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1. Intreduction. In [2] Erdds asked the following question.

Let'« > 1 and § be real numbers. We call the sequence [af--§],
t=1,2 ..., o generalised arithmetic progression. Let (n;) be a sequence
of integers tending to infinity sufficiently fast. Is it true that the com-
plement of (n,) contains an infinite generalised arithmetie progression ¥

Here [#] denotes the greatest integer <z, and {#} =z —[z].

We answer the question in the affirmative by showing that, given
any sequence of integers {(n) for which gy, /0, > 9> 1, for all k&, that
is {n;) is a lacunary sequence, we can always find a generalised arithmetic
progression which does not meet the sequence (my). We ghall also show
that, if (n,) grows so slowly that the sequence (n,0) is dense mod 1 for
all irrationals 8, then there is no irrational « and real number § for which
the sequence [at--f] lies in the complement of {n). A consequence of
this second result is that, given any such sequence of integers (ng), we
ean construct another sequence of integers (f), containing (n;) as a sub-
sequence, such that (f,) has the garhe asymplotic density as (my,) buf
(1) meets every generalised arithmetic progression infinitely oiten. By
combining these two results we see that, if (ny) iy & lacunary sBequence,
then there is an irrational 6 for which {n,0} is not dense in [0, 1]. This
angwers another question of Hrdos [2].

By defining a generalised geometric progression in an analogous
fashion, namely as [a"], # =1,2,..., where a>1 i8 & Teal number,
we shall show that, given any natural numbers a and d, there are uneo-
untably many generalived geometric progressions for which every term
of the progression lies in the residue class congruent to @ mod d.

2, Generalised arithmetic progressions. In this section we prove the
results about generalised arithmetic progressions mentioned in the in-
troduction.

TruoREM 1. If 6 > 1 and (n;) is a sequence of positive integers with
M fny=6 for j=1,2..
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then, given any 0 < 8,<< 1, we can construct o sa of real numbers § = 8(s,)
such that, if aef, then
(1) [at] for t=12,...
is contained in the complement of the sequence (ny), and the Hausdorff di-
mension of 8 is greaier than or equal to 8.
COROLLARY. The set of numbers T, such that if ael’ then [ta] Ues
in the complement of (n;), has Hausdorff dimension ecqual to 1.
oo .
Proof. Put T = ) 8(1—1/n). Then
ne=l
H.dim. T = 1—1/n for all n
and ro
H.dim.T' = 1.

Proof of Theorem 1. Bince > 1, we can choose a real number
d< 2 and an integer r so that 1 < d< d and 4" is an integer with

(2) &> a0 (r+2).
Clearly .
(3) M= d for kE=1,2 ..

Now choose 1> 1 8o Jarge that

(4) 1> @@ —1)[(d—1).
We next choose a, so that

butb

(6) 2a;, > m-~1  for some &
and. .

(7) a, > a1,

These choices are all possible sinee the sequence n, grows exponentially.
Put b, = a1 -

To construct a particular a, our method will be to construct & nested
sequence of closed inbervaly '

. Lol =..
so that if I; = [a;, b;], then
8) [ay, b,]u[za,', 2]V ... W[@VVay, &V,

containg no elements o with [0} —=ny, k =1,2, ...
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Then «e () I; satisties (1).
FEN]

‘We next construet the intervals I;. Put I, = [a,, b;]. Suppose that
I, > 1,5 ...2 I, have been constructed to satisfy (B8), and that

(9) i Z(Ik) = bic—ak —_ a—'r(k-l)l’

where 1(I,) denotes the length of I,. We now construet I, < I, so that
(8) and (9) hold. Consider the intervals [jay,jb.), F* V1< j<d™
These are disjoint and the distance between them is at least 1 for
(7 1) o —jby; = oy —j (b — )
= ak "‘jd_ﬂk—l)l

> ap - dFETEV S F1H1—dl by (T)

=1.
By (8) there iz a « == u(k) such that
(10) Py 1L < dE Dy, < 2y,

Suppose that @ ejI, for some @ V< j<<d* and [#] =mn, for

_some ». Then clearly jb, > =, and so by (10)

(11) ,? =~ dr(}c-—l) qr-e,
But j < & and 80 u < v < w-r. Clearly
{m: & E'jIk! [!B] = %u}

is a sub-interval of jI, with length af most 1.
Put
T, = {w: v ed™I,, [of/d™] = n,}.
Then T, is an interval and has length
l(Tu) < dr/j < ar—vte

since the intervals jI, have mutual distance at least 1.
Put T = (JT,. Then T is the union of at most r intervals, and
. v

the Lebesgue measure of T is at most

Ufegr~1
7 o Zr dt _ d(d" _1)
a—1

V= th . t=1
Hence the complement of 7' in &I, is the union of at most (r+1) in-
tervals, Ky,..., K,., #ay, of length ml respectively. Then
r+1
a{d@"—1
Zmil = &T—m(T) > czfz—m(d—::i—).

Gl
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Thus
r41 "
N ar— M@ 1)
vl 1{d—1)
and so
O (@ —1)
% [m]> & — 5 — )= d—(r+2) by (4).

Hence we can find at least &~ (r+2) digjoint sub-intervals of @I, of
Iength { which do not meet I'. Choose one of these, J, arbitraxily, and pus

The construction iy now complete and clearly (8) and (9) lwold.

At each stage in this construetion we have d" — (r--2) distinet choices
for each interval T,,,. Let 8 bo the set of all possible numbers obtained
in the construction above. We employ the following result due to Eggle-
ghon [1] to show thafi the H. dimension of 8 is at leagt g,.

Toworim (Bggleston). Suppose 4, (b =1,2,...) 48 a linear sel
consisting of N, closed intervals each of length 6,. Let each interval of 4,
contain my,. ., >0 disjoint intervals of A,,;. ’

Suppose that 0 < 8, << 1 and that for all 8 < s, the sum

—1 §j,_
__’;;;w.{ (N (8,)°) converges.
L

o0 »
Then P == kﬂl Ay has dimension greater than or equal fo §,.

 We apply this theorem with N, = (@~ (r+2)}*"", 4, = {possible
intervals at the kth stage in the construction)} and 8, = ld~"*-Y,

Then |
&, 'E ) ’ “ r
2’;””;—;& (Nk(ék) ) b= g % [(d -.-(9«_F.2)).’1%1(“#(,,_1)),]_1

~n1 ’
= Tl [(d"-——r_.ﬁ)‘ld"-"]’ﬂ"l
>

which converges it and only if @ j{(d"—r—92) < 1.
But by {(2) d’-_nr-—.‘z > d't and go

e f(d" —p ._. 2) < grls—sg)
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and so the sum will converge for all s < & and hence by Bggleston’s
Theorem

> H.dim. 8 = 8.

THEOREM 2. If (ny) ie a sequence of iniegers for which (n,0) is dense
in the wnit interval [0, 1] for all irrationals 0, then every generalised arith-
metic progression [at+p), t =1,2,..., for which a is irrational and B
is any real number, meels the sequence (n;) infinitely often.

Unfortunately Theorem 2 gives us no information about whab happens
if « is rational. For example [#+4], ¢ =1,2,..., is contained in the
complement of the sequence p,, where p, denotes the kth prime, but
{p, 0} is dense in the unit interval for all irrationals 0. (See, for example,
Vinogradov [7] or Vaughan [6]) However by adding points to the se-
quence (n,) we obtain the following ' '

COROLLARY 1. If {n, 0} is dense for all irrationals 8, then we can GoN~

struct o sequence () with the some asympiotic density as dmd containing
(n,,) such that (t,) meets every gemeralised arithmetic progression infinitely
often. ‘ o .
Proof. We obtain (2,) by adding points to the sequence {n.). By
Theorem 2 there arve at most countably many generalised arithmetic
progressions which do not meet (n;). Order these in such a way that each
generalised. arithmetic progression appears infinitely often in fthis ordering.
Let A4, represent the nth element of this ordering. Let f(n) be a funetion
growing as quickly as we like. To each integer % insert the first element
of 4, which ig larger than f(n) into the sequence (n,). This gives a new
sequence (#;) and by choosing f to grow sufficiently fast we ean satisfy
all of the conditions necessary to prove the corollary. -

Proof of Theorem 2. We are required to prove that given any
irrational ¢ > 0 and any real g there are

t=t{a, p) and K =lkda, B}y, =12 ..y
with

(aty+B] =My 6 =1,2 .

Since « is irrational 5o i8 1/e and thus by the hypothesis of the theorems
{mx{1}o)} and hence

(na(Lja) + (1) — (8Ja)} = {{my+1)(Lfa) — (Fla)}

ig dense in [0,1] =
Then given any 0<e<1/{2a) we can find natural nombers &y<ky<...
such that '

s<{(%k{+1)(1/a)—(ﬁ/a)}<2£, i=1,2...
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Hence there are natural numbers ?,<#,<< ... such that
g, +1 —2ae < aty+ f < My, +1 0.
Now 0 < 2az< 1 and consequently

[at, +p] =my, =212 ..
as required. .

COROLIARY 2 (of Theorem 2). If (n,) 48 a lacunary sequence there
is an wncounitable set of real numbers U with Housdorff dimension eguel
to 1 such that if 6 e U then {n,0} are not dense in [0, 1]. ‘

A gimiler result hag recently beon obtained independently by B. de
Muthan [3], [4].

Proof. Put' U = {&: # = 1[a, a €T} where 7' is the set of the corol-
lary to Theorem 1. - .

Now guppose that § e U and {n,0} are dense in [0,1]. Then as in
the proof of Theorem 2 wo can find integers & and # so that [(1/0)t] = n,.
But this contradicts the fact that 1/0 €T. Hence {n,0} are not dense
in [0,1]. It now remaing to show that _ .

‘ H.dim. T =1.
We use the following theorem (Rogers [5], p. 53):
TagorEM. Let f: H—R, where B < E, and satisfy the condition
| |Flag) ~F(aa)l < 0, o, ~ay
for all »,, @, in T where U, is a positive constant. Then for all s > 0
A(f(])) < 0, 4°(E)

where A° iz the s-dimensional Hausdor(f measure and O, is @ real positive
constant.
Wo apply thiy theorom with

floy =1jm, B, ={weT: (Llx) eTnS(1~1/m}.
Then U = | JH, and f(,) = 81 —1/n).
Su)pposmn @y, @y & B, . Then
1iby < ogy 2, <10y

where [a, by] == I, is the first interval in the construction of S(L—1/n)
Hence ' L :

1 .
|f(@ty) —F(wg)| = 5‘1‘;;. @0y — @] < by |2, — g

Lt
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and 3¢ by the theorem above
A (B} = O, A°(F(B,)) = 034%(8 (1 —1/m)).

But A(S(1-~1/n)) >0 for all s< 1-1/n, and hence A°(H,)> 0
for all s<<1—1/n and so H.dim.H, > 1-—1/n. Hence

H. dim. U = H. dim.(| JB,} =1
a8 required. "

3. Generalised geometric progressions. Here we prove the rosulb
about genoralised geometric progressions mentioned in the infroduction.

TIIEORE_M 3. Suppose that d>1 and 0 < a< 4 are integers. Then
there are uncountably mamy real numbers o Jor which

("] =a(modd), =»n=12..

Proof. To prove this theorem we note that it is sufficient to show
that there are wncountably many o for which

" elajd, (a+1)fd), n=1,2,...,
for then, d™'a" ¢ [(a/d)+ &, (a+1)/d+k), and so
a" ela+kd, a+1-+kd),
Le., [e®] = o (mod d).

We will construet intervals I, » I, > ... as follows: Put I =Ta -i-“

+kd, a-+1--%, d) where &, >3 is an integer. Suppose that I; has been
congtructed so that if I, = [a), 3], then

al =a--dk;, b =a+L4dk,.
We now construet Ip,,. Olearly bf—af =1, whereas
W —aft 2 by (bl —af) = b, > a, > 3d.

’.I‘]_aerefere thore are at leagt two closed intervals of length 1 in fod*?, b4+

with intoger end points and with loft end point congruent fo a {mod d).

We choose one of those arbitrarily and define I, = I; as follows.
Let

oftl = af @k, and B =614 kg

where [ali}, b11] < [af*?, ) and %, is an integer.
Pot Lygy = [ty b51).

3 - Actn Arithmetiea XL.3
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Let ae () I; then
iwsl
s a1
{d"la"}e[a,——g—), no=1,2..

There are uncountably mawy such numbers since ab each stage in the
construction there are two digjoint choices for Ip,,.
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On a result of Littlewood concerning prime numbers
by
D. A. GorpgToxN (Berkeley, Calif.)

1. Introduction. We define

(1.1) p(@) = > A(n)
nw
where
(1.2) 4(’"’) _ {log;p, ) m—»pm.,p prime, m integer > 1,
0 otherwige.

The primne number theorem ig equivalent to.
(1.3) p(@) ~x (a8 @->o00).

Agsuming the Riemann Flypothesis (the RH), we have the more precise
resalt :

(1.4) p(0)—a = O(a"logs)
and, on the other hand, we have (withoot hypothesis)
(3.5) p(@) —z = 2, (x"*logloglogew).

The result (1.4) is due to von Koch in 1901, while (1.5) was proved by
Littlewood in 1914 (see [4], Chapters 4, 5). Presumably (1.5) is mnearer
to the truth. The basis for these results is the explicit formula for y(w):

pl@+0)fy@—0) ® 1 _
(1.6) - '—'“’“'ZE —% (0)—5 log(1 —o™)

L3

the summation being over the non-trivial zeros of the zeta function,
¢ = f-+iy. (The RE allows us to fake f = 1/2.) The series in (1.6) is
neither absolutely nor uniformly convergent, and is understood as

i , a?
E — == Hm . M’——.
[} ¢ oo I¥l<® e



