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numbers. Using the hypothetical analogs of Theorem 2.2 and (3), we find
(4) Pyla) ~ 3 Py, (@) ~ &, 0(2)loge

1<z

for some d,, > 0. Our estimate for 0, (») should hold only for small ¢, but pre-
gumably the sum in (4) eould be cut off at some point much less than o
because those # with small I (n} can be shown to be negligible. An ap-
proximate equality like (4) for ¢ = 2 was noticed in [5],

Empirical data in [5] suggests that almeost all pseudoprimes to base
a are squarefree, that is P, (#) ~ P_{(@) as # — oo, where P, (#) is the number
of pseudoprimes o base ¢ up to x. In a forthcoming paper, Pomerance
shows that P, () flog is unbounded. From P,(x) ~ P;(x) and (4) it would
follow that there are infinitely many Carmichael numbers.
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AQTA ARITHMETICA
XLI (1882)

On the congruence f(+*) =0modq, where g is a prime and
f is a k-normal polynomial

by

J. WorcIE {Warszawa)

I proved in [4] the following

THEOREM A. Let f be o polynomial with rational integral coefficients,
irreducible, primitive, with o positive leading coefficient. Assume that f is
different from © and is not a cyclotomic polynomial. There exisis o positive
integer ko = kolf) such that for every positive integer k divisible by &, and
for all positive integers D and r, where (v, D)= 1 and r = 1 mod (D, k)
there exist infinitely many primes q satisfying the following condition: the
congryence f(z") = Omod g és soluble, ¢ = 1mod%, ¢ =rmodD. The
Dirichlet density o of this set of primes satisfies the inequality

¢(f) el
TR0, = =% GhelD, &)

where

- 1 if f 48 nol reciprocal, n is the degree of T,
2 if f is reciprocal, .
é(f), C(f} denote eertain natural numbers depefmﬂng on f.

The main aim of this paper is to prove a related theorem in the case
of what we call a k-normal polynomial. Let K be an arbitrary field. A poly-
nomial f e K [x] is ealled weakly normal over K if K{«) is the splitting field
of f for every root aof f (see [17).

Let & be any positive integer. The polynomla,l feKix] is called
k-normal over K if f(w) ig irreducible over K and f(#*) is wealkly normal
over K(;). Obviously the polynomial f is 1-normal if and only if it is
normal. Tf the field X is fixed, we simply say that f is k-normal.

The definitions and notation are taken from [4] In particular X,
is the group of rationals congruent to 1 mod k. We shall prove the following

TaROREM. Let f be a polynomial with rational integral coefficients,
irreducible, primitive, with & positive leading coefficient. Assume that fis



icm

152 J. Wéjeik

different from @ and f is not a cyclolomic polynomial. Let & be any positive
integer. Asswme that I is k-normal. Let a be any voot of if. We have

1) o=,

Further, let K denole the mazimal cyclofomic subfield of Q(a). Let us
put Ky = K(f). Let f, be the conductor of E,. Let G4 be a group of rationals
mod f, eorrespaonding to K. Let us put Gy = Gy N K. The group &, is uniquely
determined by the polynemial f and the positive integer k. For awy positive
integers D and v sotisfying the condition that {D, v} = 1 and the residue
class mod D containing r contains a rational integer belonging to G, there
exist infinitely many primes g setisfying the condilion thai g = r mod I,
¢ =1modk and the congruence flz*) = 0mod q is soluble in »eZ.
The Dirichlet density of this set of primes is equal o

(k: G(f)) . [ 0 Prp .
C(Nke([D, ET) K,

where ny = (k, o(f}), § is cyclotomic, y € Q(a).

Remark 1. In the case where the polynomial f and the positive
integer % satisfy the agsumptions of both Theorem. A and the theorem given
above we have

(k,0(f)) HEoPpyl 6(f)

G kp([D, k1) M| — O(f)kp([D, k)

since & = 0mode(f), ¥ =0modf; and K, < P[D w {(see the beginning
of the proof of Theorem A).

We shall nse a standard lemma.

Levwa 1. Let K, L be subfields of some field. Let KL be algebraic over K.
If a e KL then « = @b+ ... +a,b,, where a; €L, b e K.

LEnwa 2. Let K, L be subfields of some fwld. Assume that LK nL
2% a Galois ewtension and {, e L. Let e e K. The equation 5

(@) a =4, PeckKIL,

has a solution in & if and only if @ = 9", fe L, y e K.

Proof. The sufficiency of the condition is obvious. Assume that (2)
holds. I is algebraic over K nL and KL is algebraic over K. By Lemma 1

(3) P = Z’ b, aeL, bjeK, m>1.

J=1

We may assume that & ¢ 0 and m is minimal. Tt follows that byy...u b

k3

are linearly 1ndependent over L. By Theorem 4, p. 196 of [2] KL/K ig
a Galois extension., Let o EG(KL)/K By (3) o(#) = Z o(a;)b;. o(a) e L
J=1
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since the extension LjH nL is Galois. On the other hand, by (2) and (8)
m
o(#) = &6 = ) LZab;, (Eq el
i=1 ,

Comparing the coefficients of b;, we have o(g) = [ja;. Since # £ 0,
7 #
we have 4; + 0 for a eertain j. Hence a(—) = — e X since o was arbi-
% %
trarily chosen. Henee 4 = fiy, § = a; e, y e K and o« = %"
Remark 2. The assertion of Lemma 2 does not hold if £, ¢ L. We shall
give the following example: K = P,, L =P, p a prime, p > 3, n|p —1,
n > 3.
Let y be a character of degree # with conductor p. Let 4 = z{y}

p—1
= 3 y(#)&%. It is well known that e = #* = 7*(y) e P, = K. Further,
=1 :

§ el P, = KL The equality a = ", fecl; ycK does not hold.
n-1
Otherwise ¢ = fiy;, fePy, pyeP and & =y, D a7, a, Q.
z=1
The numbers {,, &,..., 5™ form a basis for the extensions P,/Q
and P,P,/P,. Hence, comparing the coefficients of [, we have y{w)
=yna,. For # =1 we have 9, =1/a, €0, x(z)eQ, y{z) = L£1lfor @
=1,...,p—1, which i§ impossible because n > 2.
LevMMA 3. Let K be a field. Let a € K. The equation

@ =", Hek™

has a solution in & if and only if a = f*y", where § is eyclofomic and y € K.

Proof. The proof foliows at once from Lemma 2 since K™ = K1,
where I is the field generated by all roots of unity.

Levwma 4. Let &y be a field of characieristic 0. Let Ly be a cyclotomic
field; K,, K, denote mazimal cyclotomic subfields of the fwlds kyy By L,
respectively. Then K, = K| L,.

Proof {due to A. Schinzel). It is enough to prove that K, c K, L,.
Take an arbitrary element « of K, = 0™ nk,.J;. By Lemma 1 it is of
the form

F
2 ab;, where g; ek, b; el,.

=1

Let @ (b, ..., 0) = @(F) « Ll We get

S -1
(4) a= D b,
i=0 :

where ¢ s?u,, d = (ky(#) 1 o).
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Taking conjugates with respect to &, we obfain
d—1
a® :Z e (p=1,...,4).

From Cramer's formulae it follows that
6 eQa®, ..., d¥; 90, ., 0 < O

Hence ¢; € 0™ nk, = K, and we get from (4) a € K, Ly.

LEMMA 5. Let F and m be positive integers. Let k, be a findte alge-
braic number field. Assume that B & ks, § is different from zero and from roots
of umity, &, €k, and (0, (8), m) = 1. There ewists an ideal a of ky such

thai (%) =¢{,., No =1mod F, (a, F) = 1.

Proof. We may suppose that ¥ is divisible by all conductors of
power residue symbols occurring in this proof. If the assertion of the
lemima does not held, then for some positive integer & such that d|m,

d<m we have: If {a,F) =1 and Na = 1 mod ¥ then (lz;) -= ({5 for
m

0'5 .
a certain ¢ depending on a. Hence (%) =1 for Na = Lmod F, (a, F)

= 1. Henee

(ﬁd{szp) %( ﬁdlk') 1
b m NL-,I szb

for any ideal b of %,.Pp prime to ¥ since
Nigio (Niyppie, 0) = Nyyppipb = 1mod F.

This means that g% is the mth power residue for almogt all prime 1deals
of &, Pp and by Theorem 16,7 (I) of [8], p. 153, §% = ™, y & k,Py. Hence
B = y™, y ek, my, = m/d > 1. By Lemma 1 of [4] ¢, (B)y oy, (ys) arxe
positive integers. By Lemma 6 of [4] ¢, (f) = m, e, (y,). Thus m,|e, (8),
m, |m, my > 1, which is impossible since {q, (f), m} = 1.

LevmA 6. Let F and m be positive integers. Let &, be a finite algebraic
wamber field, f k., where § is different from zero and from roots of unity,
G € kg omd [0, (§), m) = 1. Let G, be a group of rationals mod F corre-
sponding lo Ty "Pp. For any rational integer © and § ¢ G, there exisls an
ideal a of &k, such thoi

(g)m ={n (4, F)=1, No=smod F.
"

Proof. We may suppose that F is divisible by f (7.:2(1/ £}/k,). By Lem-

ma 2 of [4] there exists an ideal ay of %, such that § = Na, mod 7, (ay, F)
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= 1. By Lemma 5 there exists an ideal a, of %, such that (f—) = [,
m

4P
{ag; F) = 1, Nay, = 1mod F. Let (%) = 8. T is enough to take
1im

o =a0 "

Proof of the theorem. Let a be any root of the polynomial f.
By the assnmption e is different from zero and from roots of unity. Leb
us put k; = Q{a). By Lemma 1 of [4] ¢{f) = ¢, (a) 18 & positive integer.
We have
(5) a= ﬂ’lzlr peki® ny = (kr G(f))

Let us put m = k/n,. By Lemma 6 of [4]:
e(f) = e, (a) = n16, (£)).

Hence

"y = ('"'1'”7’: ”1%1(131)] = T (ma Oy, (ﬁl))
Thus
(6) (m: ckl(ﬁﬂj =1.

By Lemma 3 and (5) a = 879", § € O™, y € k;. Thus (1).
We may suppose that

(7} =By, FeQ™, vek.

(y]k
Tet as put &y = B Py (B), (—li) - (%) for 8|k We have acly, f; €k
2 8

and,

CRLC)

by () and (7). By Lemma 4 the field K-P,(f) = E{p)-P;, = K,P; is
the maximal cyclotomie subfield of k,. We have K, P, = P ¢ ;.

Let us put G, = {s seQ, (s, [k, fi]) =1, 566G}, B, = {s: seQ,
(8, [k, f.1) = 1,8 € B},&,, B, are groups of rationals mod [k, f,] corre-
sponding to the fields K, Pk, respectively.

By the Galois theory Gy n B, = G; 0B, == @, is the group of rationals
mod [k, f;] corresponding to the field K,P,.

Let D be any positive mtager Let F be a positive mteger divisible
by &, D and by all conductors of power residue symbols cecurring in this
proof. Clearly K,P;, — Pyr. Hence '

ko Py = E Py,
since K, P, is the maximal cyclotomic subfield of k,. Let us put B

Gy=1{5:58€0, (s, F) =1, s €y}
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G, is the group of rationals mod F corresponding to &, nPp. Put
= {a: a an ideal of by, (a, F) = 1},
Hy = {a: a an 1de5ul of k, {0, F) =1, Na = 1mod F},

- H r;{a: a an idenl of Ky, (0, F) =1, Na = 1mod F, (E) = 1}
o a x

By the 'a,ssumpﬁon on I, 4 , H,, H are groups of ideals mod I in virtne of
Aviin’s reciproeity law. Let r e @,. We have P* = kP°. Hence Oy, (B1)
= ¢, (.} and by (6)

{9) (%2 (A1) 'm') =1.
By Lemma 6 there exists an ideal a, of %, such that (0, ) =1, Na,
=rmod F, (ﬁ1

a

) = 1. Let € denote the coset.of A with Tespect to
mw
H containing g, i.e. by (8) '

¢ = {a: a an ideal of %, (a, F) =1, Na = rmod F, (%) = 1},
k

(r, Fy =1, reG,.

We shall prove that @, is uniquely determined by the polynomial f
and positive integer k. Let o’ be any root of f. We have by (1) o' = ™™,

£ eQ™, y' € Q(a'). Let K’ be the maximal cyclotomic subfield of Q(a
We have

¢ =B, H-fy, K=K

By Lemma 4 K(f) = E-Q(8) is the maximal eyclotomic subfield of the
field 5,Q(f) = ka(B) = k(1) = Q(81) by (5) and (7). Analogously K'(f")
is the maximal cyclotomic subfield of the field Q(f;). Let f, be the con-
ductor of K'(§'). Clearly a e Q( ;91 Let r be an isomorphism of Q(g,) such

that 7(a) = o’ Wehave o’ = §," where §; = ©(8,) by (6). Hence | = ° B
and

(10) QNP = QU5 8P, = Q(BP,,  (ma] ).

H(f) is the maximal cyclotomic subtield of Q () beeause Q (8;) = vQ (f,).
By (10) and by Lemma 4 K'(f')P, = E(f)P, = K,P,. Since o, ' are
chosen arbitrarily, the latter formula means that K, P, is uniguely deter-
mined by the polynomial f and by the positive integer k. The conductor
of K,P, is equal to [k, fi] or to [%/2,f.] and [k, f,] = ik, f{1 is uniquely
determined by k and f. As we have mentioned above, G, is the group of

rationals mod[%, f;] corresponding to K, P;. Hence Gz is uniquely deter-
mined by k and f.

“eregyhere {(r, F) =1 and r ..
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Let us put

B = {q q a_}_prime, g = rmod F, the congruence f(«*) = 0 mod ¢ |

is soluble},

We have

(i) It f(z") = 0mod g (veZ), ¢ =1mod % and ¢ is a sufficiently
large prime number, then g splits completely in k,, moreover if ge B
then ¢ is the produet of |k, prime ideals of degree one belonging to €.

k..
Let ns put k; = Py (Va). Obviously « ek,. Hence &k, = k,. Further

b, = 8, (/a)™ by (). Thws fycky. By (1) B = fuly cky. Honco Py < by
= &,. Let q be a prime ideal of %, dividing ¢. Leb Qla, Q|2 where @ is
a prime ideal of k; and 2 is a prime ideal of £;,. We have

ken
Fla*) = e [[ (6= &) = 0mod T,
. F=1

where # is the degree of f, and &, its leading coefficient. Since f is k-normal,
we get ky = Pp(&) = @4, ). In particular % ek, (§j =1,..., kn).
Henee &; = @ mod @ for a certain § (v eZ), D is 2 prime ideal of degree
one in l’k sinee ¢ = 1 mod k. Hence {;, = y mod £ and also {; = y mod Q
(4 € Z). Let wy, ..., @y t = || be an integral basis of k. We have o,
= g, (& &) Wn;h g; € Qlwy, @) (6 =1,...,%. Hence every integer of
k, is eongruent to a rational integer mod Q. ThlS means that § is of degree

one. Hence q is of degree one. Since ¢ is sufficiently large, we have }/ a
=zmod § (zeZ). Thus a =" mod @, i.e. a =2s"modq since ack,.

Thus (E) = 1. ¥ additionally g€B then g = Npoq =rmod F and
9/r

qed. (i) follows at once since q was chosen arbitrarily.

On the other hand, if q e ¢ and q is a prime ideal of degree one and
a prime number ¢ = Nq is sufficiently large, then g =rmod F ard
#* = amod q for a certain z € Z, Henee f(*) = (@" — a)g(w) = 0 mod q
with g(z) e ks[#] (a € k). Thus f{z*) = 0 mod g. This means that geB.
Let us put

(11) h=(4:H).
Hence by (i) and by Hecke’s theorem
1 O Zuwer o Jud
7 = d({0) = s}jffn "ifm lkzlsil?_;lo-fm = |ky|d(B),
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where ¢ are prime ideals of degree one. Hence 4 (B)_= 1|k, ]?:y Lemma 2
of [4] the quotient group A /H, is isomorphic with &,/# since G, is & group
of rationals mod ¥ corresponding to %k, nPp. By the Galois theory

(A:Hy) = (@y: By) = (Pp: by nPy)
= (Ppt K, Py) = |Pp|/|E1 Py = p(F)[|E(Py.
By (8), (9) and Lemma 6 (s = 1):
(Hy: H) = m = k[(k, e(f)).
By (11)
h=(A:H) = (4: H)(H;: O) = (p{I)/|E. Py (k/(%, ().
Hence
(Bro(f)) 1Fx Pl

A(B) =
B =T
We have ky = IPy(f) = kP K{f) = & K, P,. Hence
1K, Py |3 Pyl kg 0K, Py K| . K]

since K, P is the maximal cyelotomic subfield of &, and LnEP =R
Hence

(12) a(B) — 6%%'

Assume first that D = 0 mod [%, f,]. Let us put
B’ = {q: ¢ & prime number, g =rmod D, the congruence
fta*) = 0 mod ¢ is soluble},

where (r, D) = 1 and r e@,.

We have D |F. Let P be the group of all residue classes mod F prime
to F and P, the subgroup of residue classes mod F congrnent to 1 mod D.
Since for each rational integer £ prime to D there exists a rational integer
7 prime to F such that n = & mod D, we have (P : Py} = @(D). Henoe
the number of residue classes mod F which are congruent to rmod D
is equal to ¢(F)/p(D) and all these classes are contained in @y since D is
divisible by % and by f.. Tt follows that B’ apart from at most finitely
many prime numbers ¢ dividing F is the set theoretie-union of @ (I} ep(D)

disjoint sets of type B. Since by (12} the Dvirichlet density of these sets
does not depend on + we have

amy = 2D 2o
) @(D) B
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and
(%, e(f))
d(B) = -t
) B (i1

Thus we have proved the theorem for D = 0mod [k, f,]. Let
th =nByunb v..unk, t=(6:E).
Let D be any positive integer. Put .
B; = {g: ¢ a prime, ¢ =rmod D, ¢ = Imed %, g = r;mod f,

the congruence f(2"} = 0 mod ¢ is soluble},

where (r, D} = 1 and there exists a rational integer ; such that

rmod D,
(14) 7y =11 mod %,
7; mod f; .

Obvicusly
B; = {g: q a prime, ¢ = rymod [D, %, f,1, the congraence _
fla&®) = 0 mod ¢ is soluble},

where (r}, [D, %, f,]) = 1 and 7} € G,
By (13) (the theorem for D = 0 meod [%, f1])

: (7"‘5 G(f))
(15) YD) = e, 57

Let us put

B = {g: ¢ a prime number, ¢ =rmod D, ¢ =1mod k,
the congruence f(a") = 0 mod ¢ is soluble},

where (r, D) = 1 and the residue class mod D containing r contains also
a number helonging to &,.

There exists a rational integer s* such that

' , r mod D,

= _ ¥ e@y.
d 1 modk, !

{18)
We have

B = {q: q a prime, g =" mod [D, k], the congruence
f(#*) = 0 mod ¢ is soluble}.
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We have B;  B". Let g € B” and let ¢ be sufficiently large. By (i) ¢ splits
completely in k, and also in K,. Further K, = P, . By Lemma 2 of [4]
g €@,. There exists an index j such that ¢ = 7;mod f,. Thus g € B; (a8 7}
we may take ¢). Hence B" apart from at most finitely many numbers
is the set-theoretic umion of N, disjoint sets of type B;, where N, is the
number of those j from the sequence 1,2, ...,t¢ for which there exists
an r; satisfying (14). By (16) IV, is the number of those j for which there
exigts an r} satisfying the condition
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' mod [D, %
an . (D, k1,
{7; mod f;.
By (15) d(B;) does not depend on j. Hence
(18) ' d(B") = N,d(B;).
Let nus put
(-31 ={s:9€eQ, (s, [D,k, 1]} =1, s €Gy}.

él iz the group of rationals mod [D, &, f;] corresponding to K,. By (17)
N; i3 the number of residue classes mod [D, &, f;] which are contained
in &, and are eongruent to # mod [P, k]. Rince »’ €@, we have

Ny = I Bpagm (6, NEip gl B sg) = 6 N Brp [ B el -

By the Galois theory

iP[Dkflﬂ E«P[Dkf]l IKln-P[jDkﬂ
N, = (P :K P, = e = il '
1= Py Kaliosy) HE s Pip i | Prp gl e8]
_ o(lD, k, f1]) 1K, NPl .
(LD, k1) 1:eY
Hence by (18} and (15)
(%, G(f)) oy 0P .

ad{B") =
B = w0, 5 1Ky

The theorcm is proved.

Remark 3. We have also shown in the last part of the proof that
if ¢ € B” and g is sufficiently large then ¢ & @y, Since ¢ = 1 mod %, it fol-
lows that ¢ € &;. The existence of a number belonging to G, in the residue
class mod D containing r iy the necessary condition for the existence of
infinitely many prime numbers with the property mentioned in the the-
orem. In proving that &, is uniquely determined by % and f we did not
use the fact that f is k-normal.
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