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Psendoprimes and a generalization of Artin’s conjecture
by
SAMUEL 8. WAGSTAFF, Jr. {Urbana, T1.)

1. Intreduction. One of many generalizations of Artin’s conjecture
ig the following one proved by Lenstrs [4], assuming the Generalized
Riemann Hypothesis (GRHE) to be stated later. If a is o rational number
different from —1, 0, 1, and ¢ is & positive integer, then the set of primes
¢ for which a has residve index 7 modunlo ¢ has o relative density 4(a,?)
in the set of all primes. For an integer ¢ other than —1 or a perfect square,
Hooley [3] expressed A(a) = 4(a, 1) as & product from which it is clear
that 4 (a) > 0 for all such a. Lenstra used a clever device to determine
when 4 (a,t) = 0 without actually cemputing product formulas for these
densities. The main result of the present paper iz a formula for A(a, )
gimilar to that whieh Hooley gave for 4(a). We express d{a,?) a8 a ra-
tional number times Artin’s constant A = [[ (1 —1 f(q(q—l))), where the
produet ig over all primes ¢. See Wreneh [7] for .4 to 45 decimal places.

An odd composite natural number # is a pseudoprime to base a if

(1) @' =1 (mod n).

It is known [2] that for each infeger ¢ > I the pseudoprimes to base a
are much rarver than primes, so that o large odd » which satisfies (1) for
some a > 1 is very likely to be prime. One might expect that n which
satisfy (1) for several differcnt bases @ are even more likely to be prime.
‘We show that the increase in certainty that # is prime is not so great
as one might guess, by deriving from the equation Y 4(a,t) = 1 a corol-
. f=1

lary which implies that pseudoprimes to @ given base are more likely

to satisty (1) for many bages than & composite mumber which is not known
to satisfy (1) at all.

A Carmichael number is an odd composite number # satisfying (1)
for each integer o relatively prime to #. The paper concludes with & heuristic
argument connecting the number of pseudoprimes to base ¢ up to = to the
namber of Carmichael numbers up to .

The author is indebted to Professors H. W. Lenstra, Jr., C. J. Moreno
and C. Pomerance for helpful discussions related to this paper.
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2. The main theorem, The letters p and ¢ always represent primes.
The greatest common divisor and leagt common mmultiple of @ and b are
written (@, b) and [a, b]. For (@, p) = 1, let I,{p) denote the least positive
exponent I for which o = 1 (mod p). Then I (p) divides p-—1, and I,(p)
= p—1if and only if & is a primitive root modulo p. For positive integers
i and real numbers @ let N, () be the number of primes p < # for which
Lp) = (p—Dt.

Let ¢ and u denote the functions of Buler and Mdobius. We use p*||h
to mean p°|k but p°*'+h. Let =(x) be the number of primes < .

We will determine 4 (a, ¢) in terms of a certain sum 8(k, ¢, m). The
following lemma, which is proved in Section 4, expresses the sum as a ra-
tional number times Artin’s constant defined in the Imtroduction. Define

1 g —1
O =wll i
i 1

Lemma 2.1. Let h, 1, and m be positive integers. Write M = m{(m, §)
and H = hj(¥t, h). Then ‘

S(h, 1, m) L ZM
)

Ko (ki)
ik |
| ' = i q a(g—2)
= (M) (Mt h) Ag(t) - .
: q!;lj ¢—1 g ¢-g-1 qll(»]fl) g+l oz T—9-1
qtt at M i

When a is a non-zero rational, write a = be?, where ¢ is a rational
and b iz a squarefree integer. Define d(a) = & if b = 1 (mod 4), and d(a)
=4b if b = 2 or 3 (mo d4).

Let O denote the field of rational numbers and let £, be a primitive
nth roet of unity. Let GRH (a) be the statement that the Generalized
Riemann Hypothesis holds for the Dedekind zeta function over Galoig
tields of the type Q(&;, a'*), where k is a positive integer. (Lenstra asswmed
a slightly weaker GRH.) We can now state our principal result.

TeEOREM 2.2. Let a be o rational == -1,0,1. Assume GRIH(a).
Write @ = +a, where a, is positive and not an exact power of a rafional,
Let 2% h. Write ay = a,al, where a, is a squarefree inleger ond a, 18 a rational,
If >0, set n = [2°7, d(a))]. For a <0, define n = 2a, if ¢ =0 and
@ =3 (mod4), or 6 = 1 and ¢, = 2 (mod 4); let n = [2572, d(ay)] other-
wise. Let t be any positive integer. Then Noyle) ~Ale, )n(2) as @ - oo,
where

Afa, t) = 8(h,t, 1)+ 8(h,t, n)
if a>0 and

Ala,t) = 8(h, t,1)—48(h, £, 2)+18(h, t, 2"+ 8(h, t, n)
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if @ << 0. In particular, if a >0 or e = 0, then

—2
A= wmagw [ A -2
qlH*
i

2 —
ol H') g1
1 1 g q(g—2)
+u(M) (M, k) Ag(2) ”QL"LZ lqamq_l [] e ]
ql{M,i) QM qlt,H) alH
} att atM ot Mt

where

H = Li(h,t), M=mnln,t and H = h(Mt,h).

Lenstra identified the conditions (8.9)+8.13) of [4] under which
A{a,t) vanishes (assuming GRH({a)). It is easy to verify directly that
our expression for A (a,?) vanighes in cach of Lenstra’s cases, but it is
tedious to check that these are the only cages in which it va.nishes.

3. Examples. Let us compute 4({2,7). Wehavea =2,h =1, ¢ = 0,
g = Gy == 2, @(ag) = 8, n =8, and M = 8/(8, 1). If 411, then u(H) =0
and A(2,%) = Ag(t). I 4]f, then u(M) = »(2) = —1 and

A(2,1) = Ag(t)(1-1/(22-1)) = (2/3)4g(D).

Finally, if 8!f, then w(M) = p(l) =1 and 4(2,%) = 249(t). We remark
that empirical data for the odd primes below 100000 shows close agreement
with these formulas. Table 1 gives N, (7}, N, ,(#)/={z), and A(2,t) for
1=t 10 and @ = 100000.

TaBLE 1

& = 100000, mlx) = 9593, 4 = 0.3730558136... is Artin’s constant.

¢ W) | Fesllnm) | A(2,1)
1 3603 © 0.37563 A = 0.37396
2 2726 0.28420 34/4 = 0.28047
3 643 0.06704 8Af4b = 0.06648
4 460 0.04706 4/8 = 0.04674
b5 166 . 0.01531 - 2441475 = 0.01889
6 482 0.05025 24115 = 0.04986
7 90 0,00038 484(2009 = 0.00893
8 347 0.03618 34732 = 0.03506
9 B S 0.00771 84/405 = 0.00739
10 118 0.01230 18Af475 = 0,01417

i ~ Tt 4 is odd, then A(3, %)
To compute A (3, t), we find M = 12j(12,%). If 1 s )
= Ag@). T (12,9 Z é, then A(3,1) = (16/15)4g(®). I (12,1) = 4
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then A4(3,) = (4/5)Ag(t). Tt (12,6 =6, then 4(3,1) —
T 12[t, then A(3,1) — 244(1). en A(3,1) = (2/3)4g(2).

The case of A(4,1¢) is the first one with % > 1. We find A4, =0
when ¢ is odd. This oceurs because 47D = 99-1'— 1 (1m0q P), so that

we eannot have I, (p) = (p —1) /¢ with 7 odd. We also have 4 (4,1) = cdg(t)

where ¢ = 2, 4/3, or 4 according as 24, 4{t, or 8|4 ’
Fma.]ly, we evalnate 4(—3,1t). It cquals ¢Ag(t), where ¢ = 6/5,

4/, 0, or 2 when (6,7) =1, 2, 3, or 6, respectively. The 0 in the third

case is correct, for if p = 1 (mod 3), 'bhen the Legendre symbol (—3|p)
= -1 and (~~3)“"”’2 = 1 {mod p) by Buler’s criterion.

4. Proof of the main theorem. We firsb prove Lemma 2.1. Wo will
use the elementary fact that

. k
kY = ]
e (ik) ‘P(J)@(U ]))(Jrk)

whenever j and & are posmwe integers and % is squarefree. Since M —
mf{m, 1), we have

S(h, 1, m) — w(k) (&, h) y (MEY( MEtL, h)
ktqo(ht Mktqp (M)

. h
O RIS ‘_‘”“’(k’ i)
Mg (M) o k )
o5 o ) e

Sinee the summand is a multiplicative function of % we have, using Buler’s
identity and writing H == & J(M¢, B), that

S(h, t, m) = "%@Dﬁ)” H ¢l Hq —1 ]Y qﬂ—g—l =2

FMiE g——l
q-{"’IIH ({ng T q?‘iﬁﬂ
p{M) (M, IL)A g*—1 q—1
DOTUOR Y A § X
P pag A
- _2
gl g az I
@t

ginee 4 = y (2 —g-1)/{g2—¢q). Now p(Mi) = Mt [| (¢—1)/g. Without
| M

loss of generality, we may assume B is squarefree, so that M? = Il ¢
Thus we bave dir
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Sthtm = HIOWLBL YL L

g U707 i £

y H 1 H q g(¢—2)

2 oy o 2
odM g g—1 qlft, =) g+l qiH ¢ 1 1
aft qtir o1 M

which proves Lemma 2.1.

We need the following proposition to compute the degree of a Kummer
extension in the proot of Theorem 2.2.

ProrogrrioN 4.1, Let a be a rational #= —1,0,1. Writs a = +al,
where oy 18 positive and not an exact power of a rational. Let B be a positive
infeger. Write K = K{E,h) and [Q(lig, a"5): Q] = o(K)K'[e(K).
If > 0, we have ¢(K) = 2 if K’ is even and d(a,) | K ; otherwise e(H) = 1.
Now suppose a < 0. If K is odd, then (K} = 1. If K is even and K' is
odd, then e(K) = 4. If K is even and K’ == 2 (mod 4), then

2 if H =2 (mod4) and d(—ay) |
s(K) = or K = 4 (mod 8) and d{2a,)| K,
1 otherwise.

If K is even and 4| K, then £(K) = 2 if d(a,) | K and ¢(K) = 1if d{a )+ K.
Proof (sketch). From Kummer theory [1] the degree of the extension
is p(K)L, where L is the least positive integer for which aris a Kth power
in O(lg). One may determine I = K'/e(K} in the various cases from
Lemmas 3 and 4 of [6]
Proof of Theorem 2.2. Lenstra [4] has proved, assuming GRH (a),
that N, (@) ~ A{a, )z (), where

u (k)
[Q(Ck 13 aljki) Q]

Aa, 1) =

A short caleulation uging Proposition 4.1 shows that if n-is deﬁned
46 in the statement of Theorem 2.2, we have for a > 0

2 iwil,

o) = {1 if ntH

and for a < 0

1 if 9|K and 2°*1K,

2 ifn K,
1 otherwige.
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(There can be no conflict between the first two conditions beeause 2°+! |n.)
Thus for ¢ >0 we have

N0 (k) (Rt By s ()
Ala, 1) = L ()

o k) (et ) §°v p (k) (Tt b

+2

L4 Tl (k) ety (ht)
ntkt nikt

=y (k) (Kt 208 > (k) (Kt R)
Ko (Jet) Kt (Jet)

nlkt
= 8(h, 1, 1)+ 8(h, %, n).

The equation for @ << 0 is proved similarly.

5. Psendoprimes. In the proof of Theorem b1 we will need the equality
EA (@, %) = 1lforeach a # -1, 0, 1. Forna.tumlnumberstlet 7(t) = Z 1

i=1
and f(f) = [Q(%;, a™): Q7. Then +{t) = O(ff), as - oo, for everv
e>0. Also FY< 20 {{tp(t)} Dy Proposition 4.1, so that f(t) = Q2+,

Thus 2 f(B)z(t) converges. Therefore

2 Aa,t) = 3 Y u()f ()

=1 k=1

ig an absolutely convergent double sum which can be rearranged. to

Zf(rf) D plk) = (1) = 1.

kiK

This proves the formmla E Afa, t) = 1.
t=1

TERORENM 5.1. For all ¢ > 0 and all integers a and b with la] > 1 and
[b| > 1, if GRH(a) and GRH(b) hold, then there is o K such that for all
sufficiently large @, ot least (1—e)n(z) primes p < @ savisfy (1,(p), L,(p))
> (p—1) K.

Proof. Let & = /4. Choose T so large that 2 Af(a,t)>1—4 and
EA(I) 1) >1—38. Let K = T*. Let 3, be so large that for all z =

We have

Noel®) > (1—8)A(a, Yn(z) and - N, (@) > (1— 8)A(D, tyalw)
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for t =1,2,...,T. Then for all 2> x, there are at least (1 —28)x(d)
primes p <& for which (p—-1)/I,(p)< T and likewise for I{p). Hence,
for all &z w, there are at least (L —46)n{x) = (1—s)=(x) primes p < &
for which neither (p —1)/I,(p) nor (p--1)}/i,(p) exceeds T. But for such
primes p we must have {,(p), L,(p)) = (p—1)/T* = (p—1)/EK.

The significance of Theorem 5.1 is explained. in [5], where it is noted
that the theorem shows that when I, {p}|#—1 is known, it is much eagier
1o have I; (p) [ —1 as well. Hence tests (1) for several bases are not & much
more reliable test for the primality of # than a single test (). Better tests
for primality are discussed in [5].

6. The expected value of (p—1)/I,(p} for fixed a. Let a be a fixed
integer with je| > 1. We will show that 2 tA(a,t) diverges, so that

(p—1)/l.(p) does not bave a mean value. However, we can estimate the
rate at which this sum diverges.

THEEOREM 6.1. For each integer & with |a] > 1, there is a positive constant
¢, such that >, td(a,t) ~clogT as T — co.

i<T
The proof requires tiwo lemmas. Recall that

gty =t [[ (-1 —q—1).
att
LevwA 6.2. Let 1 and N be integers with 0 << 4 << N. There iz a positive
constant K (1, N) such that

tg(t) = E(i, MlogT+0(1) as T — co.
.tEiéqugN)

Proof. Note first that (@ —1)/(g®?—¢—1) = _l+§f(q2—q-—1). Hence,

ef Y . _ ' pi{d)d
B D eet= 3 1tJEH(eﬁwq—l)

t<T dit

=T

{={(mod N} i=i (mod N)
Cedpr(@) Vv

— G.
> 2 THe—g—1) d;;ﬂ gz—g 1) e

cdsi(modN) gld ed=i {mod N)
Now the inner sum (on ¢) extends over initial segments of residue classes
modulo N. Hence that sam is K {T/d)2+O(T[d), where 0 < K, ;< §, K,
depends on N and ¢ as well as on 4, and K, > 0 precisely when (d, N)}|<.
The implied constant in O(T/d) does not depend on d. Thus’

dut{d)
‘TEZH qz?f_‘il ( 2 n gf—g-——l_))

d<T a<T
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For squarefree d we have d“*/4 < [T (¢ —g—1) < @ Hence for each

i and N, aid

() = w DI,

“ < [[{g*—q—1)
d=:1 gld

converges to a positive number which we write X (¢, ¥)/2. Thus

B(T) = T*K(i, N)j2+0 (1% }) 374 +0(T2d‘)

a=T

= PE(, ¥)j2+D(T),

where D(I) = O(T"*). We uge a Stieltjes integration to complete the
proof. Integration by parts gives

T

\' B(T)
= —2 _— -3
K: tg{f) lf w4~ dB (u) I —|-2f B(uw)u3du
t=si (mod M) t :

T 2 i o .
:K(i,N)/2+0(T—1fﬂ)+2f [ K(@rl\;)aﬂ}—.—l)(u) i

= K (i, Mlog T+ K (i, §)j2+2 [ Diw)udu—
. 1

—2 [ D(wyu*du+ 0T
T

= K(i, N)log T+ K (i, N)[2 +2f D{w w3 du+0 (T,
This proves Lemma 6.2 '

LEmvva 6.3. Let N be a posztwe inteqer. Let {B and {03, be two
sequences of non-negative real wumbers, Assume not all B; vanish. Suppose
C, = 14 (1) By for every natural number t, where t* denotes the least non- negatwe
residue of H(mod N). Then 3 Oy~ Klog¥ as T — co, where K = F‘ B; x

i<T S
xKli, N). -

Proof. 'We have

D 0= MNgt)B, = 2 B; .a tg (2)

=T t=P i=0 23
’ : i=i fm.od N}

N-1 N—1

= ) B{E(i, N)log?+0(1)} = D B.E(i, M)logT +0(1)

i=0 i=0

by Lemma 6.2; This proves Lemma 6.3.
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Proof of Theorem 6.1. By Theorem 2.2 and Lemma 2. 1, we know
that 4 (a,?) is a rational number times Ag(f), and the rational number
depends only on the residue eclass of ¢ modulo N = [n, A], with » and %
ag in Theorem 2.2. Hence there are non-negative constants By, By,

+y By_1, depending only on a, such that td(a, ) = tg(f)B, , Wlth t’

a8 in Lemma 6 3. By that lemma, we have 2 tA(a,t) ~clogTas T — oo,
Ne
where ¢, = Z B, K (i, N). Since the A {a, t) do not all vanish when |a} > 1,

i=0
at least one B; is positive; therefore, ¢, is positive. Thiz completes the
proof.
In a similar manner one can prove that for each infeger a with la| > 1,
there is a positive constant d, such thas

(3) D o) A(a, 1) ~d,logT

<7

as T — co. The difference in the proof is that
I=1g{g*—1){{¢*—~q¢—1) = 1+1/{g(g*—g-1)),

so that the series replacing (2) converges more swiftly.

7. Speculations on pseudoprimes and Carmichael numbers. Let a be
an integer # —1,0,1. We present a heuristic argument connecting the
number P, (x) of squarefree pseudoprimes to hase a up to 2 to the number
C(2) of Carmichael numbers up to @. Every Oarmichael number is square-
free.

For odd squarefree n, let f(n) be the least commeon multiple of the
numbers p—1 for pf%. When (a,n) = 1, let I,(n) be the least positive
exponent I for which ¢' = 1 {mod n). Then ,(n}|f(n). Let N, (%) be the
namber of odd squarefree o < @ with I,(n) = f (n) /t. By analogy to Theorem
2.2 and (3), suppose there arc congtants 4'{s, ) and d; > 0 o that N, (=)
~ 4@, ) a8 2 - oo a.n_d’ZT () A (a,1) ~dlogT as T — vo. .

<

For most large n and most small 1, ¢ divides f(n). Thus the number
Dy(x) of odd composite squarefree » < o with t/f(n) and f(n)fi|n—1.
approximately equals the number #,(x) of odd compesite squarefree » < o
with f(n)|(n—1)t. Now D () = B,(®) = ¢(x) because Carmichael num-
bers are odd squarefree n with f{n)|n—1. For 1> 1 it is plausible that
T, (=) is roughly proportional to i, at least for small ¢, Thus I, (») ~ B,(x)
ms 10(x). Let C{x) be the number of odd composite squarefree n < @
with £ f(n), f(»)/t]n —1 and if 1 < s < &, 5|1, then f(n)/s+n —1. An inclusion-
exclision argument gives €;(%) ~ ()T (x) for small 1.

Let P, 4(x) be the number of squarefree pscudoprimes » << o to bage
a with I, (n} = f(n)ft. Multiplication of probabilities gives P, ()
~ Oy(w) N, (m)m?/(4w), since 4/m® is the demsity of the odd squarefree

4 — Acta Arithmetica XLI, 2
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numbers. Using the hypothetical analogs of Theorem 2.2 and (3), we find
(4) Pyla) ~ 3 Py, (@) ~ &, 0(2)loge

1<z

for some d,, > 0. Our estimate for 0, (») should hold only for small ¢, but pre-
gumably the sum in (4) eould be cut off at some point much less than o
because those # with small I (n} can be shown to be negligible. An ap-
proximate equality like (4) for ¢ = 2 was noticed in [5],

Empirical data in [5] suggests that almeost all pseudoprimes to base
a are squarefree, that is P, (#) ~ P_{(@) as # — oo, where P, (#) is the number
of pseudoprimes o base ¢ up to x. In a forthcoming paper, Pomerance
shows that P, () flog is unbounded. From P,(x) ~ P;(x) and (4) it would
follow that there are infinitely many Carmichael numbers.
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On the congruence f(+*) =0modq, where g is a prime and
f is a k-normal polynomial

by

J. WorcIE {Warszawa)

I proved in [4] the following

THEOREM A. Let f be o polynomial with rational integral coefficients,
irreducible, primitive, with o positive leading coefficient. Assume that f is
different from © and is not a cyclotomic polynomial. There exisis o positive
integer ko = kolf) such that for every positive integer k divisible by &, and
for all positive integers D and r, where (v, D)= 1 and r = 1 mod (D, k)
there exist infinitely many primes q satisfying the following condition: the
congryence f(z") = Omod g és soluble, ¢ = 1mod%, ¢ =rmodD. The
Dirichlet density o of this set of primes satisfies the inequality

¢(f) el
TR0, = =% GhelD, &)

where

- 1 if f 48 nol reciprocal, n is the degree of T,
2 if f is reciprocal, .
é(f), C(f} denote eertain natural numbers depefmﬂng on f.

The main aim of this paper is to prove a related theorem in the case
of what we call a k-normal polynomial. Let K be an arbitrary field. A poly-
nomial f e K [x] is ealled weakly normal over K if K{«) is the splitting field
of f for every root aof f (see [17).

Let & be any positive integer. The polynomla,l feKix] is called
k-normal over K if f(w) ig irreducible over K and f(#*) is wealkly normal
over K(;). Obviously the polynomial f is 1-normal if and only if it is
normal. Tf the field X is fixed, we simply say that f is k-normal.

The definitions and notation are taken from [4] In particular X,
is the group of rationals congruent to 1 mod k. We shall prove the following

TaROREM. Let f be a polynomial with rational integral coefficients,
irreducible, primitive, with & positive leading coefficient. Assume that fis



