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0. Introduction. In [4] K. Mahler defined the concept of an §-series.
The primary example of an S,-series is the modular invariant f{w). In
this article we provide additional exsimples of S,-series by examining the
invariants j (o) of the Hecke groups G(2,). Some of the arithmetic conse-
quences for the Fourier coefficients of the invariants for G(V 2) and G(}/g)
are then discussed. '

1. §-series. Motivated by the behavior of Klein’s modular invariant
j{ew) which gatisties modular equations of order p for every prime p, Kurt
Mahler [4] considered solutions in formal Laurent geries to functional
equations of the form

. P »
(L1 FEPPLIET A+ D) D 6uf (VR =0y o= G

r=p 8=90

More specifically, formal series with the following property were studied.

DmprwromoN. Let p be a fixed prime. Let 'f(z) = 3 a2t a4y % 0,

. h=m
denote 2 ponconstant formal ascending Laurent geries with complex
coefficients. Let B(f, p) denote the following set of p+1 derived Laurent

series in 2® and ¢“7: '

R, p) = {£&), F12%), f(e®), (6 2), ..., S(67'20))

where & is & pth root of unity. Then f(#) iy an S,-series of order in if every
clementary gymmetric function of the elements of B(f, p) can be expressed
a8 & polynomial in f(2).
Asgociated with each S,-series is the polynomial F, (@, y) defined by
p~1

7, (0, f() = (o—F(e) [] 0 —F(e%™)-

jut
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I, (#,y) is necessarily symietric; and the equation B(f(2?), &) =0
is of the form (L.1). In the special case when f(z) = f(¢™®) == j(w), f(2)
is an §,-series for every prime p and B fw, ] (@) = 0 15 the modular equation
of order p. '

The following two results which are consequences of the general
theory of §,-series (see [4]) are of particular interest. The first indicates
the extent to which j(w) is determined by its maodular oquation of any
prime order p.

TraooREM A. Let p be & prime and lot F,(x,y) be the modular poly-

nomial of order p. Let g(z) = 1/2 4«}2‘0 a2 be any formal Laurent series
with
F @), p(2) = 0.
Then p(2) is enalylic in {z: 0<C 2'< 1} and @(2) := p(¢™°) = j(w).
TuzorzM B. If f(2) =1z ~|—h§ ah_zf‘ is an S,-series, then the coef-

Jicionts @y, with b= p*---p can be ewpressed recursively as polynomials in
Gy Gyg viny B2y :

. .For P =2 or 3 the reoursive formulac ¢f Theovern B ure given ex-
plicitly in. [4]. For p = § the formulac become exccssively complicated.
However it scarcely peeds emphasizing that the formulue for p = 2,3
are extremely useful for caleulating the coefficients and for g'budyiJng
their arithmetic properties. ‘ '

. 2.. The invariants of the Hecke groups G(¥2) and G{V'3) ave §,-series.
Since j(w) is the canonical example of an §,-sories, it is nudmrajr‘J to ask
Wheth-er_there are other groups with invariants which are algo 8, -series,
In [1}, in connection with the correspondence betweon. Dirichl(ﬁ; geries
a,_ncl watomorphic forms, B. Hecke introduced the class of properly diseon-
tinuous groups G(4,) which are generated by T{w) = Q:L/w and (o)
= WAy ,WhBI‘(B Ay = 2¢o8(mlg), ¢ =3,4,3,... When ¢ =3, 4 =1
aud. G{l)‘ is the modular group. Associated with cach of these groups is
an wvariant j (o) which has o simple pole at ¢co and mapy "

F={—42<Rew0, o2 1}u{l< Row< Al ol > 1}

univalently onto the upper half plane #. Normalizi : .
. : le # . Novmalizing the Fourior ex-
pAnsion &b oo e have . g the Tourior ex

o0

: 1™
olw) == ~I—Z )2 with 2 = cxp(@riefl,).

ﬂmQ
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When ¢ = 4 or 6, the resulting groups are G(I/E) and G(V3). These
are the only Hecke groups which are commensgurable with the modular’
group and therefore the only Hecke groups whoge elements are completely
characterized arithmeticaily. For notational convenience we letl] =2 or 3

_and represent the transformation 2’ = (0z+ B)/(y2+ 6) by a matrix

[a ﬁ] . V
with  ad—fy = 1.
v 8

Note that both
| "

L
' ¥ 8] —y —d]

-V

represelnt:thg same linear fractional transformation. Tt is then well known
{121, [7 ]i;tha,t G (V1) consists of the entirety of elements of the foliowing
two forms:

a Wi
_ , a,b,e,deZ, ad--lbe =1,
o/l d

(2.1)

T b |
Wb | e deZ, lad—bo = 1.
¢ avi :

With this characterization of the elements of G(Y1), we prove
THEOREM 2.1. j,(w) and ji(w) are S,-series for all primes p ewcept
p =1 _
The proof of Theorem 2.1 relies on
Limvmia 2.2. For g =4 or 6 let j{w) = j,(w) and 2 = A,. For p =1,

e [E R L

.
For each M, T, set j(o)= (M), j=1, .0ry p-+1. Then for anyVe @A),
(@)} = {(Velk;

in other words, replacing o by Vo merely permutes the eloments of {ji{)}.
Proot of Theorem 2.1. We must show that the elementary -
symmetrio funetions of the elements of R(J, p) are polynomials in j(w).
However, R(j,p) = {j;(w)}. Since by Lemma 2.2 {3V} = {Jy(w)}
for any ¥V e@(A), any syminetrie combination of clements of R{j, p)

&6b
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iz invariant under G¢(1). In particnlar, the clementary symmetric functiony
are invariant. Since any function invariant under &(4) and analytic in 2
is & polynomial in j{w), the elementary symmetrie functions of elements
of R(j, p) are indeed polynomials in j{w). &

Proof of Lemma 2.2. Since j(w) iy invariant under G{1) we need,
only show that for each M; eT),, there oxists an M; e T, V; e G{4) such
that M;V = V,M; and that the resulting M, are distinct. Tn fact it sui-
tices to 'vorify this result for the two genevators of &(4),

8 = [3 jJ and 2" e mi i]
P 014 1 pil[p ¢
o |
1 0A]f1 A 1 (b-+1)24
B
1 (p—1)A]J1 A 1A][1 0
P [P I
For I the corresponding identities are
p 0]f o1 0111 0
[0 1”—1 oJ - [—1 o] {0 p]’
10 01 01]l[z 0
L’ p”—i o] - [-—1 o] o 1J’

1 bi 01 ~bi (L-+8b"33%) p] [1 b4
(2.2} = , )
0 p|l—-10 —p bA 0

where b’ is the solution to A*bw = —1 (modp) with 1<V <p—~L. o

Before digcussing the arithmetical conspquevces of Thoeorem 2.1
for the coefticients of j, and j;, we look briefly at the question of whether
any of the other j, are §,-series. .

For 8 we have

0<bsp-2,

1<bgp -1,

3. jforg= 4. Forg=15,7,8,9,...18 Jq @ 8y-geries for some prime pd
The eagy proof of the preceding section faily at the point in Lemma 2.2,
formula (2.2), where we find ¥, e G(V1) so that M;T == V, M. For g 3, 4, 6
there is no quick way of determining whether V&6 (4). To
llustrate this ditficulty, we take p == 2 and show that Jq 18 an Yy-series
if and only if ¢ =3 or 6. For the sake of notational convenienco we drop
the subseript g.

icm
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TewOREM 3.1. j(w) 48 an S,-series if and only if

V= [“A (1“2)/2] cG(3).
-2 2

Proof. If ¥V e G(4), then the method of proof of Theorem 2.1 and .
Lemma 2.2 earries over to give that j(w) is an S,-serics. On the other
hand, if j(w) is an 8;-series, then F(w) = j(20) +j(w/2) +3j{(e0+ 4)/2) 18 in-
variant under G'(4) since F(w) is a polynomial in j(w). In particular,
F(Tw) = F(w). However,

2 J -1 0 —1, , . fwi—1
F(Tw)=::( - )M(gw)ﬂ(mgw )=J(§)+J(2w)+3(w2w )

w+2) _(mﬁ—l
=1

which implies  that j( 3 5
: [

20— =1
( e —22
ance group for f{w), VeG(i). n

It is mow clear that j,(w) is not an §,-series since

- [—l/é" 3/:%_]
—2 V2

) or, uponh replacing o by

) = j(Vw). Then since (1) is the invari-

is nof in G(Vé—). To prove the same result for 4= 5, ¢ # 6, we use the
following lemma.

LEvMMA 3.2. Suppose

ap , [« #
V=[? a] and V _L" 6’]

are elements of G(A} with afy = o' /y'. Then

¥ = [a ﬁ+dﬂ] forsometeZ.

y 8+ ik
Proof. Since V() = V(o) = ajy, V"V (o) = oo and ¥V
= & for some teZ. w
TEEOREM 3.3, j,(w) 48 an S;-series if and only if ¢ = 3,6.
Proof. By Theorem 3.1 it suffices to show that for ¢ # 3, 6,

v [—A (1+A2)12]
-2 1



099 L. A. Parson | im“

is not in @(1). To do this we exhibit
ap i - i 4.
M = L 6] e@(1) with " 57 ° #

Then by Lemma 3.2, V ¢ G (i)

First note that
R
= @A),
ST [1 0] e G(4)

An induction proof gives that

sin{r(n-1)/g)  _ sin(mwn/g)

[l R
(ST)" = sin (mn /g) _ sin(r(n—1)/g)

sin(n/q) sin (/)

For q even, set n = ¢/2 and look at

cos(rjg) 1

o | smleigd o sinisig)

EE A N S )
Sm(mjg)  sn(efg)

Then M eG(1) with Moo = GO'E(TCIQ) = }»/2.- Howoever, cos(m[g)/sin(r/q)
— -+ only if sin(rx/q) = 1/2 or ¢ = 6. Tf ¢ is odd, set % == (g —1)/2 and
-consider
AD
R
ARB 4 AMD —ABC
5 -

M == (ST)(G—I)IZB‘(ST)(Q..WE_ .

*

where A= cos (0 /2q), B.=:-: gin(w(g), € = eus(Sn/Zq;{) D Zﬂaiu(ﬁn/g)-
A
M e@(l) and M(oo) = D2B = i[2. However, R TR A= x4

 if and only if sin(w/2q) = 1/2 or ¢ = 3. Thus for ¢ # 3, q, 14 ¢Gf(/:l). "
J. Lehner [3]and J. Raleigh [6] have examined the Fourier coef?ilemntﬁ

of j,{@) and have obtained the following intererting ?casuhl}s. With & fl]fferen1
 normalization J. Lehner has proved that all the Fourier coofficionts are
retional. (For g =8, 4, 8 it is ‘well known. thab the eoefiicieniis are actu:
ally integers.) J. Raleigh normalized the invariants so that (in his notar
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tion) J,(é) = 1. The Fourier expansion is then J,(w) = ' a,(g)s" and
h=—1 .
. 1 .
our j,(w) == m Jy(w). J. Raleigh then derived for all ¢ closed form
-1
expressions for a,(q), n = —1, 0,1, 2, 3. In particular,

g—-1

a_y(g) = 274+ Deg™ &xp {2( ~1)"cos

2Vn

log (2 —2cos7 %)} .

Combining those resulty with Theorem B on J,-series we have

TEROREM 3.4. 1. ¢ (n){o_(@))**" is rational.

2. If jo(w) is an 8,-series for some prime p, a_,(g) is algebraic.

Proof. The first statement of the theorem comes from relating
the coefficients of the three different nmormalizations, To get the second
result we write ¢,(n) = #,{a_,{(g))""" where r, € Q and use the fact that
o, (p*--p) can be oxpressed recursively over @ in terms of the preceding
coctlicients. m

COROLLARY 3.5. For all primes p, j,(w) 18 not an 8,-series if ¢ = b, 8,
10, 12.

Proof. For ¢ =0, 810,12, the value of a_,(g) is listed below;
in all cases the nwmber iz transcendental:

V5(2+V5)F 3w
ANOERAL A LI RSP Lt s
5 (14v5\" 1 =
0, (10) = %(—;’/—) ) aa(12) = 5oy 1+ /B,

4. Coefficients of j,(w) and j,(w). We first note that j,(«) and j,(w)
fatisfy o nniqueness theorem analogous to Theorem A for all primes p

_ sor which they are §,-series.

THROREM A'. Let p be a prime with (p, ¢/2) =1, ¢ = 4,6, and le
(X, X) be the polynomial associaied with j,(w) when viewed as an S,,-geries.
Suppose p(z) = Lz 3 a2" is a formal Laurent series such that F,(p(2"),
' . =0 .

@(2) = 0. Then @(2) converges and defines an anolytic function in {2: 0
< |2 < 1} ond ¢(z) = () = j ().

Since j,(w), ¢= 4, 6, is related algebraically to the modular invariant
j(w), it has been known for. quite some time that the coefficients ¢,(n)
are integers. Now, since j,(w) is an Sj-series, by Theorem B, ¢,(n) for
7212 can be computed in terms of ¢,(k), ¥ =1, ..., 11. Similarly, since
Jolw) is an 8,-series, o4(n), n > 6, can be computed in=terms of ¢,(k},

k=1,...,b. By way of example we have calculated the first thirteen
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coofficients for j4(@). To find the first six coeﬂ‘icien:ts ¢6(0), 65(L), ..., 65(6},
we use the following identity [6] due to J. Raleigh:

jelw)* —2-3% Tjg(w)' +27-23 Jg(w) = §(3"%@) -+j (0 31).

K. Mahler’s coefficient formulae ([4], p. 91) for 8,-geries are then unsed to
determine the other coefficients.

65(0) = 42 =237,
cg(1) = 783 = 3%-29,
© 0,(2) = 8,672 = 2°-271,
05(8) = 65,367 = 3°-269,
06(4) = 3T1,520 = 2°-3°-5-43,
65(3) = 1,741,655 = 5-163-2137,
0,(6) = 7,161,696 = 2°-3°-307,
6,(7) = 26,567,946 = 2-3°53-9283,
06(8) = 90,521,472 = 27-319*-653,
05(9) = 288,078,201 = 87-157-839,
¢,(10) = 864,924,480 = 26-3%.3-72.227,
65(11) = 9,469,235,686 = 23-17-97-103 -2423,
06(12) = 6,748,494,912 = 2°-3°-433,931.

These numerical values suggest the following conjecture.

CoNyECTUER. If 2%m, a1, then 2°7%|g5(n).

If 3%, B3> 1, then 3% |es(m).

Ag the first step in verifying this conjecture we have the following
result on the divisibility by two of the coefficients of an Sy-series.

TewoREM 4.1. Let f(z) = Lje-+ Zan#;s* be an Sy-series with integer
nr=l

coafficients. Let 2° be the largest power of 2 dividing ag, a, and a,. Then for
n=6 '

(41) 4, =0 (mod 2%  whenever m = 0 (mod 2).
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Proof. We make extensive use of Mahler’s formulae for the coeffi-
cients of 8j-series. For # 2= 6 they are:

‘ E-1
(4.2) Qg = g+ 2 Wty ~+ (0, — 0} |2,
i=1
i 21
(48)  Gypqy = Gyt Z Gsap-jig 2 (_1)5_1‘51‘1'4;:”}‘1‘
Fm1 feml
k1
u 2 Wy a5 — Ol (1 — Bger) (2 -+ (03 — 0z} (2,
=1

ke
(44)  gpra = Gypat D Gtgins

et
: B+ 2k '
(4.8)  @ggqs = Ggpyyt 2 Ayhoy—jrs — Z (=1 a4 512+
i=l j=1

k .
+ ,Z Wggosjpa — Paagyn — (B 1 — a1} /2 -

=1
The proof i¢ by induction. We note that a; = a, a8, = 0 (mod 2%)
and @59 = G-+ 30 -+ ag0; =0 (mod 2. Now assume that (4.1} holds
for all n even, n < m, m even. To show that (4.1) holds for m we consider
separately the three cages m =0 (mod 8), m =2 (mod 4), and m =4
{mod 8). ‘

We begin with the most diffieult case, m == 0 (mod 8), where m = 16.
Then by an application of (4.2) followed by an application of (4.3) and the '
induction hypothesis, we have

: k1

(4.8)  Op =g = gt D, Gt (B —an)/2
. . j=1 .

' k
= gt 2 Oy s 7 (BFg1 — i) [2 (mo0d 2°).
el
Applying (4.5) or (4.3) depending on whether or not % is even or odd, we
find that when % is even

%
Oy = — 2 (=LY gty — (O5ppy — Gozp) 2+
=1

k .
+ Z Qyllogjrn+ (“;2¢+1 — 84} /2 (MO 2%)
je=i o . }

= 0 (mod 2°)
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and when %k = 2k -1 is odd
k41 2% +1

(4.7) Gy = Gogrinps T Z Gtaganmirs— O {—1V 00y py gt
=1 =1

+ (W — By n) (2 ("'g(rc'ﬂ) — G 41 /2 F
L

4“2“ Oep—a T (Bps — O) /2 (mod 2%)

j=1
K41
= Gyqys T Z Bythagye ry-gba F (B s — U g0) 2 (00 29),
=1

We now note that (4.7) is the same a3 (4.6) with % replaced by ¥ -+1.
Therefore, if &1 is even, that ig, if &’ ig odd,

@, == 0 (mod 29)

whereas it k' == 2k" is even,
‘ k"","l

Oy = Gy 1)y -+ Z Qo 1) -2

= (@rps — Bpr12) [2 (mo0A27).
d=1 .

Repeating for %7, &', ..., the argument given above for ¥, it iy clear
that eventunally we mmst have @, == ¢ (mod 2°%).
Next, if m =2 (mod 4), m = 6,
. .
O = Oyppqn = a*zk—]z‘]‘jz‘ Wy gpa = 0 (mod 2%)
=1
by (4.4) and the induection hypothesis,
Finally, if m = 4 (mod 8), m = 12,
2%

. — 2
Oy = Gy = Gyppg=t 2 Bgllyoegmg "t (Bopops — Gagp1) (2
=1

= 1 -1
= - ~1Y 0y g — (Wer — ) 12
J=l
b1

+ 2 Oggeg - Bipr — a1 12
fa
= 0 (mod 2%)

by (4.2), (4.8) and the induction hypothesis. m :
OoROLLARY 4.2. If n =0 (mod 2), ¢;(n) = 0 (mod 2°) where ¢(n)

is the n-th coefficient of js(w). If n =0 (mod2), ¢(n) = 0 (mod2")
where cy(n) is the n-th coefficient of the modular invariant j(o) = fi(w).

icm
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Also #f m == 0(2), b(n) == 0 (mod 2%) where b(n) is the n-ih coefficient of
jlls(w) Z‘ b(n 2mnm,’3 ’

n=—1 .

Proof. Since j,(w) and j{w) are §,-series, it is just & matter of checking
that a = 5 for jy(w) and a =11 for j(w). The coefficient congruence
for j(w) is already well known. In [4], K. Mahler verifies that *(w)
i3 an S8,-series with B(2) = 231, b(4) =0, B(8) =2°-3-81L. m

5. Conclusion. The following interesting guestions are as yet un-
answered.

b.1. Is there a value for ¢, other than 3, 4 or 6, for which Jq( }isan
8,-series for some prime p?

5.2. {J. Raleigh [B]) Is a_,(g) transcendental for g % 3, 4, 6%
'5.3. Iy the conjecture of § 4 for the coefficients of j,(w) valid?

b.4. What is the analogous conjecture for the coefficients of j,{w)
and is it true?

B. (C. Pisot in [5]). Except for ¢ =3, 4, 6 is there a value of q

' for which there is a congtant K, so that K j, (o) has integer coefficients ?

XK, certainly exigts if a_,(q) is rational and j, () is an 8,-series for a prime p.
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