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H. Davenport, D. J. Lewis and the writer [38] proved that if an equa-
tion with intiegral coefficients F(x, ¥, #) = 0 quadratic in  and ¥ is selvable
in rationsd @, ¥ for at least one integer ¢ from every asrithmetic progres-
sion, then the equation is solvable in rational functions x(#), y(t) e @ (f).
The question has been raised whether the solvability of F(z,y,%) == 0
in integers x,y for all integers ¢ implies the solvability of the equation
in polynomials. It is the aim of the present paper to study this question
in & more general context. We shall prove

TuworeM 1. If T e Z{x,t] is of degree at most four in x, M e Z{t]
and every arithmetic progression contains em integer t* such that Lz, )
= M (£")y is solvable in invegers @, y , then there exist polynomials X, Ye Q[#]
such that L{X(1),4) = M(t) Y (1).

The fheorem is no longer true in general if the degree of I is greater
than four. Also for L of degrec non-excecding four the conclusion eannot
in general be strenghtened to assert the existence of integer valued poly-
nomials X, ¥. The relevant examples will be given after the proof of
Theorent 1. Theerem 1 easily implies

TueoreMm 2. If FeZiz,y,t), the highest homogencous part T, of F
with respect to @,y 48 quadratic and singuler and every arithmetic progres-
sion contains an integer 1* such that F(x,y,t") = 0 is solvable in infegers
@, 17, then there exist polynomials X, ¥ € Q[t] such that F (X (1), Y (), 1) = 0.

Tt seems likely that if we assume the solvability of Bz, y,?) =0
in jntegers @, y for all ¢* € Z, the conclugion remaing true provided I, is
reducible ovor @ (f) . However, in general the conclusion fails ag it i3 shown
by the following

TueoREM 3. The equation o — (4% 1Y¥9* = —1 is solvable in inde-
gers @, y for all t* € Z, but there exist no polynomials X, ¥ e [t] such that
X — 421 T () = —1.

Prompted by a guestion from Professor J. Leicht I have studied the
possibility of modifying the assumptions of Theorem 1 so that they would
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imply the existence of integer valued polynomials X, ¥. The result
iz the following

TuEOREM 4. Dot n be a positive inieger = ¢ (mod 8), 4, B, M e Z[t].
If every arithinetic progression contains an inieger 1 such that A& )a"--
+B(") == M)y is solvable in integers &, y, then there cwist integer valued
polynomials X, ¥ such that ADX (0" - B(t) = M) Y {).

The condition % 3 0 (1nod 8) eannot be relaxed, as I shall show by an
example, For » = 1 Theorem 4 is contuined in a wore genecral result of
Skolemt [8] coneerning polynominds in many variables. According to
Skolem the polynomials 4, 8, M may have any numbor of variabloy
provided 4 and M have no common zero. T ghall show by an example
that already for » = 2 the corresponding staterment is false. The porsibility
of exfending Theorems 1, 2, and 4 to polynominly in many variableg
will hé studied in o subsequent paper.

For the proof of the above theorems we need several lemmata.

Lmyma 1. Let D be o Dedekind domain, f, g, ke D[x], p be a prime
ideal of D, f(z) == g(o)h(2) (mod p). If g, h are velatively prime mod. p and
the leading cocfficient of g is 1, then for every intoger n > 0 there exist poly-
nomials g,, b, € Dx] such thal

{1) f(m) = g (z)h, (@) (mod p*),
(2)  the degree of g, equals the degres of g, the leading cosfficients of g, is 1,
(3) 9a(®) = g(a),

Proof. This lemina is elosely related to Hensel’s lemma and can be
derived by following the proof of Mensel’s lemma given by Hasse (6] up
to the point where the solvabiliby of the congruence

Gp1f0t By1Yy = f, (mod p), f, e D[a]

in polynomials ¥, &, ¢ D[¢] is needed. Then sinee g,,_;, hy,_., are relatively
prime mod p wo use the fact that D/p iy o tield.

LEvva 2. Let D be a principal ideal domain, a, b, ¢ € D, (p) be a prime
ideal of D. If p +2a and A = b dae the congruence
{4) am? -} ba-l- ¢ == 0 (mod p*)
18 solvable in © e D if and only if either ovd,d 2= v or ord,yd == & == 0 (wod 2)
and the congruence & = dp~? (mod p) is solvable in D.

Proof. The congruence (4) is equivalent to

(Baw'+b)? = d (mod 4ap”)

and since p12a, it iz solvable it and dnly if y* == d (mod p*) is.

If § = ord,d > » it is enough to take y = 0. If § < », the congrucnce

b (@) = hiz) (mod p).
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implics 6 = 2ord,y = 0 (mod 2)and y = p™e, 2* = dp~* (mod p*~%. Thus
the necessity of the condition given in the lemma follows. On the other
hand, if the condifion iy satisfied and #} = d(mod p), 2, € D, we can apply
Lemma 1 with

floy = o —ap=>,

The congruence

giw) = a~2,, h®)=242, n=v—-8-1.

2* —dp™O" = g, (@) b, () (mod p),

where deg g, = deg g == 1 and the leading coefficient of ¢, is 1, hinplies
that #* = dp~® (inod p°) has solutions -+ ¢,(0). Multiplying by p°, we get

(P, (0))* = @ (mod p").

Remark. The lemma ean easily be modified so that it would apply
to all Dedekind domains. Tt is also possible, although not so easy, to prove
analogous stoatements about congrnences of degree three and four. For
instance, if D is o principal ideal domain, a, b D, (p} is a prime ideal
of D, p+3, then the congruence

2¥4-ax-+b = 0 (mod p*)

is golvable in w e D if and only if ecither ord,b = » or 20vd,b > 3ord, e
or 3|f = ord,b<v,28<30md,e and the congruence z°-+ap™*® - pp~Ff
= (¢ (mod ») i solvable.

Imvma 3. If 4, B cZ[t], (4, B) = 1. For sufficiently large primes
p the divisibility p|AE), t* € Z implies prB{*).

Proof. Let B be the resultant of 4 and B. Since {4, B) = 1, we have
R # 0 and there exist polynomials U, V e Z[t] such that AU 4BV = R,
Now, if p+B we have cither p+4 (¢%) or p+rB{Y).

LmuMA 4. Let I be an algebraic number field, I' e IL[w] be of degree
at most four. If the congruence F(x) = O (mod p) 18 selvadle for almost all
prime ideals of degrec L in K then the equations I (x) = 0 is solvable in K.

Proof. I F(x) iy Irvedueble in K then the lemma follows from the
maore general result of Tasse [0 IE F (@) is redueible in I but has wo zero
fhore then its degree must be four, I now fhe congruence () == 0 (mod p)
iy solvablo for almost all ideals p of A rather than for almort all prime
ideals p of degree 1 in K then the assertion holds in virtue of Proposition
2 in Fujiwara [4]. However, in the proof of this proposition enty prime
ideals of degree 1 ave necded.

LommwvA B, Let A, By, Cie Z[A)(1 = 1, 2), let P e Z[t] be o primitive
irreducible polynomial, A, 4, == 0 (mod P) and the polynomials A,;{6)x+
o B[y Gy (1) (4 =1, 2) be prime mod P(t). If for all sufficiently lavge
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primes p ond all integers 1° such that p | P(t%) the congruence
2
(5) [ ] (4:(6)8" + By(#*) 2+ 0:,(¢7)) = 0 (mod p*)
il
48 solvable in v e Z then the congruence

2
(6) H (A;(8)* 4 By(t)a -+ O;(1)) = 0 (mod P (1))
=1

is solvable in QY.

Proof. Lot D8 = By{)* — 44, (8) 0, () = P%E,(t), where Pt
(6 =1,2). (I D, =0 or D, = 0 (6) is clearly solvable.) If for an ¢« 2,
5;> p the congruence A,(f)a?+ B, (8) s+ ;1) = 0 (mod P(2)*) is solvable
in virtue of Lemma 2 applied with D == @[#], hence (6) iy solvable also.

Let P(#) = 0, K = Q(#),p be a prime ideal of degree 1 in K with
norm p assumed sufficiently large. Choose t* = @ (wod p). Then P(¢%)
=0 (mod p), P{*+p) == 0 (mod p), P{#*+p) —P{1*) = pP' (") (mod p?).
Sinee (P, P) = 1, we have by Lemma 3 P'(1*) 5 0 (mod p), thus P("
= 0 (mod p?) or P(I*+p) # 0 (mod p?). Replacing ¢* by ¢*--p if neccagary
we may assume that P(f*) s 0 (mod p%), and that (5) holdy for a suitable
@ =a eZ.

Let B(1) be the resultant of A, (8a?--B;(a--0, (1) (£ = 1,2} with
respect to @. By the agsumption we have (P{#), B(t)) = 1 and by Lemma 3
R{t*) % 0 (mod p). On the other hand, if we had

At a” + B, a* + 0, (1) = 0 (mod p) (i = 1,2)

it would follow that R(t*) = 0 (mod p). Thus there exists an i < 2 such
that

A8 - B (") + O,(1") = 0 (mod p*).

Bince (P, B) =1, we have by Lemma 8 pt+H,(t*). Thus ord, D,(t*) = 4
and by Lemma 2 applied with D ==Z wo have & = 0 (mod 2) and

(M) = 1, whence (M) = 1.

? ?
Now B,(t*) = E,(9) (mod p) and we geb (E‘(m) - 1.
P
Take in Lemma 4
z s
Fl@) = (_1_"':_(2_1)_*, m*-—Ei(ﬂ)).
fmal

‘We infer that for almost all prime ideals p of degree 1 in K the congruence
F (@) = 0 (mod p) is solvable in K. Hence by Lemma 4 F(2) has a zero
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in K and since B ($)E,(H) # 0, it follows that for an {< 2 we have
d; = 0 (mod 2) and E;(#) = 6(9)? where & € @ [+]. Hence

By (8) = G(f)® (mod P(h))

and by Lemina 2 the congruence A;(8)w®+B;(t)a -+ Cy(t) = 0 (mod P(3)")
is solvable in Q[£].

Lmwnva 6. Let Le Z(w, 1] be of degree at most 4 in =, let P e Z[1] be
irreducible and primitive. If for all sufficiently large primes p and all inte-
gers 1 such that p||P{*) the congruence Lz, t*) = 0 (mod p*) is solvable
in Z then L(p,1) = 0 (mod P(1)") is solvable in Q[¢].

Proof (by induction on u). We get K = @(4), where P(H) = 0.

4 == 1. Let p be a prime ideal to degree 1 in A with norm p assumed
snfficiently large, t* == ¢ (mod p). The argument used in the proof of
Lemma 5 shows that without loss of generality we may assume p ||P(#).
Henee Liz*, t*) = 0 (mod p) for an 2" in Z,

Lig*, 8) = 0 (mod p)

and by Lemma 4 I (z, ) has a zero in K. Dencting this zero by X (4,
X € Q[t], we infer from L (X (5}, #} = 0 that

L(X(1),8) = 0 {mod P(2))-

The inductive step. Suppose that the lemma is true for exponents
legs than w2 and all polynomials L gatisiying the assumptions. Let
the congruence L(z, £*) = 0 (mod p*) be sclvable in Z for all sufficiently
large primes p and all integers #* such that p [P (*). By the case p = 1,
L2, # has a zero in K. X L{z, #) =0 identically then L{z, 1) =P () L, (%, t),
L, e Z[#, t] For all sutficiently laxge primes p and all integers t* such
that p | P(t") the congruence L{z,t*) = 0 (mod p**) is solvable. Hence
by the inductive assumption there exists an X e Q[t] such that L(X(1), )
= 0 (mod p**({)) and then L(X(t),t) =0 (mod P*()}. If L(x, #) has
a simple zero we have

Liw, §) = G{z, ) H(x, §)

where ¢, H e @[, t] both the degree and the leading coefficient of ¢ with
rospoect to @ are 1 and (G(w, ), H(z, ) == 1. Henco

Lz, t) = G(w, ) H(x, t) (mod P(%)},
@, H relatively pi'ime mod P and by Lemma 1 applied with D = @[],

p = (P()} we infer that

Liw,t) = G (0, ) H, (2,1 (mo(lP"(t)),
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where &,..; (%, t} is of degrec 1 in & with the leading coefficient 1. Therefore
L{—6,-(0,1), 5) = 0 (mod P*(t)) .
It L{w #) is a produet of two coprime quadratic factors we have
Lz, t) = Gz, ) H(2,1) (mod P(I ), G, H e@[e, 1], where &, H are quad-
ratie in @, relatively prime mod P (¢) "1.11(1 wo may assnme without loss of
generality that the leading coefficient of ¢ with respect to » is 1. By Lemma
1 applied with D = @[t], p - = (P} we have

(7) ‘ L(x, 1) = G‘,, Ly VH oy (my ) (mod PE(D),

where polynomials @, H,_, g Q] ure quadeatio with respoct to o and
relatively prime mod P(#), moveover their leading coeflicients are not
divigible by P (2}, For a suitable intoger d 5 0 wo have

Ay (3, 1) AHL o (8, 1) € 7 [y E]
and-
EP(0) (L (@, 1) =Cma (2, D H i (o t)) ¢ %[, ).

Henee the solvability of the congruence L, ) == 0 (mod p*), Lor p P (1%

implies the solvability of the congruence
AQ,_y (0, tVAH .y (i, 1) = O (mod p").
In virtue of Lemma B there exists an X e @[#] sueh that
a6, (X @), ) aH, ., (X (1), t) =2 0 (mod (1))

and then by (7) L{X(#),%) = 0 (mod P ()").

There remains. only 'Lh-z case where Lz, ) = elz—a), 0,06 X,
¢e=0,r=2.

Lete = 0(9), &« = A(#), where A, ¢ e@[t]. We have

Lz, 1) :—“‘O()( — (t))”(modl’ N, (P, g) ..... 1

= A" (mod p). '(Not(\ 1lmm 0( "y g 0 (m()(l.j)) by Loemma 3.) Ilence
= AN Py (mod p*), vt e 4 and we have
(8) LA (@) P g™, 1) = 0 (mod p¥).

Let Loy, ) = L(A (&) 1)y, 1) /P 1), Weo have for o sultable integer
I s£0

Wy(y, 1) & Z(y, i)

The congruence (8) together with g || P(¢*) implies that
. LL (", *) == 0 (mod p*~1).
By the inductive assumption there existy a polynominl ¥ e@[¢] such

that 1L, {¥ (1), 1) ﬁo(modP )" ) and then L(A(f)--P()X(t),1) =
= 0 (mod P*(t)}. o :
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Proof of Theorem L. It M(f) = 0 the theorem foﬂows from
Theorem 1 of [2].
i M(1) 5= 0 let

= m ﬁ Py

f=al

he the canonical factorization of M into polynommls irreducible and
primitive. Talke an index ¢ << F, a pumep and integer € such that p |2, ().
The ‘1.11111111%10 progression priu--£* containg an mtegu #r sneh that for
suitable #*, 9 eZ we have Liz®, 1)) = ME"y". Clearly L(: 2, 1) =
s L (0", t;“) = 0 (mod p#). Henee by Lemma 6 there exists o polynomial
X, Q@[] such that

L{X;{0), ) = 0(mod P¥i(t)).

By the Chinese Remainder Theorem there exists a polynomial X e el
satislying X X, (1) (mod P{i(t)) (L<i<h). We get L{X(), 1) =

== 0 (mod H Prift)), hence

LIXW,t) =M@Y@, YE)e@ltl-

Tere is an example showing that Theorem 1 fails for polynomials
L of degree 5 in 2.

Bxavers 1. Let Lz, t) {a 24 3}{a%+-3), M () = 3t4+1. For every

integer t* we have M (t*) = n o H ‘ﬂf where p, arve primes =1 (imod 3),

ga= 1
g;, are primes = 2 (mod 3). The cougmeneeb 224+ 3 = 0 (mod pf) and
#?-- 3 == 0 (mod q,f) are solvable for all i<k, j < I. Denoting their solu-
tmn,s by @, and @;, respectively, we can smm&fy the equation L{z,{")
e M%)y by 1;&1{1115' @ == w, (od pH), @ == (mod ¢) (1<i<h, 1]
£ 1). On the other ha,nd, fhe equation L(X {8), t) = ME Y (%) Wh.ere
X, Y e@i] would imply X(—v})g-i-{-i = 0 or X(—4)P®+3 =0 henee

dar Waoerden L12]
The next example shows that the conclusion of Theoreir & cannot
be sharpened to assert the existence of integer voalued polynomials X (1),
Y () satisfying L{X (1), 1) = M) X{{).
Txamprn 2. Let Ls,4) = (2z+1)(3z41), M(t) = 5t-+1. For every
intogor * we have M{E") = 2°N, ¥ odd. The congruences 2z--1
0 (mod N), 3z +1 = 0 (mod 2%) uare both solvable. Dencting their
solutmns by «, and @, respectively we can satisty tho equation Lz, t%)
= M(t*)y by taking z =@, (mod N), & = @, (mod 2%). Suppose now
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that X(t), ¥(f) arc integer valued polynomials satisfying L(X(1), 1)
= M () ¥ (1). Then clearly

{9 cither 2X () +1 = (6t 4+1) ¥, () or 3X(f) -1 = (B¢ 4-1) ¥,(#),
Y, Y, eQ[1].

Let m be a positive infoger such that m; ¥, eZ] (4 =1 or 2) and log
2% ||m,, 3% ||m,. Solving the econgruence Hi-+l = 0 (mod 247y il § = 1
or 5t +1 = 0 (mod 3%*1) if § == 2, we get from (9) o contradiction (bthe ides
comes from Skolem [107).

Proof of Theorem 2. By the asswmption we have
P(w,y,1) = C){A@a -+ By} Do+ B(hy--F(0, 0, 1)

where 4, B, ¢, D, B e Z[¢] and we ean assmne without loss of generality
that (4, B) == 1.

Let B be the resultant of 4 and B and let &, H e Z[t] be such that
AMGE+-BOHM = R.
We sct
ANe+Btyy =u, HBHz+Gy =9
and obiain
BE(z,y,1) = RO(Du®+ (D(6E (8) + B (1) u -+
+{A®BE) —BOD () v+-RF0, 0,8) = 0.

Moreover, if , ¥ €Z we have #, ¢ € Z. The assumptions of Theorem. 1 are
satisfied with

L(u,t) = ( Ha B H
() =

By the said theorem there exist polynomials U, V e Q[#] such that ident-
ically

(t))u+RE(0, 0, 1),
At )E( )*B(t)D(t)-

L{U@t), 1) = M) V5.
Setiting

Y() =5 O T —-40 T (0],

We get X, ¥ <Q[{) and F(X(§), T(),4) = 0
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Proof of Thoorem 3. Setting

(O L VAP L1 M = oy (48 1) VAT 1
wa get for every integer t* integers 2, y satisfying
gt (4 1P = —1.
Ou the other hand, it has heen proved already by Abel [1] that all solutions
of an equation U*(f) —F(¢) V*() = const # 0 are given by convergents
of the continued fraction expansion of VF(t). Since for F(t) = 4821

1

F(l) = 2 gy S

4%
we infer from the equation
X2 (4 1P XY = —1
that
X+ A1) VIR 1 X (1) = e(2 £ VAR F1), a0,

Hence
% (26" = 0 (mod 4t*-+1),

no= 0, X(@) =0, ¥ (#) = 0 and ¢* = ~1 contradicting X e Q[t].
For the proof of Theorem 4 we need four lemmata.
Limvvia 7. Let M (1) = m HP“r

drreducible and p?imﬂwe U%de'r the assumplions of the theorem and the
condiitions BM = 0, (A, M) = 1 there emist polynomials X,, ¥, e Q[t] such
that

) where polynemials P, (1) are distinet

A(t)X B = M (§) X,(1),

Xyt --O(Inodnl’ yIRm) o awhere  Py(t)f (| B(1).

gl

Proof. By the assumption, Pitd (1<e << k). Bet B == PiB,, where
P+1B. By the Chinese Remainder Theorem for the ring Q[t] it iy suffi-
cient to show the solva-bili’ry in thig ring of cach congrnence
(1.0) A X 4B) = 0 (mod Pii(t)) (A<i<h).

Lot Py(d) == 0, K = Q¢ ) #) and let p be a prime ideal of degree 1 in K
with the norm. p suﬂmwntly laxge. We have & == ¢, (mod p) for a suitable
t, 82 and Pi(t) = 0 (mnod p). Choosing ¥, = #, or i,+p we can achieve
that every t* = ¢, (mod p*) satisfics p 1 P;(#*}y. Moreover, since p ig suf-
ficiently large we have by Lemma 3 pt+AB; (t*}, whence pf|B("). If
B, = u, the congruence (10) hag the solution X = 0. If 3, <, the equality

A" +B() = M(f)y
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0 (mod =), == 0 (mod p™™) and
(w Py (t*)~Fimm = - B, (") /4 (1) (mod p).

implies that §; =

However,

By(t") _ By(#)
A0 AW (1nod p)

and thus —B(#jA(H) is an ath power residue for abuost all prime
ideads of degree 1 in K. In virtue of Tlanders’ theorem [8a] By (F)/4 ()
= 0(#", where ¢ ¢ @[£] and thus
A O+ By(t) == 0 (mod Py(8).
Henee
A{fyan -+ By(t) = (2 —

Clearly, H(C(1),1) % 0 (mod Py(8)}; thus by Lemma 1 applied with
D = @[¢] there exists a O, .., e @[t] such that

AW Oy (0" By(8) == ¢ [mod Piafn).

G () H (@, 1) (mod P;(#) -

Now we can satisty (10) by taking
(1) = Oy (DPI (1),

LeEMMA 8. Lot under the assumptions of Lemma 7
T
H(t) e 1).(t)mnx{w[eri!-n],.uﬁv(nwI)l—ﬂ,;ln]}

AMX ([, o)+ B(o)

)
If d,eecZ, dX, 67[51, e¥, e Z[t] then dX (¢, ) e Z[t, v], [d"m, ¢] T (¢, v)
ez [t , 0]

Proof. The statemiont concerning X (1, #) is obvious and that con-
cerning ¥ (4, o) follows from the identity

Kb, v) = X, (&) +olI(t), FY(t,0) =

o

Y4, 0) = Yo+ 3 () 40Xl Ty

Ve ]|

Indeed,
Ordﬁx"“‘ﬂ 2 (1) [ — By n]-max { — [ —p; /0], g+ (0 1) [ — By/nl}
> py = oxdip i,

ordp [I" > ﬂmﬂ.x{— [—alndy gt (v —1}[ ~ By [n]} = @ = ordp M;
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henee for cach » =1,2,...,n
Xty Iy Pty " e QLE]-

Since dX, € Z[t] and P, is pmmtwe we have d"*X, (6" (Y P ()"
eZ[t1,

(11) md™=" X, (B T M (1) e Z[t].

LumwA 9. Let P e Z[1] be a primitive polynemial with discriminant
D 0, “eZ,p a prime. If ord,D =d, oo > ord,P(t") = e>2d-1
then thore ewists a 1, = t* (mod p°~%*) such that

ord, P (t,) = ord, P (") —

Proof. Tf P is of degree L then P(#*) = 0 (mod p) implies (Y
= 0 (izod p), P being primitive. Therefore, it is enough to take #, = 4"+
+pc_I .

If P is of degree > 1 then we have for suitable polynomials U, 7 € Z[]
PUS-P'V = D (see Rédel [7], Satz 275). Hence ¢> 2d4-1 implies 3
= ord, P'(1*) < d. Take ¢, = ¢"+p* **. From the Taylor formula we get

P(tu) = P(i*) -I—P'(t*)ﬁeud_l (1110(1 :pz(e,—é—-l)) .

By the nssumption 2(e—8—1)32 2(e—d~1) > 6—1 = ord, P’ (i*)p*~*".
Heneo
ord, P(ty) = e~1.

Temark. It may be that the lemma holds for ¢ > d+1, but the
writer could not prove it.

LEMMA 10. Under the assumpiions of Lemmata 7 and 8 for every prime
p there exist an integer ¢ and an integer valwed fmwtzon w(z) defined on ﬂw
set {0,1,...,0%—1} such that if & eZ,v* @, =1 (modp*},»° v
== (1) (modp °Y then X (1*,¢*) and ¥ (1", 0 ) are p-adic integers.

Proof. Let nonnegative integers &, # be chogen o that "X, p"Y,
have infegral p-adie eoefficients. Let Ry for ¢,§ =1,..., % be the re-
gulant of P, and Py if 4 5= § and the diseriminant of P, 1f % = j. Moreover,
let Ry, be the resultant of 2y and A4, Ry, the resultant of P; and B;

k
o BP0 (L0 S &)y By == B[] P(t)7%
FE)

Put gy = oxdy iy, Clearly, gy = o2

for vvery ¥ eZ and i s §. Put further
I

‘‘‘‘‘ = O 2 Zﬁj-i-yj)gﬁ—k%”“1+n§~1—2n+20rd 7 ord,m,
g1

> min (ord, P, (1), ord, P; ("))

% .
¢ = 2 Gty + £ - oxdym.

el
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For every nonnegative integer v < p*° the arithmetic progression = -+ p®~ ~H1,

containg an integer f, such that for suitable integers ., y, we have
(12) A@)ar+B(L) = M(ty,, ML) 0

(integers f., @, ¥, are not determined uniquely, but any choice will do).
Tt for all { <k we have ord,P;(7) < ¢; then

o = ord,II{x 2 peord,, i) <L ¢~ £

We define

w(x) = p" ",

where w is a root of the congruence

w%(;l +9* Xy () = wpimod p7).

Tf #* = v (mod p*) and p°0" = w(z) (nod p*) then we have

ord, M (z) = ord vrrb-«kzmmd Pt) < e—§,

fral

hence
ori, M (1) == ordy, M (7) = ord, M (i.),

) = Xg(T)+ nwéz)_ H{zy (mod p®).

Xr, o
By the definition of w(7)

X%, o") = Xy(v) -k pg H(z) = w (mod p°~%),

At x (¢
hence :
ord, (A (£ X (#*, v*)"+B (1) = min{e— &, ord, M (1)} = ord, M (™).

This shows that X(*, »*) and ¥ (1*, ") are both p-udic integers.
_ It for a certain ¢ < b ord,P;(v) > ¢; then since ¢,z oy wo have for
all j =4 (L<F<h) ord,, Py(v) < gy < ¢ thus 4 is uniquely determmined.
We have the following possibilities 8, = u; == 0 (mod n), f; = u; 2 0 (mods)
and £; << u; which we congider succesgively.
1. B> p = 0 (mod n). Here we seb §; = max{&, gy},

() = HEPFHn(t), Xy = TP,
M (1) = M ()P (8},

PP+ B = Al + B(t,) = M (1,)y, (mod p°~F),

icm

Familics of ecurves having each an infeger point

We have
& ‘ k
0, = ord, I, (7) < Z#jOpoPj(’f)SZM;QQQ Li<e—{&;
§=1 f=1
Jetd

Morcover from {11) and §; = g; wo infer that
Pty | A (i) ey

and since.

ord, P, (t,) = min (ord, Py (z), 6 — £+1) > 6,2 gy,
wo get

ord, A (¢) << g5 < 0,
nlord,®, -+ &;) = ppord, Pi(t).
We define
w(z) = b,

where w ig a root of the congruence

’l‘[i( ) C‘i L = & pa'l
:p W+P A‘U‘b( ) P‘u‘t ( )

(mod p°).

If t* = 7 (r00d p*), p°0* = w(r) (mod p*) we have

J=1
Jeki
hence ordpMi(i‘*) = ord,M;(7) = ord,M,({}.
On the other hand, taking

X, (%, ") = Xoi(t*)+”*ﬂi(t*)7

woe get

w{l)

Xi(i'*: '”*) = A7) -

IL (%) (mod p7)

and by the definition of w{v)

8, p%

PHXy(r) V2]

w
PHRX Y, 0") = —1—9-5;;- I (v) ==

Hinee

ord, P™(£*) = min (ord, P;(z), 2¢) > ¢; 2

411

k
OrdpMi(T) = ordz,m -- 2 ij]?dﬂPj ("L‘) =6 — C,; = ‘Uai(ci—é‘i)g 4 _;’--"z'é-i — 5,
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we infer that X (¢*, »%)

P A )X (15, 0T P B ()
’ uly
= "“*—A(;)Qz )w o PP By (1) (mod 7).

By (12) the right-hand side equals P M, (¢, )y, hence

ord,{A (8) X (1%, 0¥ P (8 "B, (£)
> min (¢ — & ~nd;, ovd, My(t)) = ordy, M(£")

and
ord A () X (&%, 0"V B = 00l Py (8%) - ordy, M (8) = ord, M (1%).
Thus ¥ (#*, ¢*) is o p-adic integer.

2. B> m = 0(mod »). Here we seb w(r) =0,
I ;> w;, we have

X, () = 0 (mod Py}, A@)X,(O"+ B{) = 0 (mod Py ()",

henee ¥,(¢) = 0 {mod P;(#)). Morcover, since Py(f) &8 primitive, we have
(13) PR P e Z,[8], "X (PN e B[,
where Z,, is the ring of p-adic integers.
Tt % == 7 (mod p*), p°v* == w () (mod p*} we have o* == 0 (mod ),
X, %) = X,(t*) (mod p%),
. et I'_[
1,.( '6*)%«2(”) )* (¢ ) o™
— M(t)
Since ord Py (") > ¢, = max {&, 9} we infer from (13} that
Xy (@), Xy (2) e Zy.

On the other hand, by (12)

E(ne—y) Xﬂ( )n-u”ﬂ( )
M

mp

edy{il (v S N OF
Since ord, v’ 2 ¢ > §(n—1)-ord,m we conclude that X (0"
are p-adic integers.

TEp = ,u1 wo have as before X (f) = 0 (mod I; ( ). T = 7 (mod p*9),
p°o* = w(r) = 0 (mod p%), then X (1%, ") = X (t%) (1110(1 P ) i again o
p-adie integer and Y (1", v*) %, if and ouly if Y (t")eZ,.

The latter condition is satisfied for all t* == 7 (inod p™) if it iy swhisticd

: '”*): Y(‘L*, ")

= X, (%, o*) P (") is o p-adic integer. Morcover
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for one such 1*. Sine ewe cannot have P;(t*) = 0 for all {* = z(mod p*)
we may assume that Py(t*) 2 0. If y =0, T ("HeZ, If >0 we
have ordj,P,i(t*):» 6; = 2p4+1, hence by Lermma 9 there exists a %,
== t* (mod p%~%) such that ordP;(t,) = ord P,(1*) —1. On the other hand

ord, A(1*) < 0 < 6 — 2sis

Te
L 3
ord, By (17) < Z B304+ Cinsa < G — Quis
j=1
(]

T

ord,, M (#") < ovdym - Z thy 045 < 63 @y — ks
i=1
Jekd

hence
ord, A (t) = or@yA (") < oo,  ord,Bi{to) = ord,B;(i") < oo,
ordy, M {ty) == ord,M;(#") < co.
Sinee p; = 0 (mod #) we cannot have simultaneously
p01d, Py (%) + ord, B (1*) = ord, A(t*) (mod »)
and.
12,018, Pt} 4 ord, By (fy) = ord, A (f) (mod »)
thus taking #, = t* or #, we can achieve that
ord, B(t,) = word,P;() -+ord, B;(t;) 7 ord, 4 (3) (med »),
oo > ordy, Py (t) 2 ¢;— ey,
a = max {ord, 4 (4),ord, B(t,), ord, M ()} < oo.

The arithmetic progression #,-- p‘”lu containg an integer %, such that
for suitable integers oy, ¥, we have

A(t) oy + B(ty) = M(%)y,.
Hince
ord, A (1) = ovdy A(t), ord,Pi(h) = ord, P;(%,),
ord, B (fy) = ordy B(t;), ord, M (t,) = ord, M (%),
we have

ord, 4. (t,) oy = ordy A(f) #* oxd,, B (1) (mod »).
It follows that
ord, B(t) > 0rd, M (), 3 ord, M (5)  and
On the other hand we have ord, Py(t,) =

‘ord, B(i,) = ord, M (t).

—ou > oy for all j< kAL,

8 -« Acta Arithmetica X1.4
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henee

oxd, Py (1) < oy (§ #4),  ord, My(h) < ordym J-EQM
Je=1l
it

ord, A (1) X, (8" = —nl —fifnlordy P () —né
=

Since A (1) Xo(6,)"+ B(#) = M (#,) Xo(t;) we gob ovd,Yo(t) 2 0. Howoever

P To(ty) = p7 X, (1) (mod %), Since 6 —eg= 7, o) s a p-adic

(pag-H1)ordy Py (8y) = 0é 2 g0, Py (4) +0; —RE gy

= p 000, Py(ty) Hord, My(h) = ord, M (4).

integer and so iz ¥ (¥, »").
3. B;<< y;. Here woe have g == 0 (mod 2},

Let

We have

and

hence

and

We get

and

(14)

Xty = TP ()", - IL(t) = ()Pi(t)"

n—1

P X 0), Pty ).

ﬁt F‘!:

M) = M ()P ()"

A () Xog (871 By (t) = PY(0) M, (1) Xo(8)

. .
ord, Py(7) > ¢ >Z Bioy+ ogqr 7 = ordy By(7) + 1,

1
ord, Xyy(1) <}; md Bl

0p =

i=

ord, Pl (r) M, {7) ¥y (z) > ord, By(v)

0rdy A (v) Xoy(v)® = ord, B;(7).

3'&-4

( y By 0y s 1)

J=l

) W"XM( )“ LTy ()
T )

Ol'd M+Z ﬁj@-tj %gmﬁ_l—ord m<ﬁi 7?<c—'??-
J==1

O — & — 043
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We define
w(r) = poo T,

where w i a root of the congruence

nXos (7)" 7 Iy (7)
N Vv w4 p"¥,(r) = 0 (mod p").
M, (1) P X ( B

It * = 7 (mod p*) and p°o* = w(z) (mod p*) we have

E
5
ord P( 2 B 04" eyt 7.

i=1

If P;(t") # 0 then

(15)  ord, B(*) < fiord, Py(t") + Zﬂ;%—l* Oiis1 < OV Py(8) —

i=1
< ord, M (1%) < ord, M (%) ¥, (2%).

Therefore,
(16) ord, B(1*) = ord, A (%) X, (t")".
Morcover, A (#*) B )M () s 0.

Let b = max{ord, A ("), ord, B("}, ord, M (:*}} and let t, be an in-
teger in the arithmetic progression t* 4 p®+u such that for suitable wy, y, € Z

A (to) oy + B (f) = M (to)y,- :

We have ord,A(f) = ord, A (t*), ord,B(t,) = ord,B{f"), ord,M{}) =
ord, M(t*) and by (13) ord,B(f,) < orvd,M(4) < oxd, M (t)y,. Hence
ord, B(ty) = ord, A () 7y

and by (16)

{(17) ordy, X, {t*) = ord,m, = 0.

If P(t*) => O theve exigts o @/ == * (mod p*) such that Py(#') = 0. Since
X (%) =2 Xo(t') (mod p*oF)

we have (17) in every case. On the other hand

w(T) l
?° H(T)J

> min{e, ord, I (v) —o; —7} = min {e, ¢;—0;—n} = 0,

ord,,v* I (1*) = min {c, ord,,

hence
ord, X (t*, v*) > 0.
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It remaing to prove that Y (*, o*) is a p-adic integer. We have

%
()

ki

n) Kos (FV I (1Y oy 1)t
n E’ i A=) ¥
i ( ) M,(t%) Pi(#) Y

Y, oh) = Y, (" + +

Now
o7 Yu(t*) zz " ¥o(t) {mod %),

P18 X (LT (Y == p X ()P T () (modl p*)

M (%) == My(z) (mod p*),
{18)
k
ord,, M,(r) ‘<~Z By 0y +ordym < o, —néH-ordym < Ze.
i=1
Hence
o 2 X ()T (E) o = g WXy ()" I (7) w(7)
AT “PTuE

mod p®” (n—1)8-tr1 —ord, My(x)

and since ¢ 2 ¢;+ ord, m we have by the definition of w ()
o B (P UL (8Y)

e 3
n Xy, (v)" LU (7)
=y e 1
=pT ¥, (1) + (7757 w = 0 (mod p".
Thus
y Nt IR
Yn(t*) ‘i" ”"XOI(t ) H'i(t ) ‘v*

M (")
i o p-adic integor.

Now take » :;:2 and consider tho Lerm
T T 0"y

P. (M
Mi(t*) '5( ) v

B0 =(7)
“We have by (18)

Ko (8Y~* I (8"
ord
S AT

Je
3
= —(n *”)E*‘Z #y 0y —0rdym,

Hemt

- while by the congruence p°v* == w(v) (mod p*), by the definition of

icm
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w(r) and by (14)

E
ord,v* 2 —o; -y 2 “01‘(110”?'—2 B 05 — Qg1 -+ 0rdym —7,

=1
finally
k
ord, Py (1) i > ¢, 2 Z (28t 1) 045+ 20541 + &+ 2 - 20rdym.
J=
Hence

k [
ord, B, (1", v*) > —(m—p)E~— 2 By gy —ord,m —vordyn—v ' B0y —

=1 4=1
13
—¥Qiq1 v 0rdym —vy + (v —1) D' (2f+ ) 0+
p)
A2y =L oy (r—L)nEF2(v —1)y+-2(» —L)ord,n
k

= n(y —2) E4ré+(v—2) D (Bi+ py) o+ (v —1) ordy mo-t
4, 1

g=

- (v —2) ordy e+ (¥ —2) gipar + (¥ —2) (¥ —2)ord, M 3= 0.

Thus B, (£, v*) is a2 p-adic integer and so is ¥ (¥, o*).

Proof of Theorem 4. Suppose first that BM # 0, (4,M) = 1.
Let X,, ¥, have the meaning of Lemma 7 and let d be chosen so thatb
dX, e Z0t], d¥, e Z[t]. Let further X{f,s), ¥(f,v) have the meaning
of Lemma 8.

In virtue of Lemma 10 for every prime p|dm there exists an integer
¢, and an integer valued function w,(z) defined on theset {0, 1, ..., p — 1}
such that for all ¢* €2, ¢* €@ the congruences t* = v (mod p*»}, p°o*
== w,(v) (mod p¥) imply that X (*, »*) and ¥ (£, ¢*) are p-adic integers.
By wresult of Skoler [8] there exists an integer valued polynomial W, (t)
such that t* = 7 (mod p*e) implies W, (£*) = w,(v) (mod p*%). Now take

V) = S—’K@a—éﬂ ]Y g¢(112”1“)cq

i
plden gldm
ovER

where p,'q run over primes and set
Xy =X, VE), Y@ =12 7).

Wo uassert that X (1), Y(f) are integer valued polynomials. Indeed, by

Lemmsa 3, : ' '

axX(t,v)eZ[t, 0], d'mY({,v)eZ[t, v].
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Moreover, sinco

vy [[ v ezl

pldin

and X(t, ), ¥(,v) are in v of degrees 1 and n respectively, we have
X{td Hpcw eZll, YHd'm I-[ p e Z{1].

Dldm plam

Thus for £* & Z the values X (#*) and ¥ () ave p-adic intogoers for cach

pidm. On the other hand if p|dm and t* a7 (mod pP), 0 v << P

we have

W, (1) 5 - 1
pRVE) =p% Z QQI( ) H qgwlcﬁ)cﬂu‘\"Wp(f‘)_[ ] g Py
1

°q,
gyldin 2zl dim qldm
q#ED Q7 s

= W, (") = W,{z) (mod p*»),
henee by the property of the polynomials X{t, v), Y (¢, v) stated abovo
X =X, VYY), ¥ = Y, V)
are p-adic intogers,
Suppoge now that BM =0 and (4, M) 5¢ L. Then there oxists
a primitive polynomial D e Zft] such that 4 = DA, M = DM,, A,,M,
eZ[t] and (4,, M) = 1. Bvery arithmetic progression containg an
integer ¢* such that A" +-B(") = M%)y is solvable in integers
@,y hence D(t*)|B(#*). It follows that D|B and since D is primitive
B = DB,, where B, eZ[{]. BEvery arithmetic progression P containg
a progression P, such that D(t*) % 0 for feP,. Thevefore, for 1" eP,

A(")a" +B(") = M)y Ay ((*)a - By (8%) = Mo (1")y

and from the already proved case of the theorem we infer the existenco
of integer valued polynomials X, ¥ such that 4,)X ("B ()
= I () ¥ (1). Cloandy, A () X (§)% - B(#) == M (H) T (). T remains to consider

implies

M == 0 Theorem 1 of 27 implicy the existence of a polynomint X @ [4]
such that A ()X ()" B({#) = 0. By the assumption overy arithmobic
progression containsg an futeger §* such that cither B(HY) == 0 or X"
is an integer. Since B 52 0, the former term of the albonative can bo
omitted. Let o positive integer d be chogen . go that dX e ZTi] and let «
be an arbitrary inbeger. The arvithmetic progression v--du contalng an
integer t* such that X (") is an integer. We have dX () = dX (t*) (mod &),
hence ¢4 (7) and X (r) is an integer. Thus X is an integer-valued poly-
nomial and the proof is complete. Now we ghall show by an example
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that the condition » 2 0 (mod 8) cannot be omitted from the assumptions
of Theorem 4.

ExaMprE 3. Take n = 8, A(Y) = 1, B({) = 16, H{f) = 2i+1. For
every integer ¢ we have M(f*) = :J:f[ p{i, where p; are odd primes.
Tor cvery 1< & the congruence -

@® = 16 (mod p&)

iy solvable (ef. Trost [117). Denoting o solution of this congruence by a
and using the Chinese Remainder Theorem we find o = ; (nod p§¥)
(L4 < k), which satisfics #® —16 = 0 (mod 2¢*+1). On the other hand,
the exigtence of polynomials X, ¥ e@i] satisfying X(#)'—16 =
(2tF1) Y () would imply X (—4)* == 16, X({—}? = 2, a countradiction.

The next example shows that in Theorem 4 polynomials in one variable
cannot be replaced by polynomials in two variables evenit 4 =1 and M
is irreducible.

BExavpeLs 4. Take = 2, A, w) = B{t,u) =1, M, ) = w4
- (482132, For every pair of integers ¢*, * the congruence #?-+1
= 0 (mod P(t*, «") iy solvable. Indeed, we have M (1%, u*) = 2° ] o7,
where ¢ = 0 or 1 and p; = 1 (mod 4). On the other hand suppose that
polynomials X, ¥ €Q[t, u] satisfy

X(t, u)2 41 = M{t, ) ¥ {5, u).
We got w2 X (1, w)? = (42+1)® (mod M({, »)] and since M is irreducible
wX (b, w) = & (42-+-1) (mod M (¢, ).
The substitution # = 0 gives

422+1 = 0 (mod (412 +1)3),
a contradiction.
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