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1. Introduction. For each nonnegative integer n, r(n) = r{n) denotes
the number of representations of # as a sun of two squares. In any such
reprosentation # = w?+42, (x,y) is to be regarded as an ordered pair
of integers. The function § is then defined for each positive integer »
by: r(in) = 45(n). J. W. L. Glaisher derived in [1] & recursive formuls
for 4. His result we here state as

TraeormM 1. For each positive integer n,

(1) D) (—1)rbE s k(E41)/2)

kiwal
(=L)"I(m+1)/2], o n= m(m+1)/2,
0, otherwise.

Here, (@] denotes for any real number o the largest integer not exceeding w;
and, swmmation extends as far as the argumenis of & remain positive.

The ma.jor objective of this noteis to give an easy proof of a theorem
equivalent to Glaisher’s Theorem 1. This result we state as

TemoREM 2. For each nonnegative inleger m,

() ) (LY (g (B 1) f2)
Koa b
(=1 2m1),  if  m o= mimetL)2,
B 0, « otherwise.
Here, summation extends o8 far as the arguments of v remain nonnegative.

We observe that #(0) =1, and then establish the equivalence of
recurrences (1) and (2) for positive arguments by use of the identity

4( __1)tm_m [(m+1)]2] _I_'( _1)[(m+1).'2] = ( _‘l)m(m-l-a)[z (2m +1) .

Section’ 2 is devoted to the proof of Theorem 2, However, in our
concluding remarks we mention another type of recursive formula for r,
which, though not very efficient for tabulation of values, has some theor-
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etical interest. Before embarking on technical development, we state four
well-known identities to be used in our proof.

oo

(3) Q (L—o"y (142" =

(4) wl (1L—a™) (1l —2*"") = Z_“ (—1)"

(8) ﬁ(l-—-wz"‘)(l—f—w“) - Zm‘mﬂ(nﬂ)iz,
n=1 im0

®) []a-a= j;(_l)n@wl)wnww_

(3) is due to Euler, (4) and (5) to Gauss, and (6) to Jacobi. For proofs,
see [2], pp. 277-285.

2. Proof of Theorem 2, By use of (3), we express (3) as follows:

(L—a") (L—a*"= 1) = Y ghlnrdi,

We now multiply the foregoing identity by the square of identity (4)

to get
ﬁ (1 —a™)® = { 2 (ml)nmﬂZ}z {jmn(nﬂm}_
n=>0

=l N=—0

(6) and the last identity then imply

(S ccaraty Sy

= (=1 (@n1)amer,
Rl

=00
whence
,.,.(,n' 2" m)'ﬂ.(n-{—l),’l - Y’W(ml)n('n+8)/2 (2?’.‘» _j_l)mn(n—hl)ﬁ;_
(Srrme) (3] o) - .\

Expanding the left side of thiy identity and equating cocfficients of like
powers in the resulting identity, we thus prove our theorem.

_ Remarks. For large n, wo observe that the left side of (2) has about
¥2n termg. Hence, our recursive scheme is indeed efficient.

For each positive integer #, o{m) denotes the sum. of the positive
divisors of n. In the gtatement of our final result we shall also use the
repregentation of an arbitrary positive integer n as n = 2°®Q(n), where
b(n) is a nonmegative integer and O(n) is odd.
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TeorEM 3. For each positive imteger mn,

Zﬂj (=1 (n
»jw]

nr(n) = 4 —§2De (0(4))-

The theorem is eagily proved by using identity (4) and the technique
of logarithmic differentiation. Moreover, the theorem remaing valid when
r, is everywhore replaced by r, and the factor of 4 is replaced by 4k,
where k is an arbitrary positive integer, and for each nonnegative infteger
n, a5 (#) denotes the number of representations of n as a sum of 2k squarcs.

The anthor would like to thank the referee for pointing out the equiv-
alence of Theorems 1 and 2.
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