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1. Introduction. In 2 series of papers [1]-[47, [6], [8]-[10] L. Carlitz,
8. Cavior, J. Durbin, and the author stndied various forms of equivalence
of functions over finite fields. In [11] the author studied & similar notion
of equivalence for matrices over a finite field. In parficular, two matrices
A and B were said to be equivalent if b; = ¢(a;) for some ¢ € O where
£ is a group of permutations on GF(g). In the present paper we study
a generzlization of this definition which corresponds to the notion of
weak equivalence of functions considered in [10] and {6]. We study this
form of matrix equivalence by using the Pélya—deBruijn Theorem instead
of the techniques employed by the author in [8}-[10].

In Section 2 we develop some general theory while in Section 3 we
determine the number of equivalence clagses induneed by various permu-
tation groups. In Section 4 we show that in the case of a cyclic group the
results from the Pélya—deBruijn theory agree with those obtained. for
eyclic groups in Section 4 of [11] while in Section 5 we conclude with
severzl examples, .

Let F = GF(g) denote the finite field of order g = p°, p a prime and.
b= 1. Let F,,, denote the ring of m x »n matrices over F so that |F,,,,!
= ¢™. Let D = {1, ..., mn} and let FP be the set of all functions from
D into F so that [FP| = g™, We now define  1-1 correspondence hetween
the mn ordered pairs of indices and the set' D. To a given pair (i, j} we
agsociate the number #n{i-—1)+jeD. Conversely given ke D, by the
division algorithm we may write k& == n(¢—~1)+7 where 0 < j < % so that
to k we associate the pair (4, §) if § 55 0 and (¢ —1, %) if § = 0. We use this
correspondence by saying that T; € D corresponds to the pair (4, §).

We use this correspondence to construct a 1-1 correspondence hebween
F oo ond FP, Toeach A € F,,,, we associate a function f, e F? as follows.
Suppose 4 = (a;) has k distinet elements a;, ..., az. For each ¢ =1, ...
Sk leb Ay = {I; e D} ay = «} and define f,: D +F by f(4,) = a.
Then 4 < f, gives a 1-1 correspondence between F,, ., and F?. -

2. General theory. Lef @ be a permutation group acting on D and
H a permutation group acting on F go that ¢ is a subgroup of 8,,, and H
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ia isomorphie to 2 subgroup of §,, the symmetric group on g letbers. We
now make

DerFmsiTIoN 1. If A, BeF,,. , then B is equivalent to A relative to
G and H if fde = B for some o @ and f e H where if 4 = (a;) then
Bda = (ﬁ(a'u(lij))J‘

Thus G permutes the indices of 4 using the above correspondence
while H permutes the elements of . We note that if ¢ = {id.} then this
definition reduces to Definition 1 of [11].

Motivated by Durbin in [6] and the notion of weak equivalence
considered by the anthor in [10] we may use & and H to induce an equiv-
alence relation on FP if we say f is equivalent to g if ffa = g for some
ac@, peH. Moreover, if A, BeF, ., 4 f,, and B <[ then 4 is
equivalent to B relative to ¢ and H if and only if f, is equivalent to f,
relative to @ and H. The Pélya—deBruijn Theorem may now be used
to calenlate the number of equivalence classes induced by & and H in AP
and consequently, by the above remark, the number of equivalence clagses
induzced by G and H in F,,,,.

Suppose a permutation group K acts on a set 8 of r elements. I w e K
consider the monomial #1afz...a%r where for + =1,...,7,b, denotes
the number of cyeles of = of length £. The polynomial

(2.1) Pr(@yy oy ) = |K17* Y oliafe ..ol
nek
is called the oyele indexr of K.

ToroREM (Polya—deBruijn). The number of equivalence classes of
functions of D into F induced by permulation groups G of D and H of F is

2 0 . .
(22) Pg (E’?ﬂ?’ .o )PH (efrtart glataat) )
1 2

Zy=Lg==...=0

The Pélya—deBruijn theory may also be used to determine the number
of elasses relative to & and H of 1-1 functions from D into F if we calculate

a 0
(2.3) PG(EI—,E—ZZ,...)PH(1—|—21,1+222,...)

£)=Fg==...5=0

‘We observe that the 1-1 functions from D into F correspond to those
matrices with mn distinet elements so that we must have mn < p® in
order to have such functions.

In [6] Dwbin computed the eycle index for any subgroup of
Aut(GF (p%)), the automorphism group of GF(p%). In particular, if a is
any generator of the multiplicative group of GF(p®) and the mapping
6 is defined by 6(0) = 0 and 6{a*) = & for 0 <k < v = p*—1 then
Aut(GF(p”)) = <0y and has order b. Let M(i,t) denote the number of
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elements in GF(p®) that belong to a f-cyele of 0° for 0 < ¢ < b. Durbin
hag shown in Lemma 2.1 of [6] that if r |b then the eycle index of a subgroup
H = 6"y of Aub(GF(p") is. '

{bjr)—1

. . -
(2.4) Py, ..y tty) = 3 2 ’ ! D,
= T

‘While an explicit formula for M (1, {) seems difficult to obtain in general,
Lemma 2.2 of Durbin shows that M(i, 1) = p®9 while if ¢>1 M (4, )
is the number of & (0 << & << ») such that 7 is the order of p"mod{fu (v, k)).

- 3. In this section we apply the abowve theory to obtain the number of
equivalence classes induced by various permmtation groups & and H.
Let 2(G, H) denote the number of classes induced by the groups & and H
and let A'(G, H) be the number of classes of matrices with mn distinet
elements indueed by & and H.

THEOREM 3.1 If G = {id} and H = (6" is a subgroup of Aut(GT(p")

then
(bin—1

____}_‘_ (b, ir)mn
(3.1) MG, H) =< 2 »
and
’ ©my—1
3.2) PG E) =7 Y 0",
i=0

where (q), = q{g—1) ... {g—11+1) is the falling factorial with § ferms.
Proof. Clearly P, = 27" and Py is given by (2.4). Substituting P,
and Py into (2.2) we obtain a sum over 0 < ¢ < (bfr) —1 with general term
¥ 617!‘7& .
b gmm
from which (3.1) follows. Similarly we obtain (3.2) upon evaluation of
(2.3). _ :
THEOREM 3.2. If G is eyclic of order mn and H = {87 is a subgroup
of Aut(GF(p")) then

eM(t'r,l)(sl—}—sz-}—....)+M(ir,2)(z2+z4+.. Jtee.

—— [ (ir, L™

z1=sz=.=..=0

{bir)—1

(3-3) ﬂ(a‘g .H) =7911‘£i1“ 2 2 l;t}(t) [Z M(ir’%)]mnh-
i=0 imn wlE .

where (1) 1s Fuler's fotient function and
_ emet
(3.4) (@, H) =

— PO L, 0) )
e =0 i[mn
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Proodf. Tt is not difficult to show that
Pglyy oo Bpy) = (Ljmm) Y] @82,

i{mn
Substituting P, and Py into (2.2) we have for fixed ¢ and 1
f@(i) amﬂ{t

eM(ir,l)(zl+zz'+...)+M('s’r,E)(zz-)-zq,-{-...H-. R {CRATEITE IR SRR BN
munb G2

Zp=0

[ ?M(z ru)]™

from which (3.3) follows. To obtain (3.4) i we substltute Py and Py into
(2.3) we obtain a double sum Whose general term for fixed ¢ and f is

ff
:f: (? :: i (1 20) MO0 (14 2, ) MR
{

mb

(l- +tz )M’(’ir,t)/t' ..

zlmzzm...uo

””“) - (B )

from which (3.4) follows.

TB:EOR.EM 3.3. If @ is a eyclic group of order mn and H is cyclio of order
q = p° where pllmm then

1 .
e mnft i i1
(3.5) M6, ) —mnqﬂ;: PO L+ a(p'—p* )]
where
1 it =Ry
o i tkpt
and T '

(36) #@, 1) = [p),mz 0 T (0 ]

mng

Proof. In this case
b
b ; . —i
Pylays ..y zg) = (L [o?" + 3 (7 —p i ~']
izl -

80 that upon substitufing P, and Py into (2.2) we obtain for a general
term with ¢ fixed

b
[gpb(z1+z2+~-) + E (p*—p™ 1) epb(zp‘€+22pi+---)]

- alm,s;2=...=0

p(t) &

,,mnfx

N:

mmg Oz —

If ¢t =~ kp" then

(t) (P )mnlt

icm
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I t=kp'for i =1,...,2 then
¢ (t)

mng

¥ = [y + (9 — 2" ("],
Summing over all divisors ¢t of mn we obtain (3.5).
To prove (3.6} we have for fixed ¢ dividing mn

) gt
=28 S [(1+ﬂ)

mng 0z

zlazz-...=ﬂ

]
5’ R S CREPR L

Ift = 1then M =
for some i =1,...

(1 jmng) (PP, whileif 1 < ¢ 5= p° then M = 0. I ¢ = p°
s % where p®||mn then
= (Lmng) (9 — " 7P (O™ (0% )i«
Summing over all ¢ dividing mn yields (3.6).
‘With & slight modification we may prove

COROLLARY 3.4. If & 1s a eyclic group of order mn and H 43 cycha of
order g = p° where ptmn then

(8.7) MG, H) = (1/mng) D ¢(H)g™
HE

and

(3.8) 2(G, HY = (1/mng) (@)ma-

4. In this section we show that the rezults for eyelic groups obtained
by the Pélya—deBruijn theory are in agreement with those obfained by
the author in Section. 4 of [11]. Suppose H is a eyclic group of permutations
of P and A(H) is the number of clagses induced by H as computed in Corol-
lary 4.2 of [11]. While we {do have 2 more compact formula for the rmmber
of classes by using the Pélya—deBruijn theory, we do not obtain informa-
tion regarding the number of clagses of & given order as was obtained in
[11] by other techniques. We now prove _

THEOREM 4.1. If & = {id} then A(@, H) = A(H).

-Proof. Suppose H = {p> is a cyclic group of permutations of F of
order s so that as shown in Corollary 4.2 ef [11]

(4.1) AH) = (Lfs) ) tH (t, m,ym)

iis ‘
where M (t, m,n) = 1{#)™ —3 M{u, m,n) with the sum over all w8,
t|%, t <= u and I(f) is the number of fixed points of ¢**. Applying Mobiug
invergion we obtain

(4.2) AH) = (1fs) 3t 3 pla)l(at)™

. } : tla a]s/l
where u{a) is the Mobius function.
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denotes the mumber of cycles of ¥ of length 4, it is clear upon using (2.2)
that

oamn

G, H) = (1/s)

F PUDH L2 o)+ 20 (e g )4 QO F g hoag )
ded .

33’1""'“ WeH =t
= (1/s) 2 by (W™ = (1/8 2 by ( 1 mn
YeH

T ¢ has order % then b,(¢") = I(k) where k|s so that
Ma, H) (1/'8)2 kym
. kls

where v(k) is the number of elements of H of order & so that »(k) = p(k)
and thus

MG, H) = (1)) D] (1) (.

ks

It is not difficult fo shdw that in (4.2), for 2 given divigor % of s, the number
of times that I1{k)™* ocenrs is 2 tu(a) = @(k) which ecompletes the proof.

Corresponding to (3.6) of [11] W& prove
TrmorEM 4.2. If G = {id} and H = §, then

2 TAVRUCI

where the sum is over all 'n,mmegatiw k; such that Ty 428, ... +qk, = gq.

Proof. The proof follows from the Pélya—~deBruijn Theorem and the
faet that

Py, ..

(4.3) i@, B) = AP

o m)) = 3 (kylhg12% L.

where the sum is over all &, +2k,+ ... gk, = ¢.

Similarly if I = {id} we can determine A(&, H) for any group ¢ by
simply evaluating P,{q, ..., ). In this situation Klass in [7] has obtained
a formula for B, the number of k-element equivalence clagses induced
by &. In particular
(4.4) B = (1/k) 2 2 ((H, K) | Igl

: {B<GIFEH]=k} K<t
where Fy = {heD|e(h) = h for all 0 € K} and p(H, K) is the Mobms
funetion defined on the lattice of subgroups of G.

. Far==1 oy ke X
B lg ey aftasz ... a0

5. Iustrations. As an illustration of the above theory suppose g is a
prime so that ¥ reduces to the integers modulo ¢. If H is a cyeclic group of

icm

We now show that the Pélya theory yields the same result. If b,-(!{f)'
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order g then it is not difficult to see that Py (wy, ..., @) =
—1)a, ] and if G = {id} then Pz, ...
of (2.2) and (2.3) we have J{(G, H) = ¢ " while (G, H) = 0 it mn > g
and 2 (G, H) = (1/g) (@), if mn < g. Forexample,if g =bandm =n =2
then A(¢F, H) = 125 which is in agreement with Corollary 4.2 of [11].

As a second illustration suppose & = {id},m =#n = 2,¢ = 3 and
H = 8,. Theorem 4.2 can be applied directly or if (2.2) is nused we have

(L) [T+ (g —
y Bp) = 7. Thus upon evaluation

Py = (1/6) (2% + 3w w,+ 22,) so that {2.2) becomes
& e
(1/8) 5 Plrtarteg) | gomtarts; i | 98 = (1/6)(3*+3) = 14
4 Y=gy =tig=

which agrees with the example after Corollary 3.4 of [11].
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