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Jacobi sums and cyclotomic numbers for a finite field
by
J. 0. PArNAMI, M. K. AcRAWAL and A. BR. RATWADE (Chandigarh, India)

1. Intreduetion. Let T be an odd rational prime and p a rational
prime =1 (mod 7). Let ¢ = p* and let F, be the finite field of ¢ elements.
Write ¢ = In+1. Similar to Gaunss’ cyclotomic numbers we define a seb
of I? integers in this more general set up as follows.

Let y be a generator of the cyelic group FZ. Define a character y
on K7 by x(y) = & = ™" and put %(0) = 0 for convenience. For 0 < i,
Jj<1—1 (or rather for i,j modulo 1) let A; be equal to the cardinality
of X;, where X,; = {veF,| yx(») =, y(v+1) = ). Since veX, if
and only if —v—1 X, if and only if —ofiv+1)e X, ;;.; if and only
i —(v+1)yveX; ;;; (since y{—1) =1), it follows that A; = A4y,
= Ay g s=Ay gy =A 5 =4, ;. The Ixl matrix (4;) has
therefore only 14 (7 —1) (I —2)/6 nnknown entries i I > 3 (and 4 if [ = 3).
Further the following (I+1)/2 relations between these A are easy con-
sequences of the definitions and are proved in exactly the same way as
the corresponding relations are proved for the classical eyclotomic num-

bers of Gauss:
-1

4 n—1 ift{i=0,

;;: Y s if 4 =1,2,..., (-1)/2.
For example A, +4,+...4+4,;, =Oard{p| x(v) =1, zlv+1) =0}
=(g—1)1—1 =n-—1.

In the classical theory (i.e. for g = p} as soon as these I? constants
A are known in terms of p and the essentially unique solution of a certain
set of Diophantine equations, we say that the cyclotomic problem is
solved for the modulus I. Our objeet is to extend this to a general prime
power g = p°. Some literature already exists abont this, see for example
[8], [1]. For a =1 the case I =3 was treated by Gauss [4] while the
cage ¢ =1, 1 = 5 was treated by Dickson [2] and e =1, 1 =17, 11 by
Leonard and Williams [6], [9] We shall arrive at the relevant set of
Diophantine equations (whose solutions can be obtained by a finite
number of operations (trizls) (as for the classical cases)) and one can
then get the A, in terms of p and these solutions. We give, up to the
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cage I = 19, the complete method for the calculation of the Ay via the
so-called Jacebi functions J (7, §) (defined later). The aetnal ealculations
can be done without any theoretical diffiecnlty after our results are proved.
For the cases « =1, p = 3,5, 7, 11, our Diophantfine systems are quife
different from those of the corresponding classical cases. We give full
details of the transformation connecting our system with the classieal
ones for | = 3 (Gauss) and { = 5 (Dickson). The cases I = 7, 11 (Leonard
and Williams) get much more complicated to connect up and we have
not done this here. Of course our Diophantine system serves equally
well. Our method ean be easily extended for primes > 19. We stopped

icm

at I =19 because I = 23 onwards, the class number of @ (&™) is > 1.

This, however, is no hindrance to our method.
To begin with we introduce the so-called Jacobi sums J (i, j) defined

by
V 1)y

UEF-}'

2222 ’U)xj(‘!’-l-l 22;{(1;2% (v+1)

Zl if » is 0 or not an Ith power
=21

J{i,]) = (fu—l—l) (0, i< t-1).

Then we have

2 DI, =
& 9

it »is an Ith power = 0
0 if v+1.is 0 or not an Ith power
ll if v41 iz an Tth power 3£ 0 ]
P if v and »+1 are both Ith powers, neither = 0,
-3
=T 4dy.

Similarly it may be shown that

D Nt g, )y =124
i f

So it is sufficient to determine the J(i,j) in order to get the Ay We
now prove some relations amongst the J’s which will help us to ealcula.te
them.

otherwise

2. Propertics of the J(¢,j). The following are almost trivial and
we list them merely for completeness.

=dJ (i, —1 ;j)

@ TG 9) = I, 9) =J(—i~j,j) =d (i, ~i~})
7=J("—"‘:_jsd)' o
Lo =L i 0 (mod1),
J’ =
(i) (0, 7) g—2 it j = 0 (mod I).

%% a} o i},‘j
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(iii) For (k,1) =1, o.Jd(i,])
phism ¢ % of Q(2) over Q.

(iv) (Stickelberger [8]). If a+b+¢ = 0 (mod I) then J(a, b) =
=d (e, a).

It follows that at most the following 3 are to be determined:
J(1,1),J(1,2),..., J{1, (1—1)/2) and indeed J(L, (1-1)2) = J(1~1)/2,
(1-1)/2) (by (iv)) = 0g_y)pd(1,1). So if 1> 3 then the number of J's
to be calenlated reduces to (I—3)/2.

We come now to some of the non-trivial properties of the J’s. Write
o, to mean J(1,a) for (a,) = 1.

Lemma 1.

= J {¢k, jk), where o, is the automor-

J{b, ¢)

T - g if a+1 # 06 {modl),
fTET if a4l =0(mod 1)
(see [3], [8], [11, [2]) '

Proof. Since (a,1) =i sb
.-, =2 2 A ZO) A1 (o+1)

= X awg(0) 2 (u+1)z* (1) + Zx(u)x(v)x“ (1) 0-+1)

Y= [

= ¢—2+ D x(WE®) P+ 7 (2+1).

UAY
In this sum put @ = s, ¥ = s, then it is

—q—°+ 2 z{st)z(s) 2" (st +1) 7% (8 +1)

8,8{8#1)

=g—=2+ 3 z(s0)g{s)y"(st+1)7%(s+1)

=g 2—}—:%‘#; ® 2 X *(st+1)/(s+1))  (note that (ss+1){(s+1) %1¢, T
and (st—}—l)f(s 41y = (8"t +1)/(s'+1) H and only i & =2)
=4—2+ (=01
=02 Z{T 00} 2
g if a1 20 (modl)

=q— ‘* ) = i
1 if a4+1 =0 (mod ).

(gince for £ = 0 the term is 0)

This completes the proof of Lemma 1. 7

LEMMA 2. Let p =1 (mod 1) and let b = y D% Then beF,. If ¥
is any indeger sueh that b' =0 in F, then l\ﬂmm(b’ £) = 0 (mod p).
Further there is ezacily one prime dn,msor p of p in Z[{] which divides b’ - L.
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Proof. b* = 97! =1 and the eguation X’ — 1 has exactly I roots
in F, since 1|p—1, and so b £F,. Further

Nl —8) = (' =0 ~%) ... (' =71 = ("1

in T, since b' = b 1 in F,. It follows that there is at least ome prime
divisor p of p which divides b"—{. If p’ is another one then clearly p’ = p°
(Where o is an automorphism of () /@), ¢ # 1 and then b’ —{ = 0 (mod p),
—§& = 0 (mod p°}. Apply o to the first and subtract from the second,
we get [7—( =0 (mod p”), Le. {(1—{°Y) = 0 (mod p°). Taking norms
we see that | =0 (mod p”) and so I = 0 (mod ), a contradiction. Thig
proves Lemma 2.
LEmva 3. Let p be as in Lemma 2, then J.° = 0 (mod p) of and only
if A(a+1)k} > F where A(r) is defmsd as the Ieast non-negative residue
of r modulo 1.

Proof. Consider the expression S, =

Y —1) =0

ka(g‘”ﬂ (v-+1)*HODR Thig ig

in F, (since each term is in F,) and elea.rly 8. = 8. We claim that

8, =0 (in F,} if and only if ﬂ.( a+1)k) > k. This is done as follows:
klg—1)it
—~ - —n—5 [ *lg — 1)/3
gk — (,v 1)k(q i, ,val(q na o __ plet+Dk@—1i-1 . ( l)j
2 "2 A =
Klg—D1fi
=33 (_1)1',,;:@—1)/:—;’.(k(q—_l)ﬂ)
v J=0 . x .?

where b = A((a+1)E).
Now note that

2‘”1 _ if 9.'-—11’3' 3
vey ctherwise. .

In the above sum g¢-—1 [the exponent bB(g—1)/t—j if and only 1f J
=b(g—1)fl since 0<j, b{g—1}/l < g—1 which cannot happen if b > &
because j<<k(g—1)/1. Hence 8, = 0 if b> k. Now suppose b < k. Then

— (e [R@-0D (g0t
S = —(apernn (00 = — ()
For any natural number =<1,
(-1l = Q4+p+...+p>Y) (fz_—lm)
The exact power of p dividing (z(¢—1)/1)! is
p—1) . @
i (p—1)

@(g—1)fL(p—1) — z(q—1)/U(p —1) — aw/l.
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(g 1)11)
blg—-1L)ft

(k—b—(&—b)}-(g—1)}(p —1) —a(k—b—

Hence the exact power of p dividing (

(k—b)/t = 0.
Hence 8, 50 in F,. Now |

Jo =8, = X {1 (0) - 4 (041) —oFe D (p 11 o0y
= 2 O 01 — (oI 1 3T (0 41y ) —gka Dy,

Here each term gives out a factor »'—( in F,[{]. But 8, =0 in F, if

A(@4+1)k)>% and = 0 i Al{a+1)k) <k So J% =0 (mod p) i and

only if A((¢+1)%k) > k. This completes the proof.
Now we write down the ideal decomposition of J,

COROLLARY 1. We have

(et. [5], [8], (1]

("
Ala+ k) >k

where Tt is taken modl.
In particular

() =(J(1,1) = (p"e)".

t<kli-12

Proof. Immediste from Lemmas 1 and 3.

LeMva 4. J, = —1 (mod (1—{)%).
Remark. For ¢ =1 the lemma appears in [3] (zee footnote on
p. 365)..
Proof.
-1
Iy = Ayt = A.,u+2 A BT T4 L)
0Lk, i<l
+ V Aaj {Cz-f-m_]_ szja+(:1-(a+1)1+;J*—(a+1)1+cai—(u+l)3+ta1 (u+1)t}
1]’:'&0 i#f
-1 L
So Jﬂ_(g_2) — 2 (é“‘j-f-ij-k c“€a+1)ju3)Aoj+ Z‘ %Aij{C.H-m_i_ ..
j=1 70, i
Fgai-Eti_gL (since g—2 = 2 4, and this is congruent;  t0

all ‘l,,:

(mod (1~ C)z) since each expression in the curly braekets is congruent to 0
modulo (1—¢)2. Hence J,—(¢—2) = 0 {mod (1—£)¥). But I ~ (1)}
|g —1 and se the result follows. This proof is for 1 > 3. For 1 = 3 we have

Ty = Aot D Ayle

F=1,2

a:ﬂ+ ijf- m-—(aH):i) +_Am(ml+.2a+wa-l—2)
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where o = &7, So

J,—{g—2) = ZAoj(ﬂ)ﬂj+fﬂj+w—(a+])‘i—

i=1,2

= 0 (n1od (1 — w)?)

3) +A12(m1+2u+ma+2 _2)

as required.

LeMMa 5. Let a, B = Z[L], both prime to (1—C) satisfy (i) (a) = (8),
(i) fa = |p], (ill) a« = g (mod (1—{)?), then a = B (cf. [T]).

Proof. By (i) ¢ = fin (7 a wnit}. By (ii) 95 = 1. Let 9 = F (), &poly-
nomial in [ with rational integer coefficients. Then F({)-F(F) =
and so F 5“ () =1 A<i<l—1). Hence P(LY] =1, ie. |49 = 1
It follows that % is a root of unity. Now by (i) n =1 (mod 11— 2),
hence 5 =1, This completes the proof.

COROLLARY 2. J 8 uniquely determined by the properties in the
statements of Lemmas 1,3, 4.

COROLLARY 3. All the conjugates of J(1,1) are distinot.

Proof. (F(1,1)) = p{_iPiy -+ Plg-nmy-1- Let a 3 1 then o,:
fixes J(1,1) if and only i, as sets in the field F,,

,a_(l.;.l )_1} - {1—1, 27 (1%1)—'1},

(%) {cz,za, cany

{=L*

{a-l‘l, o271

i.e. if and only if

-1
( p )a,}: 1,2, ..., 1-1)/2}
(on nmitiplying by ™' and taking inverses). This, however, cannot
happen for the following reason. Let I = la++ (0 <7 < a). Since r< a
80 v la. Thus < 2ia. But I > da, ie. 1/2< da<l. Now 1< (1-1)/2
(since a == 2) so da belongs to the left-hand side of (*), but does not belong
to the right-hand side and this is a contradiction.

COROLLARY 4. J(1,m)-J (1, m41) = J({1, 1) J(2, m); indeed rather
more generally J(1, m)-J(m+1, ) = J(1,n)-J(n+1, m).

Proof. First let ¢ = p. Then the well known formula which writes
the J’°s In terms of the Gauss sums, viz. J(m, n) = G(m)-Gn)/G{m+n)
(m, n, m-4n == 0 (mod 1)) gives

" _ G{1)-G(m) G(n)-G(m+1)

J(l,m) d{n, m+1) = Gltm) Gimtnil)
ey o B()-6(n) G(nA1)-G(m)

J 1y 0)J (1, m) = Gin+l)  Gm+mLl)

and these are equal.
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Now denote the ’s of F, by J, and those of F, by J,. Let g
(2 gemerator of Fj) be taken as Y@ el where 9 is a fixed

generator of F* Then (J,(1, @) = (TplL, @) (by Corollary 1} and so

{J,(a, B)) = (7 (a, b))*. Henece
(Jo(1, my-Tylny m+1)) = (J,(1, m)-T,(n, m+1))°
= {Jp(L, n) Iy (n+1, m))® - == ({1, 5) T {n+1, m)).

Thus the numbers J,(1, m)J,(#n, m+1) and o, (3, n)-J,(n+1, m) gener-
ate the same ideal and they ha.ve the same absolute value {since |J (1, a)]

=Vq for 1 <a< I—1). Further both are =1 {mod (1 —£) ) Hence by
Lemma 5 they are equal.

3. The arithmetic characterization of the /s (aml s0 of the cyelo-
tomic numbers).

MATN THEOREM. Let a be one of L2, .,

o 1—2 (fiwed). Let H — 3 a8
tmodl

(where we may take any one of a; = 0 but we leave it as it % for mzform@ty

of our formulae). Put X; = Z‘a‘a,t irq- Suppose
=0
(i) X =Zz T oeee =X1—1;
(ii) ¢ =Xo““X1: .
(i) pt HY,
: Hla+DEk) >k

(ivy T +ap+...+ap; =0 (mod 1},
(v) e+2654... +(1—1)a_; = 0 (mod 1),
then H is some conjugate of J(1, a) and conversely.
Proof. We first show that all these conditions are satisfied by J(1, a)
and all its conjugates. (i) and (ii) follow from Lemma 1, (iv) and (v) follow

from Lemma 4. For (iii) we use Corollary 1 and get J (1, a)= [ (p"¥ 1)~
Hla+1k)>k
Now p’~*4 the product on the right-hand side of (iii) for otherwise there

cxist k, k' satisfying L <k, k' <1-1, A{(a+1)k) > &, A{(a4+1)%") > ¥ and
F'% = —1(modl), i.e. ¥ = —k(modl) and so ¥ ==1—k and then

A(@e+1)F') = 2 —(e+1)k) =1—2{(a+1)k)<1—Fk = ¥’ and thisis a con-
tradicion. It follows that p 4 the required product. Tlus proves (iii)
for J(1, a) "md so also for its eonjugates

Next by (iii), » + B’* = X (say). By taking a suxtahle con-
A(a-+13k) >k

jugate of H, we may suppose, without loss of generality, that p"~'+ ¥.

Now letip i“l | Hy then j7*k == —1{mod ) (i.e. j = —k{mod 1)) whenever

A({(e+1)k} > k. For any 4, 1< ¢<1—1, exactly one of 2{(a+1)i} > ¢ and

A ((a+1)(1 —4}) > I —1i holds. Hence the above j must be a & (rather than

—E). It follows that p | H implies p | J,. Henee H =J, (by Lemma 1)

This completes the proof of the theorem.
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Remark 1. Tor any fixed %, 0 < k< 1—1, there exist only finitely
many solutions (#,, ®1, +..y #_;) (viz. the number of distinct conjugates
of J(1, a)) satisfying the conditions (i}~(v) of the theorem and the extra
condition z;, = 0. This follows sinee {{*{4 = 0,1, ..., k-1, k+1,...,1-1}
is a bagis for Q(¢) over Q.

Remark 2. The finitely many solutions of our diophantine system
ought to be computable by a finite nomber of trials. This can be achieved
by expressing condition (ii) as a positive definite quadratic form by
a change of variables. Take a, = 0. We claim that the transformation
2 =1 —=fla; —{a; ...+ ;) takes (i) (with the use of (i)) into the
positive definite quadratic form

-

I—

1—-1 ' &
z ‘:2 20— 1)

Here |2 < 1*2yq and the transformation from the a; to the # is non-sin-
gular. On getting the solutions in the z; (in integers) we go back to the
a; and retain only those solutions for which the e; are integers and satisfy
(iii}, (iv) and {(v).

Proof. We have Y a;a; = X, +...+X, | (clearly) and this is equal

i)
1—1 I—1
to (1 —1) X, (by (i)). Hence 4=

— Y a;a; and we claim that this is equal to

i<i

I—
(Xo—X) (by (i) =~ Xom

o~

-1

[ —4) o — @y +-- o)
L 20— E—j+1) '

j=1

This is cheeked by comparing coefficients as follows: The coefficient of

i—1
a; is 20—l —j+1)+1{1—9)/2{1—i+1) = ({—1)/2 on summing by
. :"=1
partial fractions and simplifying. The coefficient of a,a;, (1<<f) is
1-1
2 UT—N(1—j+1)—1/I—i+1) = —1 as above. This completes the proof.
i=1
What remains to do now to complete the arithmetical characteriz-
-1
ation is the following : Suppose J (1, 1) is fixed as 3, #;{’ where (w4, ..., 7_,)
i=d
is an arbitrary solution of the diophantine system. The conjugates of
J(1,1) each correspond to the remaining solutions. It then remains to
fix J(1,2), J(1,3),...,J(1, (1—3)/2). This needs casewise handling and
we now give ! values = 3,5, 7, ... and complete this last step one by one.
For the cases 1 =3 and 5 we convert our theorem to a form similar to
the classical forms in F, due to Gauss (! = 3) and Dickson (I = 5). For

icm
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the cages 1 = 7 and 11, although it is possible to get the formulation of
our theorem in the Leonard-Williams form, we feel that since our dio-
phantine system serves equally well there is no point Iengthening this
paper; more so ag condition (iii) of our thecrem becomes too complieated
for the cases 1> b.

The case I =3. Here J(2,0) =J(0,2) =J(0,1) =J(1,0) =
J@,2) =J(2,1) = —1 and J(0, 0) = g—2, J(2,2) = J(1,1). So there
is nothing to be done once J(1, 1) is fixed. By our theorem, J(1, )=z
+ yo where &, ¥ satisfy: (i) no condition in this casge, (ii) g = p* = s+ y* —
—ay, (i) pfetye (iv) 1+z2+y = 0{mod 3), (v)y =0 (med 3).

Now by (ii) we find that (iii) holds if and only if p» 4 y and (iv) and {¥)
hold if and only if ¥ =0 (mod 3), # = 2 {(mod 3). We write (ii) a8 4q
= (22 —1)24-3y*® and put ¥ =3V, 22—y = U and we get the following

PROPOSITION 1. For 1 ==3, J(1,1) = (U4+3V)/2+ 3V, where p{ V,
U =1(mod3)and 49 = U* L2772

By the remark aftér our main theorem it follows that the solution
(7, V) of Proposition 1 has two choices where if (U, V) is one the other
one is (U, —¥). We may, without loss of generality let J(1, 1) correspond
to the solution (U, V) and then J(2,2) will correspond to (U, —V).
Now we have

A =13 D T6:5) =} (—6+g-2+otyotatye’) =a+T-8),
i g .

Agy == Ay = Ay =3 3 Mo J (G, §) = 5(2g—4-T+97),
T i )
U9V
2

—d4
Ay = Ay =4 = “gT ““'?13 (29—10+ ) = %(2g~—4—~U—9V)

and finally :
A=Ay = Ag+l = %(Q+U+1)--

This gives us the cyclotomic constants. The ambiguity about the cho%ce
of (U, +V) will, as usual, always remain as it depends on the choice
of the generator y of ¥. Putting « =1 we get the clagsical theorem of
Gauss [4]. Note that for the case a = 1, the condition p 4V is redundant
gince 4p = U227V and so p | V implies V =0 (otherwise 27V2 > 4p)
and 50 4p = U? which is a contradiction. Tt follows that p 4 V is always
true.

The cage ! = 5. Here J(0,0) =¢—2, J(0,1) =J(1,0)} =J(0,2)
=J(2,0) =J(0,3) =J(3,0) =J(0, 4 = J(4, 0 =J(1, 4) =J(4,1)
=J(2,8) = J(3,2) = —1,J(1,1) =J(1,3) =J(3,1) =J§,§h¥, J(2,1)
=J(1,2) =J(2,2) =J7, J(3,3)=J3,4 =J(4,38) =J7 J(44)
=J(4,2) =J(2,4) =J* =J. So we need caleulate only J. Since our
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aim is to gef fhe final result in the form given by Diskson for the case
o =1 [2] we write a conjugate of J ~a1§+a.zc~—.—w3é'3-{—alg, where,
by our main theorem

(1) a g, + tyay+ aya, = 0,04y + a0, +a,0, (ie. B =0 say),

(i) g = oj+a;+aj+af—B, ,

(iit) p 1 g.e.d. (@3 +ay0,—0,0, — 0,0, —a,ay, 63 - aya, — 0y a,
iyt @+ 0, g 0y 3y ey g~ Gy gy Ay 0 0 Ty by Oy g

(i) 1-Fa,-+a,+a,-+a, =0 (mod 5), '

(v} a,+26, 4 3a,+ 4a, = 0 (mod 5).

Here only (iii) needs a little justification. By (iii) of the theorem
p1 H-H? and

Bty )y

H-H"? = (4 8+ -0, ) (@, P+ 0y P a, L0, 5°)
= (@, 8y + Gy, + gy + @, a,) + La; +aya,+a ) + (a3 +aya, + 0, a)
+ 0 al +a, 004 aya,) + 2 (0} + ay 0, 0, 0,),
which gives (iif) above on fixing the basis as £, &, 23, £

This could be oné set of arithmetic conditions but we det one
similar to Dickson’s. This we now do.

By (i), using (i) we get ¢ = a;+a;+al+al —(B-L0)/2 and after

easy calculations we find 16g = X2 5072+ 50V2+-125W2 where X —
—(+a; 40,4+ a,), 50 = a,+2a,—2a, —da, (which is = 0 (mod B) by (¥)

and so U is an integer), 5V = 2¢, —a, + & —2a, (which is again = 0 (mod 5)
on nmltiplying (v) by 2, and so ¥ too i§ an integer), W= a, —a,—
—a;+a,. Here X =1 (mod 5) by (iv) and by (i} V2—4UV —U2 = XW
(easily cheeked). Finally condition (iil) is got in terms of X, U ¥, W
as follows. Solving for a,, a,, a,, g, we get

40 = —X 420 L4V + W, Aoy =—X +4U -2V W,

o, = —X —4U 2V —-W, 40y =—X—20U —4V +W

and & fairly simple caleulation yields that {iif} is equivalent to the condition

prged. (—X2 420022072+ 5W? —2X U -+ 6XV — 200V —10 W -
FIOVIW, —X2 20024+ 20V2 + 5 W2 -6 XU 42XV + 20UV —
—L0UW —L0VW, —X2—20 02+ 202+ 5 W2 —6X T —2.XV +
+200V4+10UW +10VW, — X2+ 20T — 202 + W2 4
+2X7 ~6XV — 20UV—.—10UW~10VW)

Now use the fact that pt(a, b, ¢, d} if and only if p{{a+d,a—d, b+,
b—c) and the ahove eondltzon is seen to boil down to
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X2 —BW2, U2—V2 UV, 2XU—XV—3VW, XU+2XV —5UW).
»t(

Here the seecond term: may be taken to he equal TWA5T0V in view of

the relation V2—4UV ~U?* = XW. Hence we have the following
PROPOSITION 2. For I = b,

J1,1) =3 (—X 2T +4V + W)+ 3 (—X + 40 -2V —W) {24

+3 (=X — AU L2V W) P+ 1 —X —2T — 4V +W) 2,
where X, U, V, W is one of the (exactly) four solutions of the diophantine
system _
| 16q = X2 +5007 +507V> +125 W2, VATV —T? =XW,
satisfying

X =1 (mod 3),
pr(X2—bW, XWAHUV, 280U —XV —-5VW,XUL+2XV —b0W).
If(X,U,V, W) is one solution, the remaining- 3 are (X, —U,.—V, W),
(X, vV, -U, W), (X, =V, U, —~W). The remaining 3 conjugates of
J {1, L}.are got by substituting these 3 solutions in the expression for J(1, 1).

Just as in the case I = 3, we may now work out all the eyclotomie
constants 4. YWe get the followmg

Ay = Lig—14+43X), Ay = Ay =4y =15 (4g 16— 3X+50]7+0W),
Ay = Ay = Agg = 2 (49 ~16 —3X +500 <5W), '
Aoy = Agy = Agy = i(4¢—16 —3X ~50T ~3W),
Ay = Ay = Ay = (4g—16 —3X —50V 4-5W),
by = Ay, = Ay = Ay, = Ay = Ay = (4g+4+2X ~10W),
Ay o= Ay = Agy = Agy = Ay = Ay — (dg+ 42X +H10W).

Putting o = 1 we get. Dmk.sen’s theorem (Theorem 8 of [2]). We
claim that our condition (ii) is redundant (i.e. always satisfied) in tItus-
cage. For (iii) is pt HH™ and p = HH, 50 if (p) = p,p.psp, With p, = pl s
then. (E) =omne Of PPy PiPs, PPy, PsPs and then (HH %) = p,pivs,
PIPPss DDy, PiPLD, vespectively and (p) = PyP,PyPyf any of these. This
covers everything for the case ! =15. _

The casel = 7. Fix J(1,1), then we need. only calewlate J(1, 2).
We have (by Gorollmy 4 with m =2, since J(1,3) =J(3,3)} J(1,2)
=J(1,1)-J(2,2)/J(3,3}. But (2 2) = oy(d(1,1)) and J(3,3)
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= ay(J(1,1)}; so this fixes J(1,2). Notice that o {J (1, 2)) =J(2, 4)
= J(1,2) and so J(1,2) Q(¥ —7) since o{ay) = 3.

The case I =11. We need to calenlate J(1,2), J(1, 3), J(1,4).
WehaveJ(1,8) = J(7,3) = oy(J(1,2)), J(1,4) =J(6,1) = ch(J(l,2)),
J(1,1):J(2,2) =J(1,2)-J(1,3). Now all the conjugates of J(I,1)x
xJ (2, 2) are distinet as is easy to check using the ideal decomposition
of J{1,1) given in Corollary 1. So the above relations fix everything
once J(1,1) is fixed.

, The case I =18. We need only caleulate J (1, 2), J(1,3), J(1, 4),
J({1,5). We have J(1,4) =J(4,8) = a1, 2)), J0,5) = J(7, 1)
= a,{J(1, 2)). Further J(1,2)-J(1,3) = J(1,1)-J(2, 2). It remains to
fix J(1, 2). Now put m =1, n — 4 in Corollary 4; we get J (1, 1)-J(2, 4)
=dJ{1, 4)-J(1, 5), ie.

. 2
*) 7,1 = ({1, 2)) (711, 2))
O (J(17 2))
By Lemma 3 all conjugates of J (1,1} are distinet and so there is only
one conjugate of J(1,2) that satisfies (), which therefore fixes J (1, 2).

The case 1=17. We need to fix J(1,2), ey J (1, 7). We have
J(1,4) =J(4,12) = q,(J(1, 3), J(1,5) =J (11, 8) = oy (J(1, 2)),
J(1,8) = o,(J(1,3)), J(1,7T) = J(9,1) = oy (d (1, 2)} and J (1, 2)-J(1, 3)
=dJ{1,1)-J(2, 2). It remains to fix J (1, 2). Put m = 1,n = 3 in Corollary
4; we get J(1,1) = J(1,8) 0,(J(1, 3))/0,(J (1, 3)) and as for the case
I =13 this fixes J(1, 3).

The case 1=19. We must fix J(1, 2), ..., J(1, 8). We have
J(1,4)=J(14,4) = 014(J(11 3))’ J(1,5)=J(13,1) = 513(‘7(1: 3))1J(1r 6)
=J(6,12) = o(J(1,2)), J(1,8) =J(10,1) = o0{J(1,2)). Next put
m =6, n =4 in Corollary 4, we get J(1,6)-J(1,7) = J(1,1)-J(2, 6),
which fixes every J in terms of J(1,2), J (1, 3). Now the usual relation
J(1,1)-J(2,2) = J(1,2)-J(1, 3) gives J(1,2) in terms of J (1, 3). Apply
0y to this; we get J(2,2)-J(4,4) = J(2,4)-J(2,6) and put m =1,
% =4 in Corollary 4; we get J(1,1)-J(2,4) =dJ{1,4)-J(1, 5). Now
eliminate J (2, 4) from these two equations and we get J(1,1)-J(2,2)x
Xd(4,4) = d (1, 4)-F (1, B)-J (2, 6), Le. (L, 1)"++% = J(1, 3)toute,
The usual argnment now fizes J(1, 3). This completes the ease I = 19.

Remark. Our condition (iii) of the main theorem is the crucial con-
dition. For ¢ = p this condition is redundant for the cases [ = 3,5 but
not for 1> 7 and even for I = 13 it gets frightfully complicated in terms
of the ¢ (the variables of the positive definite quadratic form eondition).
Perhaps this iz the reason why the cases I = 13 onwards had nof been
solved so far.
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