voull

il

since by Proposition 6 o, —0, = 0 mod (p) (and by use of (8)). Multiplying
out the right-hand side of tho above congraence, we obtain

AP0, mod ().

i =
pEpsytp—l
pe—1(1)

Now assume u, is finite. Then if »< p,—p+1, we gee that =,
= 0 mod (p). Moreover i v = uo—p-+1, then clearly g, = 0 mod (p).
Thus v, = w,—p -1 and is finite.

Next guppose v, is finite. Let x < »+p —1 sueh that g = ~1(p).
Then 47" = 0 mod (p) by the preceding argument. Whereas, if g = vy
+p —-1 then

0 &, = d‘f’"l)

JME#":"Q A=
pr 1)

vyt p—l—i == drn-l 3=~ mod (P) *

Thus gy = vo-+p —1 and henoo u, is finite.
We are now in a position to give an application of the above resulis.
Prorosrrron 11. Assume

(o) = Zon k

fime]

and that
(f.' PR 1+df’"‘

" po =o0. By Proposition 10 this is equivalent to »y <
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where m 48 & positive integer and d # 0 is contained in some field of charac-
teristic wero. (Notice then that f(z) is an H-series over R: = Z[},d]
satistying the Hypothesis stated earlier.)

Then f has Kummer congruences if and only if m=1,2,3,4, or 6.
For oll other m, theve ewist infinitely many rational primes at which f does
not possess Iwmmer CORGruences.

Proof. Since 2 iz & unit in B, f clearly satisties Ke(2). Wext notice
that for all odd primes 2,

Sag-ug _ ) (4) &9
=0 md

where 7 = (p —1)/2. Thus df " = ( )d"’ for 0<k<r, and 4P =0

i op s 0(m) or u>mr.
—1

Now let u, and v, be as in Definition 4. Then either u, < m or

(m— 2) or

¥o = oo. If p > (m —2)/2, notice that the above is equivalent to

v p? or

'))0=DO.

Theovem 1 then implies that if » > (m —2)/2, then f has Ke(p) if and only
it ¥, = oo {or equivalently if apd only if g, = o). '

We now investigate when g, < oo. By the corcllary to Preposition 6,
¥o>> p. Thus w3 2p —1 by Propesition 10. We thus obtain pg < oo if
and only if there exists an integer % such that '
p~1

Ep—1<m 5 kp —1 = 0 (m)

Tap—1
and d%P-Ym =2 0 mod (p).
Thoe above inequality can be rewritten as

Notice that if m < 4, no such % ean exist. Moreover the restriction
p > (m—2)/2 is no restriction at all. Thus f has Kummer congruences in
this case. (Actually this is a special case of L. Carlitz [2].)

It m =6, then po<< oo would imply & =2 in which cage 2p —1
= 0 (6). Hence g, = co. Moreover, since (m —2)/2 = 2, the inequality
p > (m —2)/2 restricts the prime to all the odd. ones. Therefore, f possesses
Kummer congruences when m = 6.
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Tor all other cases of w, agsume f has Ke(p) for all but finitely many
primes p. In particular, we must have for all p > N for some N > m—2
that g, = o0. .

Notice next that there exists by € N such that for all p > N we have

o m. m—2
2T 5

and (%), m) = 1. Tor, it om s odd, thon take
By = 2; it m iy even, say m = 2n, then tuke

n—l1 if n is oven,

g == ] .
w2 i m iy odd.

Letb &, be some integer with ok =1 (m). Also let
P ={p: p iz a prime, p > N, and p =k, (m)}.

We then have

20 -1 < hyp -1 < m r and

- Frgp 1. = 0 (m)

for all p € P. Thus sines p, = oo, 'wo must have
- @ m o2 0 mod (p).

Thiz implies that 4 = (M) Rad(pR).
pel .
But sinee P iz an infinite set and R = Z[%, d] we have

N Rad(pR)=(0).
peF .

Thug d == 0, a contradiction. Hence for m =5, and m>= 7, there exist
infinitely many primes at which f hag no Kwnmer congruencos.
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