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Conjugate algebraic numbers on conies
C. J. Buyrm (Townsville)

0. Intreduction. The aim of this paper is to find all algebraic numbers
which lic with their conjugates on a comic. One consequence of our main
results (Theorems 2, 3, and 4) is the following:

TaworeM 1. (1) If a parabole condains infinitely many sets of conjugate
algebraic numbers, its focus 1is rational.

) If an ellipse or hyperbola coniains infinilely many sets of conjugate
algebraic numbers, its fooi are either both rational, or are conjugaie quadratio
irrationals.

As an immediate

OororrArY. No ellipse or hyperbola with drrational cenire coniains
infinitely many sets of conjugate algebraic numbers.

In 1969 Robinson [4] conjectured that no circle with irrational
centre coutained infinitely many sets of conjngate algebraic integers.
Although Ennola [1] showed that this conjecture s false, we see that the
corresponding result for ellipses and hyperbolas is trume. (Throughout
the paper, ellipses are assumed to be non-eireular.)

Binece the theory for circles has been covered ([11, [2], [3], [4]), we
devote our atfention fo parabolas, ellipses and hyperbolas.

1. Notation. Let U denote the unit cirele 2| == 1. Let % be the conic
under consideration; it can be either a parabola (¥ = #), an ellipse (¥ = &)
or a hyperbola (¢ = ).

We let € bo a real number which is the focus of the parabela if € = 2,
ofharwise the centre of the conie. The parabola #(C, F) with eguation
Yy = F(p-+1F—0), F > 0 has focus ¢ and iz parametrized by

(1.1} &(t) = @ +iy =%{t+%w)=+a.

Woealgo let R > 0,6 = 1 befixed,and B> 1{¥ = &), |B| =1, B? % 1
(¢ = ). Then for ¢ on U(¥ = &), or 1 real (¥ = )

(1.2) 2(f) = O+ R{B"1+:(B"H)™)



@
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parametrizes a certain cllipse #(C, B, B, &) or hyperbola #°(¢ + B, B, &)

with centre 0. Note that the conie is the same it B'* is replaced by — B2,

the sign being incorporated into ¢. Unless otherwise stated, we will however

always assurne that a square root is uniquely defined to have argunment

in [0, w).

The above ellipse aud hyperbola have equations

(@ ~0)* L v
B{(B--B7'+2s)  BYB BT _2s)

=1
and
N Gt 2
RH2+B--B7Y)  REg-B-B7Y T ¥

respectively. Note that the ellipse is non-circular, but that the equations
are otherwise complebely genoral, given that they must be symmetrio
about the real axis. The foci of the above conics are at O --2R:"2.

Let T, denote the Tehebycheff polynomial of degree %, so that

T b+t e R g5,

Let & (I) De the set of those algebraic numbers which lie with their con-
jugates in a subset I of the reals R. Also define the following sets of al-
gebraic numbers: _

Bp = {F:F > 0 and all other conjugates of I are < 0},

8g = {B: B >1 and all conjugates of B not dqual to B+ are on U},

84 = {B: Bis on U, B? 3 1, and all conjugates of B except B! are

: real}.

TFor B algebraie, let %(B) be the least positive integer % such that
B* hag no conjugate of the form ¢B** for o s 1 a root of unity.

2, The main theorems, _

THBOREM 2 (Parabolss). Let 2 be an algebraic wumber of degree at
leasi 9 which lies with its conjugates on o porabola 2 (0, F). Then

(1} C ds rational, and F e Sy;

(2} 2 has a conjugate of the form

1 ”n‘w ] %
2.1 _ Zaea N e} oo
(2.1) 4('14%31( ) -0

where B ='F,, ..., B, are the conjugates of ¥, and o € o/ ([0, co)). Conversely,
gwen C rational, I'e Sy and a e/ ([0, o)), the algebraic nwmber given
by (2.1) lies with oll its conjugates on #C, T).
_ It is not diffienlt to check that z has degree 2"dega (a 5= 0), 2" (a
= 0). It may be that the 9 in this theorem can be replaced by 5. It cannot
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be reduced any further, sinee it is casy to find such z of degree 4 on a par-
abola with non-rational focus.

TurworrM 3 (Ellipses). Let ¢ be an algebraic number of degree at least
2D, which lies with s conjugaies on an ellipse & (C, R, B, &). Then

(1) ¢ and B? are rational, and B*® e §;.

(2) Defining

. Ny 1/2
(2.2) & = Ty (ﬁﬁaﬁ-—)

then 2* and all its conjugaies lie on &(0, 1, B¥Z 1),

(3) In view of {2) we weed only consider the special case € = 0, B = 1,
E(BY =1,z = 1. Tn this situation 2 has o conjugate of the form 646771,
where

"
(2.3) = a+ (a2 —4)) (H.Bj)l’ﬂ.
=1
Here B = B, and either B is rational and n = 1, or BF, BF*, ..., BF are
the conjugates of B. Also e/ ([ —2,2]). Conversely, let B € 8; and «
s ([—2,2]). Then

(4) 2 = 067", where 0 is given by (2.3), lies with iis conjugates on
the ellipse £(0, 1, B, 1). :

(5) Let O, R and B satisfy (1), put & = k(B) and use (1) fo dofine 2*
on &(0,1, B*, 1). Then if z is a root of (2.2), = les with ol its conjugates
on &(C, R, B, &)

TreorEM 4 (Hyperbolas). Let z be an algebraic number of degree ol
least 25, which lies with all its conjugates on o hyperbola 3#(C, R, B, ¢).
Then

(1) C and R* are rationad, k{B) =1 or 2, and B*P e S,.

(2) If B # 41 and 2* is defined by (2.2), then #* and oll ils conjugates
lie on the hyperbola (0, 1, (eB)*®, 1). Further if k(B) = 2 then the par-
ameters of =* and its conjugates are all positive.

(8) If B = i, then 2% = (2—O) and all its conjugates lie on the line
R1Z* = 2¢R*, and '

(2.4) 2" = 2eR*+ia  for some o e (R).

{4) Im view of (2), (3} we need only consider {he special case B # 44,
¢ =0,R =1, k(B) =1, ¢ = L. In this situation = has & conjugate of the
form 067", where 0 is given by (2.3), with B = B;, and Bf', ..., B!
the conjugates of B, and a e st {{ —oo, —2]U[2, oo)}.

Conversely, let B e 8,0 and a € o {(—o0, —2]U[2, co)}. Then
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(5) & = 607", where 0 ds given by (2.3), lies with all its conjugates
on #(0,1, B, 1).

(6) Let ¢, R ond B satisfy (1), B # i, and use (B) fo define 2* on
# (0,1, (eBY*, 1), with 2" and all its conjugates having positive parameter.
Then if 2 15 a root of (2.2), 2 les with all its conjugates on #(C, R, B, 5).

(1) Let ¢, R end B satisfy (1), B = &1, and a e o (R}, Then

z = O+ {28 +ia)"

Lies with all its conjugaies on #(C, R, B3, &).

Again perhaps the lower bound of 26 on the degree of 2 in Theorems
3 and 4 can be reduced to 7. It I8 cavy to find # of degree 6 lying with
its conjugates on an cllipse or hyperbola with irrational centre.

The proofs of Theorems 2, 3 and 4 are contained in Sections 4 to 7,
and of Theorem 1 in Section 8.

3. Tn this secbion we present lemmas needed for the proofs of the
theorems.

LeviMa L. et o, ay, ag be distinct conjugate algebraic numbers. Then

(1) aad-ag ¥ +20,

(by If
(3.1) oyl = a®,
where 8, 8 = -1, then af == o for some positive imteger k.

Proof. (a) I eyd-ay = 1-2a¢, then by applying a suitable auto-
morphism which maps a to a eonjugate o, with maximal absolute value,
we have o+ = +2a, for some conjugates a; = ¢; of a. Bub |o;d oy
< 2layl, & contradiction. '

{b) Use Dirichlet’s Theorem to find a &k > 0 such that

(3.2) msz([ﬂrgﬁj!) << wjd

where f = o and the §; are the conjugates of ﬁ Hore we take argfy e (—m,
n]. Now order the complex. numbers by p < ¢’ if |y| < [¢'| or if |p| = ||
and argy < argy’. With this ordering, choose the conjugate f, of § and
7 == -1 such that among all conjugates of g and 7%, g7 iz maximal.
Then applying 4 suitable avtomorphism r to {3.1) to map § — B, wo get
(3.3) BB = By
for some conjugates f; = (ab), f; = v(ui) of B.
Since ﬁ"”l, 162" < 1801, 1657 = 182" = |Bi)-
qmg,ﬁs +arg 5T = 2arg ]
80, a8 arg Py, argfi” < argfl, in fact argfy’ = argfe” = argf). Henoe

Bs = B2 = B, s0, applying v}, af = o’ ag required.

Algo, using (3.2),

icm
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COROLLARY 1. Any algebraic number z which lies with ils conjugates
on o line Rlz = constant must be of the form g-ia, where g is rationdl,
and « is totally real.

Proof. Let ¢ = X(z+%). For any conjugate ¢’ of ¢, choose an auto-
morphism which maps ¢ >g¢'. Then ¢ = }(2;+2,) say, so Rlg =
1(Rlz, - Rlz,) == gq. Hence ¢ = $(¢'+7). By Lemma 1{(a), ¢ =7 = ¢,
80 ¢ i8 rational.

LeMMA 2. Suppose we wre given n—1 real numbers dy, ..., d, which
are linearly indspendent over the rationals Q. Suppose further thal T i
a finite real set with the following properties:

(IYted => —ted

(2y teT = exaclly one of t+d, ed (i =2, ..., n).

Then T is o union of disjoint sels F,, where

:{“t'ﬁsl(@+ 231 1) g = =+ (izl,...,%)}(aiﬂ),
(3.4) =
:{ t#%Z’gl iy & = o= (i=2,...,'n)}.

Turther |7, =27 (o £ 0) and |F ] = 2",

Proof. 8ay ¢ ~ ¢ if 1% = Ld; for some ¢, or ¥ = 4+4. Then ~
generates an equlvalence relation on &, Let &~ be one of the eqguivalence
clasges, and fix ¢ € 7~ . Define d; = -1d;, choosing the sign by the property
t+died (i =2,...,n). We tirst claim that all elements of & can now
be written in the form =+ (t—l—__j 7

=2

di), where g; =0 or 1. To show this,

we assumne the contrary. This implies that there is a least infeger p = 1
guch that for some integer j and set I <= {2, ..., 2} \{j} with |I] =

t+ 5 d;—d; e, Choose and fix keI, and denote i+ D d¢+Ad;+ ud;
1el TeIN{%} .
by (4, @). Then by our agsumptions (0, 0), (1,0), (0,1) and (1,-1)eF .

Now by property (2) of 7,

(8.5) (A, w) €~ = exactly one of (1, 1) ed"
(3.6) and = exactly one of (A+1, w)ed .

80 (0, —1) ¢7 by (3.5) and 50 (2, —1) eF" by (3 6).

We now assert that (I, —1) a.nd (1+1, —1) e foralll= 0. We have
alrcady proved this for I = 0, 1, and the fruth for all { follows by induetion,
using (3.5) and {3.6).

By the Q-independence of the d;, the (I, —I) arve all distinet. This
contradicts the finiteness of 7. Hence all elements of #~ are of the form
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1 kd
d(a} 3 eidy), where g == 1 and @ =t-} 3 d;. Finally put &d;
=3 =2
= gd; and we obfain (3.4) for @ 5= 0.
It remains only to see whether any of the clements 4-(a+ 3edy)
can be equal. Now all the a-+ > g;d; are clearly distinet by @-independence
of the d,. However, if may be that

(3.7 a5 2 sy == — (“,%m.%z & dft)

for some &, & (4 = 2, ..., ). But then for any j

-ty N oy —deydy = —fa-t-3 36 dy- Bef -+ 26 d}
i 1]
Since the left torm belongs to 7 so does the right, and henee g 4 2¢
= 41, or ¢ = —g. Hence 2a = 0,a¢ = 0 from (3.7). This completes
the proof of the lemma.

The above result can easily be pub into multiplicative form, which
gives the following.

COROLLARY 2. Suppose we are given w —L non-zero numbers dy, ..., d,
either all on U, or oll real, and multiplicatively independent. Suppose further
that J° is a finite set on U if the d; are on U, and real if the d; are real,
with the following properties:

(1) ted = Lt ed,

(2) t €T = evaclly one of tdF €T (i = 2,...,n).

Then T is o ution of disjoint scls 7, wheve for a % 1

T

T,=ftl t=an]]ds, e = £1 (i =1,...,n)
=2

and for e = -1

n
To=ltl t =aflas, 5= x1(=2,..,m)}
4=l
Purther |7, = 2% (0 % 1) and |F | = 2"7h.

The proot is almost identical to that of the lemma, exeept that ut
the end when one gets (3.7) implies 2a == 0, 4 = 0 the nultiplicative
equivalent is * =1, @ == 41 '

Lemma 3. The polynomial ax?--bx -+ ¢, where a = 0, has a real (resp.
imaginary) zevo iff g, = 1 (resp, —1) and

(3.8) (48 —0)? ~ (8, 0B —Gb)(bE — 54 be)

i8 wero. It has two real (resp. imaginary) zeros iff amy two (and hence all
three) of ac—ge, e,ab —Bb and bT —s,be are zevo.
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Proof. The expression (3.8) is the resultant of ax® 4 br+ ¢ and ax? -
1hrtcif g, =1, and of —ax+ibr+o and —aa?—ibyx+Eif 5 = —1.
The second part is trivial.

LEmma 4. (a) Let I e 85, with conjugates ¥ = ¥, ¥y, ...
Then IY?, ..., ' are linearly independent over the rationals.

(h) Let BeB; or 8, with conjugates B = B,, B7', Bf', ..., B,
nzz2. Then B,, ..., B, are multiplicatively independent.

y By 2 2.

k1
Proof. (a) Suppose 3 ¢F}” = 0 for some g, ..., ¢, rational, and
i=

¢y (say) non-zero. Choose an antomorphism v which maps F, — F. Then
. w
7{g, F;*) is real and non-zere, while z( ¥ ¢;F7") is imaginary.
j=3

{(b) First note that gince » = 2, B i3 not a root of unity. Now suppose
BY2,., Bin =1 for some integers w,, ..., m, with m, (say) non-zero.
Map B, +— B as in (a) above. Then z(B5) is not +1 and is real (¥ = &)
oron U (% = #7), while (B ... By ison U (¢ = &) or real (¥ = ).

4. In the next four secticus we prove Theorems 2, 3, and 4. 'We start
by considering the three proofs conewrrently, though we ghall separate
them after this section. In Sections 4, 5, 6 we assume that z lies with its
conjugates on ¥, and, in time-honoured fashion, deduce enough conse-
quences from thig fact o be able, in SBection 7, to show conmversely thab
these consequences inply that % contains complete sets of conjugate
algebraic numbers.

We also need to assnme that the degree &z of 2 is at least 9 (¥ = &),
and at least 2b (¥ = &, 2¢). The equation of ¢ can be written in the form
{4.1) AL 4Tz -+ 2F (2-+7) +G = 0,
where ¥, F, and & are real. The conjugates of z determine ¥, F and G,
which are therefore algebraic. Equation (4.1) represents a parabela when
E = -2 and F # 0, an ellipse when |B| > 2 and 4F*—G(H+2) > 0,
and o hyperbola when |B| < 2 and 4F¢ s G(E+2). For ¥ = 2 we shall
in fact assume that F > 0. I F < 0 we simply replace 2 by —=z. For ¢
= @, & is given in terms of the parameters F, 0 by G = F(F—4C).
For % = &, #, ) = ~g"(B+B™), where & =1 (€ =), =& (¥
= #), o= —HB+2)0, G = —301 +sR*(E*—4).

Now (4.1) holds when # Is replaced by any of its conjugates. On ap-
plying an antomorphism r: F — % to (4.1) we obtain say

(4.2) 2+ B ae, + 20 (42 + @ =0

for each conjugate 2; of 2. Here # is & suitable large field, say the smallest
normal extension of @ containing z, B, 7, G, ¢, R and B,

(4.3) 2y = ToT 2,
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where o: F - & is the complex conjugate antomorphism, and * denotes
application of =, e.g. B = 18, ete.

‘We now fix ¢ to be the parameter of 2 = 2,, and « to be the parameter
of 2, in all threc cages ¥ = 2, &, #°. We put

t+u (€ = 2), t—u (€ =),

44 = d =
(44 ()2 (% = &, #); t)s (€ = &, ),

where arg (tu)*? e [0, 7).

Note that then ¢ == ¢d, u == ¢d™ (¥ = &, #). Noxt, woe substituto
the parametrizations (L.1), (1.2) into (4.2). Afber some tedious manipu-
lating we obtain, using (4.4), for ¥ = &

{4.5) (@ FF)q(s)+4 = 0,

where g({s) = (s+iFV2+FF, i = 4727 (0" —0), and for ¥ = &, &,
(4 6) ({(d-+ a2+ B —-2) po(s) + pp () (d+-d)+4 =0

where

P1(5’) — Bll28+8B—1)23-1,
(47)  Po(s) = BELB 157 f ol = (Bs*—&"B)(1—&*(BBs")7),
o= (B +2)(C~C")(R,
A= (B 420 -0 +s(R” —R)Y(B” —4)}[R.
Note also thatb
(4.9) (A+d7 P+ B —2 = (B —ee*B)(L—d e B ).

For later use we now prove

LemMA 5. Let € = &, & or 3, and B # 0. Then given z;, only one
conjugote 2z, of # satisfies (4.2).

Proof. On applying the <L1_1L011101‘p}113111 7! to (4.2), we obtain (4.1)
with 2, 7 replaced by 2y == v7'2;, &y = 1'%, Going over to the para-
metrized form of this equation, namely (4.5) and (4.6}, we obiain

s(dt 1) (s-200) = 0 (¥ = P}
and, since 1 =pu = 0,

(4.10) (B —e* B)(1 —d~%es" B™Y) (5% —&*) L

(4.8)

L—g* (B2 == 0

(@g’ = &, '%d)
using (4.7) and (4.8). Hence s = 0 for € = #. Since |$2] = [d?] == 1 and
B> L for € = ¢, and |B| = 1, B non-real, d*, 8% read for @ == o, (4.10)
gives 8% = &%, for & = &, 2, provided B? # —1, i.e. B 5 0. So In »ll
cases # is uniquely determined by 2, 80 2, is uniquely determined by 2.

5. We restrict ourselves to % = & for this section. From (4.3) and
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its complex conjugate, we obtain

(6.1) 42+ FF g(s)) = d(s)(A+FF g(s))-

I g(s) =0, then as s is real, RI(F*) = 4 P so that FMWLFM
= L 2F"". This implies ' = F, by Lemma 1 (a). Henece s = 0, and,
from (4.5), ¢" = C.

Now assume g(§) 5% 0. Then once s is given, d? and hence the wnordered
pair 4, & iy uniquely determined by (4.5}, Thus fox FY # F two distinct
unord@led pairs {2;, ,} satisfying (4.2) eannot give the same value of
§ = t-+u. Since 9z = 9, there axe at least & pairs {7, 2} satisfying (4.2),
and so at least 5 values of s satisfying (5.1). Hence (b.1) is identically 0
and from the coefficients of the powers of s we obtain F' = F', and
A=0,50 € =C.

Since ¢' = € whether or not ¢(s) = 0, ¢ must be rational; and F
totally reul. By translating z by ¢ we can now asgnme that ¢ = 0. Since
gis) = 0 for I = F, (4.5) gives
(0.2) @& = —FF :
for B = F. 8o F'< 0, and 4 = t—d = t+(—FF ). Now, applying
Lemma 2 and Lemma 4(a) we obtain

Levwa 6. Let B = B, > 0 have other conjugates Iy, ..., F, oll nega-

tive, and let 7 be the set of parameters of z and ils conjugates. Then, for &
= P, T is the union of disjoint sets &, a real, where for a # 0

7ot ol 3

=2

Fm ) g = +1 (i = 1,...,7@)}
and

Fo=1{tl t = %Zsf —FEY?, & = £1 (i=2,...,m)}.

T=2
Note that |57, = 27 (6 5 0), and |75| = 2",
Further, o straightforward ealenlation using (1.1) gives

LaMMA 7. Let 2(1) be the comjugate of z with parameter t. Then for
=10

(5.3) A
ted

T - [2 {Wﬁ —%tr]ffj (@ % 0),
_onSy (@ = 0},

+.F, is rational.
.., %) are any antomorphisms of & which rnap

where twl = I+ ...
Now it =, (i =1,

B I, then using (4. 3)
5 =[]0 tneey @20

i=1
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where z(f) is any conjugate of 2 with parameter ¢ e ,. Then for any
antomorphism z: & — &,

1

vz, m”(l—i»(';ri) (v e (2(t)) = [I (L+7or )z (2(8)),

f=1
where 7; (j = 1, ..., %) in gome order have the same property as the ¢
Hence 2, = I, for some other real number a'. So 2, is fotally real.
So by (8.3) v(a?/F) = a*[F, so that a2/F is totally real, and 1'.011@]1‘3/ noen-
negative (of courso ¢ need not be & conjugate of a?). Putting o = 4a2/1,

n
we gee that 2 hag o conjugate of the form F(a+ 3 (~F,)"]°. This
F=l
proves the firgt two parts of Theorem 2.
6. In thiy section we apply to € = &, &# similar argwnents to thoge

used for # in the last section. Here, however, the details are more compli-
cated. We have first that

Lemma 8. If p and A are not boih 0, then $* ==y (say) satisfies the
polynomial

(6.1) CIr—yR R, = 0,
where
(6.2) L = (By*+sBy-+B) B~y + B y+ B) (' —
- Ay (By + eB'y + BN — Ay (B gt 5B y + B),

(6.3) Ry == u*(By*+eli' y+-B7) ey + B) —p(B y* -+ eE'yy - BY(By -+ ),
(6.4) By = u(H —2)(y+eB VB 'Y+ B y--B)—u*(eB 4 1) x

X (By* ey B~ (I )+M(y+sB Ny — g A(eBTy 1)y,
Here p* = &',

Proot. Assume p, A not both 0. Note that d -3~ is real unless 4 = #
and {fu < 0, when it is imaginary. 8o put gy = 1 if d-+-d~* real, —1 if
d+d™t imaginary, so that d-+d~' = g(d-+d™"). Then as (4.6) is not
identically 0 as a polynomial in d--47, woe have, by Lenuna 3, that

)+

(92 (8) 2+ (B ~2)pg(s)} —pa(s) Ha+ (B —2)py ()}
= oDy (8 )Mpl(s)“‘l)z( )Mpl 1%
X [y (8) {2+ (B —2) o (8)} — 20 1y () {)W (I’ —2)py(8)3]-

NOW Py(8) = B7s* - Bs ™2k el | egpq () == B g*(eB s --871), 8o that we

get the required result on substitution. :
Levma 9. If (6.1) is identically O, then u = 0, and, if B 5= 0, 1 = 0.
Proof. Assume (6.1) is identically 0. Then ag the degree &(yR,R,)
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is at most 7, 6L < 3, so B = E', B’ is real and
(6.5} L = y[ABy* +:By+B ) —AB 'y’ +:E'y+ B)).
Algo R, can now be written as

Ry = —B (B —2)R,+yR,

where

(6.6) By = ph(y+eB7) ~u*A(eB 1y 4 1).
do from (6.1)

(6.7) I = y(—BW - R yR,R,).

Now &(L*-+B 'y(B' —2)R} <6, so that, as B # 2, 0, <2. Hence
4" eB = u, which, for € — & implies g = 0, as B> 1. S0 R, =R, =0
for 4 = &, and now the coetficient of %3 in (6.5) gives 4 = 0.

For @ = 2, we ean conclude only that p = B”%, where = I real,
But now &L <B,EL<2 and A = By for some ' real. Hence ,uﬁ
= p"AeB™!, 5o AR, = 0. Now o[I” -I—B“ly(E —2)R}) < 4, 80 OB,
implying that —zs(B—B Y E —1) =

Sinee B2 1, v =0 or =18 7=0 for # =0. Now &L <1,
e (A1) =0, 50 7" =0 or B =0, B0 if B0, v =0 and B, = 0,
L = 0 and 5o from the constant term of B, we get v = 0.

Levma 10. We have p =0, O rational, and for B %= 0, 1 = 0 and E*?
19 ralional.

Proof. It iz sufficient to prove that 4 = 0 and, for & == 0,4 = 0.
Then (' == ¢ and, for B # 0, B = R*, from (4.8). Since this ig true for
any conjugates O, B'® of ¢, R?, we have the result.

Assunme that g s 0 if B = 0, and that g, A are not both 0 if & == 0.
Then by Lemma 8, $2 = y satisfies (6.1), which is not identically 0, by
Lemwma 9. Bo not all of L, Ry, R, are identically 0. S8ince by Lemma 3

{4.6) has two real (s, = 1), or imaginary {g) = —1)roots d+d1ifi L = Ry
== R, = 0, there can be at most fonr values of s? for which (4.6) has two
1(x 11 (&g == 1) or imaginary (s, = —1) roots. Hence there are at most

ZobdeL = 12 pairs &2, d4- d‘ which satisty (4.6). Now s* determiines
S‘, a8 args € [0, =), and li ' is one solution to t'/s-s/t’ = d+d™*, then
o' e 2l iy the other. Se each pair s2, d-+d~' corresponds to a unique
unordered pair {#°, w'} of parmmeters of conjugates of 2. Hence there
are ot most 24 values for ¢/, @', so fz< 24. Since 02> 25, the result is
proved. _ _

LemMa 11. (a) For € = #, k(B) =1 or 2. (There is no restriction
on k(B for € =8.) '
(b) When € ==

lie on U.

< & and k(B) = 1, all conjugates of B not equal to B!
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(¢) When % = o and k(B) = 1, all conjugaies of B emecept B qre
roal.

Proof. () E B == 0, B = 1, k{B) = 2. Bo we can assume B £ 0.
Then g = 4 = 0, and (4. 6) (4 T) and (4.9) give
(6.8) (d*— — e B Y (s

— ¥ B (P — BB — BB = 0.

Por ¥ = o, d% and §* are real. If B(B) > 1, B has a conjugate B’ = B
with |B| == 1. Since B % +1, B 5 41 and s0 @2 = "B or e B,
Hence by (6.8) one of BB~ iy real, which implies B’ == 4 B+, B2
= B™ and B(B) == 1 or 2.

(b) Fox € = &, d? and $* are on U, so that from (6.8) cither B or
B'B™(6 = 41)is on U. In the latter cases B'B’ = B*, 40 by Lemma 1(b),
some power B of B iy cqual to B*. So B" == p B’ for some root of wnity o
As E(B) = 1, we can take ¢ = 1.

(¢) For % = &, from (4.6) either B i3 real, or argB™ = argBY,
8 = +41. Hence B?B"~? = BY, so by Lemma 1(b), B'* = B for some Ts.,
and the argument of (b) above applics.

Yor B = 0, wo now dofine #° = (z—(t. Then 2* lics with its con-
jugates on the line Rle = 2?2, and, by Corvollary 2 to emina 1, R* is

rational, and 2* = 2eR%*J-{a, where oe o (R). Note that R* rationnl
implies that in Ia,(t A = 0in the ease F = 0 algo.

For Il 5 0, we define 2* by (2.2). Then note that if 2 = 0 4- - BB+
+&(BY1)™1) is a conjugate of z,

~* — (B*k)lfz ﬂ;”' -+

24

((B*]s)l/ﬂ 1‘;".7;')—1 ,
where

- Mt i -8, . |B if € =&,
iy it G = B it % = .

J
Algo, if & =2, z;“ has positive parameter 3 for € = #. Now any

o et (2 —

. . ¢
antomorphizsm =; of % which maps 2 — & maps 2" Tkw) (ww.m...ﬁwwl)

= &2, and so lies on €(0,1, B*®) 1) ¢ = & or #. This conic is
non-degenerate unlesy ¥ = # md B*"(’*) —Ll This is impossible a8
B 7 41 und, sinee B 0, B L.

We now replace 2z by 2%, i.c. we assumeo that 2
lie on #(0,1, B,1), where B & S%n, G oo F,H.

From (6.8), since now & = g* l we gel §2 == 1 if B’ = B%!, aud
otherwise @ = B'#', Hence u = 1/& if 82 = 1, and # = B’il otherwise,
Putting B = B, and letting Bf, ..., BX' be the conjugates of B on U
(€ = &) or R (¥ = #), wo see that B, .eqy B, are multiplicatively inde-
pendent by Lemma 4(b). Hence we can apply Corollary 2 to obtain anal-
ogously with Lemma 6, that

and all ity conjugates
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LemMaA 12. For € = &,#, the set T of paramelers of = and its con-
Jugates s a disjoint union of sets 5‘ (¢ on U for € = &, a real for € = #)
where for a % +1

T ={t| P = a’ (ﬁ B;j)1’2,

Fa2

g = +1(j =1, ...,n)}

and

Ta={tl t = a(n By, g = £1 (=2, .yn) (2= 1)
Fe:2

i

The square roots are chosen as follows: fiz {[] B; )”‘ to have argument in

i=2
[0, ), then

12" =([] )" [15"

gmﬂ juzz
J”"“"l

Note that |7 ,| = 2" (@ # 1) and |5 ,| = 2" .
Again, we have
LenMa 13. For z and iis conjugaies on €(0,1,B,1) (¥ = &, ¥),

L, = Nal) = a,+a,-1)(n13)”2 an (1B
JE.Q"G F=1
where r€ Q,r > 0.
By the same argument as for the parabolic case, all conjugates of
Z, ave of the form 4 (a’44a" )72, where o’ is on U (¥ = &), and real
(% = ). Hence X, ig totally real, so a: = a+a e #{[—2,21 (¥ = &)
and e o ({—o0, —2]U[2, 0o}} (¥ = 5). Then a = §{ad{a®—4)"),

4)1/2) (ﬁ Bj)lﬂ .

7. Weo now prove the converse parts of Theorems 2, 3, and 4. For
Theorem 2, let 2 be given by (2.1). Then every conjugate of z is of form

.'3’ = %(8 a}c"z Z

jml

= {(a-a Hyr'?,

z has & conjugate 667", where 6 = & {a-(c

1]") +0

where g, 18 & conjugate of o, and &, &, ..., 5, are £=1. So

1 i i - 2 .
¢ = (boulap BV + 4yiF o+ ) G(—FR)") +¢

=

g
1 o Y
== (e (@B® s Y ng(~FE)"+ }iF) +0
f=2
which, sinee o, > 0,F >0 and —F;>0(j = 2, ..
(1.1} for real f, as required.

., 1), i8 of the form
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For Theorems 3 and 4, consider the conjugates of 8 given by (2.3),
where acof([—2,2]) (Fed),ae | —oo, —~2]U[2, x)) (¥ = #), and
B el (¢ = &, #). Then all conjugates of }(a-(a?— )”) are on U for

” By)"* are of the
I
= ). Thug the

% = &, and real for € = 4. Further all conjugates of

(
J=
form B*Y ., where w iy on U (% = &) and real (¥
result follows from the parametrization (1.2) of 7.
It remains only to show that, given 2* on %(0,1, B, 1), where &
= k(B) and B e 8, (¥ = &, #), then the zeros 2 of
¢ —() "
o o208
lie on ¥(C, B, B,s&), where &k = 1 or 2 for € = #.
Let & = (B¢ ((eB)*1)7?, where ¢ > O in the case k = 2, % = .
Then the % roots #; are given by
{z;—C) e
E
where e = cxp (2wi/k), 80

4 = C+ R0/ B (0! BPHE™Y (= 0,..., k—1).

For ¢ = &, 0’1" ig on U, and /"% i real for # = 2. Thus we have
o parametrization (1.2) for 2;, which proves the regult.

- wj(g-B)llztl]k_i_ (cuj(sB)I"ztw"‘)_l (j' =0,..., k—-—l)

8. We now prove Theorem 1. Suppose that we have a parabola.
Z(C, F) with ¢ having a conjugate ¢” s (. Then as we saw in the proof
of Theorem 2, there are at most 8 possible values for the parameter of an
algebraic number 2, with conjugate 2., both on (0, I"). Hence the sum
of the degrees of all algebraic numbers lying with their conjugates on
Z(0, I} iz at most 8.

A similar argument holds for € = &, 4, if ¢ or R is irrational,
except that 8 is replaced by 24.
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A new cubic character sum
by

A. R. RagwADE and J. C. Parvamr (Chandigarh, India)

1. Jotroduction and the statement of the main result. For a polynomial
J{#) with integer coefficients, the character sum Zis detined by N (fl@)|p),

a{modp
where p is a prime and (ap) the Legendre symbol. Tf f(z) is linear, then

clearly X, = 0 and it is well known that

a){—l i »—4ac = 0 (modp),

x = |—
az? +bete (]9 P 1 it b —4dac =0 {modp).

It is surprising that beyond this little is known even for cubics, except
some estimates. It is therefore equally remarkable that the exact value
of X, is known for the following cubies:

(i) @'+ az,

(ii) o(x?+4dax-+2a?),
(ili) #°+ e, and

(iv) m(2?®--21lax -+ 11248,

Proofs of (i) can be found in [2], [7], [12], [16], those of (ii) in [1],
[17], (A3}, [4], [B], those of (ili) in [9], [10], [8], [18], and those of (iv)
in [15]. The eommon feature of these four cubics is that the curve ¥t = f(x)
iz simply the most general elliptic curve defined over the rationals with
complex multiplication by, respectively, l/:—l, 1/:5, ]f“:?m>, V1.
There are five other such elliptic eurves and it is conjectured by E. Lehnier
and R. J. BEvans that in cach of these cases X, has an answer similar to
the albove four cases. Recently L. 8tark has developed a method which
evalnates these sums systematlcally The exaet statement of Stark’s
result (unpublished) is: :

2},,,(:5) = ¢ where f,(«) is the corresponding elh‘ptz’c curve and where

¢ 6 2
lp = ¢? d* with |—] =14 =7,|—)1 = 11, |—| if m = 19, 43
4p = ¢*++md® wi (m) 1@fm c,(p)@ffm 1,(p)fofm 19,43,
67, 163.



