On the invariants of the Hecke groups

by

L. ALAYNE PARSON* (Columbus, Ohio)

- **0.** Introduction. In [4] K. Mahler defined the concept of an S_p -series. The primary example of an S_p -series is the modular invariant $j(\omega)$. In this article we provide additional examples of S_p -series by examining the invariants $j_q(\omega)$ of the Hecke groups $G(\lambda_q)$. Some of the arithmetic consequences for the Fourier coefficients of the invariants for $G(\sqrt{2})$ and $G(\sqrt{3})$ are then discussed.
- 1. S_p -series. Motivated by the behavior of Klein's modular invariant $j(\omega)$ which satisfies modular equations of order p for every prime p, Kurt Mahler [4] considered solutions in formal Laurent series to functional equations of the form

$$(1.1) f(z^p)^{p+1} + f(z)^{p+1} + \sum_{r=0}^{p} \sum_{s=0}^{p} c_{rs} f(z^p)^r f(z)^s = 0, c_{rs} = c_{sr}.$$

More specifically, formal series with the following property were studied.

DEFINITION. Let p be a fixed prime. Let $f(z) = \sum_{h=m}^{\infty} a_h z^h$, $a_m \neq 0$, denote a nonconstant formal ascending Laurent series with complex coefficients. Let R(f, p) denote the following set of p+1 derived Laurent series in z^p and $z^{1/p}$:

$$R(f,p) = \{f(z^p), f(z^{1/p}), f(\varepsilon^{2^{1/p}}), f(\varepsilon^2 z^{1/p}), \dots, f(\varepsilon^{p-1} z^{1/p})\}$$

where e is a pth root of unity. Then f(z) is an S_p -series of order n if every elementary symmetric function of the elements of R(f, p) can be expressed as a polynomial in f(z).

Associated with each S_p -series is the polynomial $F_p(x, y)$ defined by

$$F_p \big(x, f(z) \big) = \big(x - f(z^p) \big) \prod_{j=0}^{p-1} \big(x - f(\varepsilon^j z^{1/p}) \big) \cdot$$

^{*} Supported in part by NSF Grant MCS 78-02135.

 $F_p(x,y)$ is necessarily symmetric; and the equation $F_p(f(z^p), f(z)) = 0$ is of the form (1.1). In the special case when $f(z) = f(e^{2\pi i\omega}) = j(\omega), f(z)$ is an S_p -series for every prime p and $F_p(x,j(\omega)) = 0$ is the modular equation of order p.

The following two results which are consequences of the general theory of S_p -series (see [4]) are of particular interest. The first indicates the extent to which $j(\omega)$ is determined by its modular equation of any prime order p.

THEOREM A. Let p be a prime and let $F_p(x, y)$ be the modular polynomial of order p. Let $\varphi(z) = 1/z + \sum_{h=0}^{\infty} a_h z^h$ be any formal Laurent series with

$$F_{p}(\varphi(z^{p}),\varphi(z))=0.$$

Then $\varphi(z)$ is analytic in $\{z\colon 0<|z|<1\}$ and $\varphi(z):=\varphi(e^{2\pi i\omega})=j(\omega)$.

THEOREM B. If $f(z) = 1/z + \sum_{h=0}^{\infty} a_h z^h$ is an S_p -series, then the coefficients a_h with $h \ge p^2 + p$ can be expressed recursively as polynomials in $a_0, a_1, \ldots, a_{p^2+p-1}$.

For p=2 or 3 the recursive formulae of Theorem B are given explicitly in [4]. For $p \ge 5$ the formulae become excessively complicated. However it scarcely needs emphasizing that the formulae for p=2,3 are extremely useful for calculating the coefficients and for studying their arithmetic properties.

2. The invariants of the Hecke groups $G(\sqrt{2})$ and $G(\sqrt{3})$ are S_p -series. Since $j(\omega)$ is the canonical example of an S_p -series, it is natural to ask whether there are other groups with invariants which are also S_p -series. In [1], in connection with the correspondence between Dirichlet series and automorphic forms, E. Hecke introduced the class of properly discontinuous groups $G(\lambda_q)$ which are generated by $T(\omega) = -1/\omega$ and $S(\omega) = \omega + \lambda_q$ where $\lambda_q = 2\cos(\pi/q)$, $q = 3, 4, 5, \ldots$ When q = 3, $\lambda_1 = 1$ and G(1) is the modular group. Associated with each of these groups is an invariant $j_q(\omega)$ which has a simple pole at $i \infty$ and maps

$$F = \{-\lambda_q/2 \leqslant \operatorname{Re}\omega \leqslant 0, \ |\omega| \geqslant 1\} \cup \{0 < \operatorname{Re}\omega < \lambda_q/2, \ |\omega| > 1\}$$

univalently onto the upper half plane \mathscr{H} . Normalizing the Fourier expansion at $i\infty$ we have

$$j_q(\omega) = \frac{1}{z} + \sum_{n=0}^{\infty} c_q(n) z^n$$
 with $z = \exp(2\pi i \omega/\lambda_q)$.

When q=4 or 6, the resulting groups are $G(\sqrt{2})$ and $G(\sqrt{3})$. These are the only Hecke groups which are commensurable with the modular group and therefore the only Hecke groups whose elements are completely characterized arithmetically. For notational convenience we let l=2 or 3 and represent the transformation $z'=(\alpha z+\beta)/(\gamma z+\delta)$ by a matrix

$$\begin{bmatrix} a & \beta \\ \gamma & \delta \end{bmatrix} \quad \text{with} \quad a\delta - \beta\gamma = 1.$$

Note that both

set

Market St.

$$\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$
 and $\begin{bmatrix} -\alpha & -\beta \\ -\gamma & -\delta \end{bmatrix}$

represent the same linear fractional transformation. It is then well known (2], (7) that $G(\sqrt{l})$ consists of the entirety of elements of the following two forms:

$$egin{bmatrix} a & b\sqrt{l} \ c\sqrt{l} & d \end{bmatrix}, \quad a,b,c,d\in \mathbf{Z}, \ ad-lbc=1,$$

(2.1)
$$\begin{bmatrix} a\sqrt{l} & b \\ c & d\sqrt{l} \end{bmatrix}, \quad a, b, c, d \in \mathbb{Z}, \ lad-bc = 1.$$

With this characterization of the elements of $G(\sqrt{l})$, we prove

THEOREM 2.1. $j_4(\omega)$ and $j_6(\omega)$ are S_p -series for all primes p except p=l.

The proof of Theorem 2.1 relies on

LIEMMA 2.2. For q=4 or 6 let $j(\omega)=j_q(\omega)$ and $\lambda=\lambda_q$. For $p\neq l$,

$$T_p = \left\{ \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & p \end{bmatrix}, \begin{bmatrix} 1 & \lambda \\ 0 & p \end{bmatrix}, \dots, \begin{bmatrix} 1 & (p-1)\lambda \\ 0 & p \end{bmatrix} \right\}.$$

For each $M_i \in T_p$, set $j_i(\omega) = j(M_i\omega)$, $i = 1, \dots, p+1$. Then for any $V \in G(\lambda)$,

$${j_i(\omega)} = {j_i(V\omega)};$$

in other words, replacing ω by $V\omega$ merely permutes the elements of $\{j_i(\omega)\}$. Proof of Theorem 2.1. We must show that the elementary symmetric functions of the elements of R(j,p) are polynomials in $j(\omega)$. However, $R(j,p) = \{j_i(\omega)\}$. Since by Lemma 2.2 $\{j_i(V\omega)\} = \{j_i(\omega)\}$ for any $V \in \mathcal{G}(\lambda)$, any symmetric combination of elements of R(j,p)

is invariant under $G(\lambda)$. In particular, the elementary symmetric functions are invariant. Since any function invariant under $G(\lambda)$ and analytic in $\mathscr H$ is a polynomial in $j(\omega)$, the elementary symmetric functions of elements of R(j,p) are indeed polynomials in $j(\omega)$.

Proof of Lemma 2.2. Since $j(\omega)$ is invariant under $G(\lambda)$ we need only show that for each $M_i \in T_p$, there exists an $M_j \in T_p$, $V_j \in G(\lambda)$ such that $M_i V = V_j M_j$ and that the resulting M_j are distinct. In fact it suffices to verify this result for the two generators of $G(\lambda)$,

$$S = \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix}$$
 and $T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

For S we have

$$\begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & p\lambda \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix},
\begin{bmatrix} 1 & b\lambda \\ 0 & p \end{bmatrix} \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & (b+1)\lambda \\ 0 & p \end{bmatrix}, \quad 0 \leqslant b \leqslant p-2,
\begin{bmatrix} 1 & (p-1)\lambda \\ 0 & p \end{bmatrix} \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & p \end{bmatrix}.$$

For T the corresponding identities are

$$\begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & p \end{bmatrix}, \\
\begin{bmatrix} 1 & 0 \\ 0 & p \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}, \\
\begin{bmatrix} 1 & b\lambda \\ 0 & p \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -b\lambda & (1 + bb'\lambda^2)/p \\ -p & b'\lambda \end{bmatrix} \begin{bmatrix} 1 & b'\lambda \\ 0 & p \end{bmatrix}, \quad 1 \leq b \leq p-1,$$

where b' is the solution to $\lambda^2 bx = -1 \pmod{p}$ with $1 \le b' \le p-1$.

Before discussing the arithmetical consequences of Theorem 2.1 for the coefficients of j_4 and j_6 , we look briefly at the question of whether any of the other j_g are S_p -series.

3. j_q for $q \ge 4$. For q = 5, 7, 8, 9, ... is j_q an S_p -series for some prime p? The easy proof of the preceding section fails at the point in Lemma 2.2, formula (2.2), where we find $V_j \in G(\sqrt{l})$ so that $M_iT = V_jM_j$. For $q \ne 3$, 4, 6 there is no quick way of determining whether $V_j \in G(\lambda_q)$. To illustrate this difficulty, we take p = 2 and show that j_q is an S_p -series if and only if q = 3 or 6. For the sake of notational convenience we drop the subscript q.

THEOREM 3.1. $j(\omega)$ is an S_2 -series if and only if

$$V = \begin{bmatrix} -\lambda & (1+\lambda^2)/2 \\ -2 & \lambda \end{bmatrix} \in G(\lambda).$$

Proof. If $V \in G(\lambda)$, then the method of proof of Theorem 2.1 and Lemma 2.2 carries over to give that $j(\omega)$ is an S_2 -series. On the other hand, if $j(\omega)$ is an S_2 -series, then $F(\omega) = j(2\omega) + j(\omega/2) + j((\omega + \lambda)/2)$ is invariant under $G(\lambda)$ since $F(\omega)$ is a polynomial in $j(\omega)$. In particular, $F(T\omega) = F(\omega)$. However,

$$F(T\omega) = j\left(\frac{-2}{\omega}\right) + j\left(\frac{-1}{2\omega}\right) + j\left(\frac{\omega\lambda - 1}{2\omega}\right) = j\left(\frac{\omega}{2}\right) + j(2\omega) + j\left(\frac{\omega\lambda - 1}{2\omega}\right)$$

which implies that $j\left(\frac{\omega+\lambda}{2}\right)=j\left(\frac{\omega\lambda-1}{2\omega}\right)$ or, upon replacing ω by $2\omega-\lambda$, $j(\omega)=j\left(\frac{2\lambda\omega-\lambda^2-1}{4\omega-2\lambda}\right)=j(V\omega)$. Then since $G(\lambda)$ is the invariance group for $j(\omega)$, $V\in G(\lambda)$.

It is now clear that $j_4(\omega)$ is not an S_2 -series since

$$V = \begin{bmatrix} -\sqrt{2} & 3/2 \\ -2 & \sqrt{2} \end{bmatrix}$$

is not in $G(\sqrt{2})$. To prove the same result for $q \ge 5$, $q \ne 6$, we use the following lemma.

LEMMA 3.2. Suppose

$$V = egin{bmatrix} lpha & eta \ \gamma & \delta \end{bmatrix}$$
 and $V' = egin{bmatrix} lpha' & eta' \ \gamma' & \delta' \end{bmatrix}$

are elements of $G(\lambda)$ with $a/\gamma = a'/\gamma'$. Then

$$V = \pm \begin{bmatrix} \alpha & \beta + \alpha t \lambda \\ \gamma & \delta + \gamma t \lambda \end{bmatrix}$$
 for some $t \in \mathbb{Z}$.

Proof. Since $V(\infty) = V'(\infty) = \alpha/\gamma$, $V^{-1}V'(\infty) = \infty$ and $V^{-1}V' = S^t$ for some $t \in \mathbb{Z}$.

THEOREM 3.3. $j_a(\omega)$ is an S_2 -series if and only if q=3,6.

Proof. By Theorem 3.1 it suffices to show that for $q \neq 3$, 6,

$$V = \begin{bmatrix} -\lambda & (1+\lambda^2)/2 \\ -2 & \lambda \end{bmatrix}$$

is not in $G(\lambda)$. To do this we exhibit

$$M = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \in G(\lambda) \quad \text{with} \quad \frac{\alpha}{\gamma} = \frac{\lambda}{2}, \quad \alpha \neq \pm \lambda.$$

Then by Lemma 3.2, $V \notin G(\lambda)$.

First note that

$$ST = \begin{bmatrix} \lambda & -1 \\ 1 & 0 \end{bmatrix} \in G(\lambda).$$

An induction proof gives that

$$(ST)^n = egin{bmatrix} rac{\sin(\pi(n+1)/q)}{\sin(\pi/q)} & rac{\sin(\pi n/q)}{\sin(\pi/q)} \ rac{\sin(\pi n/q)}{\sin(\pi/q)} & -rac{\sin(\pi(n-1)/q)}{\sin(\pi/q)} \end{bmatrix}.$$

For q even, set n = q/2 and look at

$$M=(ST)^{q/2}= egin{bmatrix} rac{\cos\left(\pi/q
ight)}{\sin\left(\pi/q
ight)} & -rac{1}{\sin\left(\pi/q
ight)} \ rac{1}{\sin\left(\pi/q
ight)} & -rac{\cos\left(\pi/q
ight)}{\sin\left(\pi/q
ight)} \end{bmatrix}.$$

Then $M \in G(\lambda)$ with $M \infty = \cos(\pi/q) = \lambda/2$. However, $\cos(\pi/q)/\sin(\pi/q) = \pm \lambda$ only if $\sin(\pi/q) = 1/2$ or q = 6. If q is odd, set n = (q-1)/2 and consider

$$M = (ST)^{(q-1)/2}S(ST)^{(q-1)/2} = \begin{bmatrix} \frac{A^2D}{B^3} & * \\ \frac{A^2B + A^2D - ABC}{B^3} & * \end{bmatrix}$$

where $A = \cos(\pi/2q)$, $B = \sin(\pi/q)$, $C = \cos(3\pi/2q)$, $D = \sin(2\pi/q)$. $M \in G(\lambda)$ and $M(\infty) = D/2B = \lambda/2$. However, $\frac{A^2D}{D^3} = \frac{A^2}{B^2} \lambda = \pm \lambda$ if and only if $\sin(\pi/2q) = 1/2$ or q = 3. Thus for $q \neq 3$, 6, $V \notin G(\lambda)$.

J. Lehner [3] and J. Raleigh [5] have examined the Fourier coefficients of $j_q(\omega)$ and have obtained the following interesting results. With a different normalization J. Lehner has proved that all the Fourier coefficients are rational. (For q=3,4,6 it is well known that the coefficients are actually integers.) J. Raleigh normalized the invariants so that (in his nota-

tion) $J_q(i)=1$. The Fourier expansion is then $J_q(\omega)=\sum_{n=-1}^\infty a_n(q)z^n$ and our $j_q(\omega)=\frac{1}{a_{-1}(q)}\,J_q(\omega)$. J. Raleigh then derived for all q closed form expressions for $a_n(q),\ n=-1,0,1,2,3$. In particular,

$$a_{-1}(q) = 2^{-4+2(-1)q}q^{-2} \prod_{V=1}^{q-1} \exp\left\{2(-1)^V \cos\frac{2V\pi}{q} \log\left(2-2\cos\pi\frac{V}{q}\right)\right\}.$$

Combining these results with Theorem B on S_n -series we have

THEOREM 3.4. 1. $c_{\sigma}(n)(a_{-1}(q))^{n+1}$ is rational.

2. If $j_q(\omega)$ is an S_p -series for some prime p, $a_{-1}(q)$ is algebraic.

Proof. The first statement of the theorem comes from relating the coefficients of the three different normalizations. To get the second result we write $c_q(n) = r_n(a_{-1}(q))^{-n-1}$ where $r_n \in Q$ and use the fact that $c_q(p^2+p)$ can be expressed recursively over Q in terms of the preceding coefficients.

COROLLARY 3.5. For all primes $p, j_q(\omega)$ is not an S_p -series if q = 5, 8, 10, 12.

Proof. For q = 5, 8, 10, 12, the value of $a_{-1}(q)$ is listed below; in all cases the number is transcendental:

$$a_{-1}(5) = \frac{\sqrt{5}(2+\sqrt{5})^{\sqrt{5}}}{2^{6}5^{3}}, \qquad a_{-1}(8) = \frac{(3+2\sqrt{2})^{\sqrt{2}}}{2^{10}},$$

$$a_{-1}(10) = \frac{\sqrt{5}}{2^{3}3^{3}} \left(\frac{1+\sqrt{5}}{2}\right)^{\sqrt{5}}, \qquad a_{-1}(12) = \frac{1}{2^{3}3^{3}} (7+4\sqrt{3})^{\sqrt{3}}.$$

4. Coefficients of $j_4(\omega)$ and $j_6(\omega)$. We first note that $j_4(\omega)$ and $j_6(\omega)$ fatisfy a uniqueness theorem analogous to Theorem A for all primes p sor which they are S_p -series.

THEOREM A'. Let p be a prime with (p,q/2)=1, q=4,6, and let $F_p(X,Y)$ be the polynomial associated with $j_q(\omega)$ when viewed as an S_p -series. Suppose $\varphi(z)=1/z+\sum\limits_{n=0}^{\infty}a_nz^n$ is a formal Laurent series such that $F_p(\varphi(z^p),\varphi(z))=0$. Then $\varphi(z)$ converges and defines an analytic function in $\{z\colon 0<|z|<1\}$ and $\varphi(z)=\varphi(e^{2\pi i\omega})=j_q(\omega)$.

Since $j_q(\omega)$, q=4, 6, is related algebraically to the modular invariant $j(\omega)$, it has been known for quite some time that the coefficients $c_q(n)$ are integers. Now, since $j_4(\omega)$ is an S_3 -series, by Theorem B, $c_4(n)$ for $n \ge 12$ can be computed in terms of $c_4(k)$, $k=1,\ldots,11$. Similarly, since $j_6(\omega)$ is an S_2 -series, $c_6(n)$, $n \ge 6$, can be computed in terms of $c_6(k)$, $k=1,\ldots,5$. By way of example we have calculated the first thirteen

coefficients for $j_6(\omega)$. To find the first six coefficients $c_6(0)$, $c_6(1)$, ..., $c_6(6)$, we use the following identity [6] due to J. Raleigh:

$$j_{\epsilon}(\omega)^3 - 2 \cdot 3^2 \cdot 7j_{\epsilon}(\omega)^2 + 2^7 \cdot 23 \cdot j_{\epsilon}(\omega) = j(3^{1/2}\omega) + j(\omega/3^{1/2}).$$

K. Mahler's coefficient formulae ([4], p. 91) for S_2 -series are then used to determine the other coefficients.

$$c_6(0) = 42 = 2 \cdot 3 \cdot 7,$$

$$c_6(1) = 783 = 3^3 \cdot 29,$$

$$c_6(2) = 8,672 = 2^5 \cdot 271,$$

$$c_6(3) = 65,367 = 3^5 \cdot 269,$$

$$c_6(4) = 371,520 = 2^6 \cdot 3^3 \cdot 5 \cdot 43,$$

$$c_6(5) = 1,741,655 = 5 \cdot 163 \cdot 2137,$$

$$c_6(6) = 7,161,696 = 2^5 \cdot 3^6 \cdot 307,$$

$$c_6(7) = 26,567,946 = 2 \cdot 3^3 \cdot 53 \cdot 9283,$$

$$c_6(8) = 90,521,472 = 2^7 \cdot 3 \cdot 19^2 \cdot 653,$$

$$c_6(9) = 288,078,201 = 3^7 \cdot 157 \cdot 839,$$

$$c_6(10) = 864,924,480 = 2^6 \cdot 3^5 \cdot 5 \cdot 7^2 \cdot 227,$$

$$c_6(11) = 2,469,235,686 = 2 \cdot 3 \cdot 17 \cdot 97 \cdot 103 \cdot 2423,$$

$$c_6(12) = 6,748,494,912 = 2^6 \cdot 3^5 \cdot 433,931.$$

These numerical values suggest the following conjecture.

Conjecture. If $2^a|n$, $a \ge 1$, then $2^{a+4}|c_6(n)$.

If $3^b|n, b \ge 1$, then $3^{2b+3}|c_6(n)$.

As the first step in verifying this conjecture we have the following result on the divisibility by two of the coefficients of an S_2 -series.

THEOREM 4.1. Let $f(z) = 1/z + \sum_{n=0}^{\infty} a_n z^n$ be an S_2 -series with integer coefficients. Let 2^a be the largest power of 2 dividing a_2 , a_4 and a_3 . Then for $n \ge 6$

$$a_n \equiv 0 \pmod{2^a} \quad \text{whenever} \quad n \equiv 0 \pmod{2}.$$

Proof. We make extensive use of Mahler's formulae for the coefficients of S_2 -series. For $n \ge 6$ they are:

$$(4.2) a_{4k} = a_{2k+1} + \sum_{j=1}^{k-1} a_j a_{2k-j} + (a_k^2 - a_k)/2,$$

$$(4.3) a_{4k+1} = a_{2k+3} + \sum_{j=1}^{k} a_j a_{2k-j+2} - \sum_{j=1}^{2k-1} (-1)^{j-1} a_j a_{4k-j} +$$

$$+ \sum_{j=1}^{k-1} a_j a_{4k-4j} - a_2 a_{2k} + (a_{k+1}^2 - a_{k+1})/2 + (a_{2k}^2 - a_{2k})/2,$$

$$(4.4) a_{4k+2} = a_{2k+2} + \sum_{j=1}^{k} a_j a_{2k-j+1},$$

$$\begin{aligned} (4.5) \qquad a_{4k+3} &= a_{2k+4} + \sum_{j=1}^{k+1} a_j a_{2k-j+3} - \sum_{j=1}^{2k} (-1)^{j-1} a_j a_{4k-j+2} + \\ &+ \sum_{j=1}^k a_j a_{4k-4j+2} - a_2 a_{2k+1} - (a_{2k+1}^2 - a_{2k+1})/2 \,. \end{aligned}$$

The proof is by induction. We note that $a_6 = a_4 + a_1 a_2 \equiv 0 \pmod{2^a}$ and $a_{10} = a_6 + a_1 a_4 + a_2 a_3 \equiv 0 \pmod{2^a}$. Now assume that (4.1) holds for all n even, n < m, m even. To show that (4.1) holds for m we consider separately the three cases $m \equiv 0 \pmod{8}$, $m \equiv 2 \pmod{4}$, and $m \equiv 4 \pmod{8}$.

We begin with the most difficult case, $m \equiv 0 \pmod{8}$, where $m \ge 16$. Then by an application of (4.2) followed by an application of (4.3) and the induction hypothesis, we have

$$a_{m} = a_{8k} = a_{4k+1} + \sum_{j=1}^{2k+1} a_{j} a_{4k-j} + (a_{2k}^{2} - a_{2k})/2$$

$$\equiv a_{2k+3} + \sum_{j=1}^{k} a_{j} a_{2k-j+2} + (a_{k+1}^{2} - a_{k+1})/2 \pmod{2^{n}}.$$

Applying (4.5) or (4.3) depending on whether or not k is even or odd, we find that when k is even

$$a_{m} \equiv -\sum_{j=1}^{k} (-1)^{j-1} a_{j} a_{2k-j+2} - (a_{2k+1}^{2} - a_{2k+1})/2 +$$

$$+ \sum_{j=1}^{k} a_{j} a_{2k-j+2} + (a_{k+1}^{2} - a_{k+1})/2 \pmod{2^{a}}$$

$$\equiv 0 \pmod{2^{a}}$$

ich

and when k = 2k' + 1 is odd

$$\begin{aligned} \mathbf{a}_{m} &\equiv a_{2(k'+1)+3} + \sum_{j=1}^{k'+1} a_{j} a_{2(k'+1)-j+2} - \sum_{j=1}^{2k'+1} (-1)^{j-1} a_{j} a_{4(k'+1)-j} + \\ &+ (a_{k'+2}^{2} - a_{k'+2})/2 + (a_{2(k'+2)}^{2} - a_{2(k'+1)})/2 + \\ &+ \sum_{j=1}^{k} a_{j} a_{2k-j+2} + (a_{k+1}^{2} - a_{k+1})/2 \pmod{2^{\alpha}} \\ &\equiv a_{2(k'+1)+3} + \sum_{j=1}^{k'+1} a_{j} a_{2(k'+1)-j+2} + (a_{k'+2}^{2} - a_{k'+2})/2 \pmod{2^{\alpha}}. \end{aligned}$$

We now note that (4.7) is the same as (4.6) with k replaced by k'+1. Therefore, if k'+1 is even, that is, if k' is odd,

$$a_m \equiv 0 \pmod{2^a}$$

whereas if k' = 2k'' is even,

$$a_m = a_{2(k''+1)+3} + \sum_{j=1}^{k''+1} a_j a_{2(k''+1)-j+2} = (a_{k''+2}^2 - a_{k''+2})/2 \pmod{2^{\alpha}}.$$

Repeating for k'', k''', \ldots , the argument given above for k', it is clear that eventually we must have $a_m \equiv 0 \pmod{2^a}$.

Next, if $m \equiv 2 \pmod{4}$, $m \geqslant 6$,

$$a_m = a_{4k+2} = a_{2k+2} + \sum_{j=1}^k a_j a_{2k-j+1} \equiv 0 \pmod{2^a}$$

by (4.4) and the induction hypothesis.

Finally, if $m \equiv 4 \pmod{8}$, $m \geqslant 12$,

$$a_{m} = a_{3k+4} = a_{4k+3} + \sum_{j=1}^{2k} a_{j} a_{4k+2-j} + (a_{2k+1}^{2} - a_{2k+1})/2$$

$$= -\sum_{j=1}^{2k} (-1)^{j-1} a_{j} a_{4k-j+2} - (a_{2k+1}^{2} - a_{2k+1})/2 +$$

$$+ \sum_{j=1}^{2k} a_{j} a_{4k+2-j} + (a_{2k+1}^{2} - a_{2k+1})/2$$

$$= 0 \pmod{2^{a}}$$

by (4.2), (4.5) and the induction hypothesis.

COROLLARY 4.2. If $n \equiv 0 \pmod{2}$, $c_6(n) \equiv 0 \pmod{2^5}$ where $c_6(n)$ is the n-th coefficient of $j_6(\omega)$. If $n \equiv 0 \pmod{2}$, $c_3(n) \equiv 0 \pmod{2^{11}}$ where $c_2(n)$ is the n-th coefficient of the modular invariant $j(\omega) = j_3(\omega)$.

Also if $n \equiv 0$ (2), $b(n) \equiv 0 \pmod{2^8}$ where b(n) is the n-th coefficient of $j^{1/3}(\omega) = \sum_{n=0}^{\infty} b(n) e^{2\pi i n \omega/3}$.

Proof. Since $j_6(\omega)$ and $j(\omega)$ are S_2 -series, it is just a matter of checking that a=5 for $j_6(\omega)$ and a=11 for $j(\omega)$. The coefficient congruence for $j(\omega)$ is already well known. In [4], K. Mahler verifies that $j^{1/3}(\omega)$ is an S_2 -series with $b(2)=2^3\cdot 31$, b(4)=0, $b(8)=2^6\cdot 3\cdot 81$.

- 5. Conclusion. The following interesting questions are as yet unanswered.
- 5.1. Is there a value for q, other than 3, 4 or 6, for which $j_q(\omega)$ is an S_r -series for some prime p?
 - 5.2. (J. Raleigh [5]) Is $a_{-1}(q)$ transcendental for $q \neq 3, 4, 6$?
 - 5.3. Is the conjecture of § 4 for the coefficients of $j_6(\omega)$ valid?
- 5.4. What is the analogous conjecture for the coefficients of $j_4(\omega)$ and is it true?
- 5.5. (C. Pisot in [5]). Except for q=3,4,6 is there a value of q for which there is a constant K_q so that $K_q j_q(\omega)$ has integer coefficients? K_q certainly exists if $a_{-1}(q)$ is rational and $j_q(\omega)$ is an S_p -series for a prime p.

References

- [1] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), pp. 664-699.
- [2] J. I. Hutchinson, On a class of automorphic functions, Trans. Amer. Math. Soc. 3 (1902), pp. 1-11.
- [3] J. Lehner, Note on the Schwarz triangle functions, Pacific J. Math. 4 (1954), pp. 243-249.
- [4] K. Mahler, On a class of non-linear functional equations connected with modular functions, J. Australian Math. Soc. 22 (Series A) (1976), pp. 65-120.
- [5] J. Raleigh, On the Fourier coefficients of triangle functions, Acta Arith. 7 (1962), pp. 107-111.
- [6] The Fourier coefficients of the invariants $j(2^{1/2};\tau)$ and $j(3^{1/2};\tau)$, Trans. Amer. Math. Soc. 87 (1958), pp. 90-107.
- [7] J. Young, On the group belonging to the sign (0, 3; 2, 4, ∞) and the functions belonging to it, ibid. 5 (1904), pp. 81-104.

THE OHIO STATE UNIVERSITY DEPARTMENT OF MATHEMATICS Columbus, Ohio 43210

Received on 25.7.1979 (1170)