

202

La contribution pour la minoration de θ ne provenant pas des $A(T, N_t)$ entiers est au moins égale à ce qu'elle serait si ces entiers étaient isolés, puisque $n_1 + n_2 + \ldots + n_{k-1} + \lambda \leq k\lambda$. Il en résulte que si t dépasse l'entier t_0 défini précédemment, alors:

$$M(K, N_t) \geqslant \frac{1}{2} \{M(L, N_t) + M(L', N_t)\} + \frac{a-2}{4(a-1)} - \varepsilon.$$

Bibliographie

- [1] R. Béjian, Minoration de la discrépance d'une suite quelconque sur T, Annales de la Faculté des Sciences de Toulouse, Mathématiques, Université Paul Sabatier, Série 5, tome 1, fascicule 3, 1979, 79-éme volume de la collection, p. 201-213.
- [2] H. Faure, Discrépance des suites associées à un système de minoration, a paraître.
- [3] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, J. Wiley and Sons, 1974, p. 107-109.
- [4] P. Liardet, Discrépance sur la cercle, Primaths, n° 1; Université de Provence, 1979, p. 7-11.
- [5] K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), p. 73-79.
- [6] W. M. Schmidt, Irregularities of distribution VII, Acta Arith. 21 (1972), p. 45-60.
- [7] R. Tijdeman et G. Wagner, Résultat non publié.
- [8] T. van Aardenne-Ehrenfest, Proof of the impossibility of a just distribution, Indag. Math. 11 (1949), p. 264-269.
- [9] J. G. van der Corput, Verteilungsfunktionnen, Proc. Kon. Ned. V. Wetensch. 38 (1935), p. 813-821.

ACTA ARITHMETICA XLI (1982)

An application of Hilbert's irreducibility theorem to diophantine equations

by

A. SCHINZEL (Warszawa)

This paper is a sequel to [3]. That was a study of polynomials F with the property that for every integer t^* (or for some integer t^* from every arithmetic progression) the equation $F(x, y, t^*) = 0$ is solvable for integers x, y. It has been proved that under suitable conditions on F this property implies the solvability of F(x, y, t) = 0 for x, y in Q[t]. It has been shown also by an example that the result fails if t is replaced by a two-dimensional vector t. In the present paper I show how to modify the assertion so that it remains true for vector t of any dimension. The principal tool is the classical Hilbert's irreducibility theorem in a slightly refined form given in [2].

I shall prove the following theorems.

THEOREM 1. Let $F \in Q[u, \tau, t]$, $M \in Q[\tau, t]$, $\tau = \langle \tau_1, \ldots, \tau_r \rangle$. Suppose that for every r arithmetic progressions P_1, \ldots, P_r there exist integers $\tau_1^*, \ldots, \tau_r^*$ and polynomials $x, y \in Q[t]$ such that $\tau_s^* \in P_s$ $(1 \le s \le r)$ and

$$F(x(t), \tau^*, t) = M(\tau^*, t)y(t).$$

Then there exist polynomials $X \in Q(\tau)[t]$, $Y \in Q(\tau)[t]$ satisfying

$$F(X(t), \tau, t) = M(\tau, t) Y(t).$$

THEOREM 2. Let $F \in Q[u, \tau, t]$ be of degree at most four in $u, M \in Q[\tau, t]$. Suppose that for every r+1 arithmetic progressions P_1, \ldots, P_{r+1} there exist integers $\tau_1^*, \ldots, \tau_r^*, t^*, x, y$ such that $\tau_i^* \in P_i$ $(1 \le i \le r), t^* \in P_{r+1}$ and

$$F(x, \tau^*, t^*) = M(\tau^*, t^*)y.$$

Then there exist polynomials $X, Y \in Q(\tau)[t]$ satisfying

$$F(X(t), \tau, t) = M(\tau, t) Y(t).$$

The proof of Theorem 1 is based on the two following lemmata. Lemma 1. Let $M \in Q[\tau, t]$ be squarefree with respect to $t, F \in Q[x, \tau, t]$ have the leading coefficient with respect to x prime to M. There exist a non-zero

205

polynomial $\Phi \in Q[u, \tau, t]$ such that if $\tau^* \in C^r, x \in C[t]$, the degree of x with respect to t is less than the degree of M and

$$F(x(t), \tau^*, t) \equiv 0 \mod M(\tau^*, t)$$

then

$$\Phi(x(t), \tau^*, t) = 0.$$

Moreover the leading coefficient of Φ with respect to u is independent of t.

Proof. Let F be of degree f in x with the leading coefficient $a(\tau, t)$, M be of degree m in t with the leading coefficient $\mu(\tau)$. If m=0 the condition on the degree of x implies x=0, thus we can take $\Phi(u, \tau, t)=u$. If m>0 let for indeterminates x_0, \ldots, x_{m-1}

$$F\left(\sum_{i=0}^{m-1} x_i t^i, \tau, t\right) = \sum_{j=0}^{h} A_j(x_0, \ldots, x_{m-1}, \tau) t^j \quad (h \geqslant m-1)$$

and let $B_j(x_0, ..., x_{m-1}, \tau)$ be the homogeneous part of A_j of degree f with respect to $x_0, ..., x_{m-1}$, if A_j is of that degree, otherwise $B_j = 0$. Clearly

$$a(\tau,t)\left(\sum_{i=0}^{m-1} x_i t^i\right)^f = \sum_{j=0}^h B_j(x_0,\ldots,x_{m-1},\tau) t^j.$$

We have for each $j \leq h$

$$\mu(au)^h t^j \equiv \sum_{i=0}^{m-1} a_{ij} t^i mod M(au, t), \quad a_{ij} \in Q[au].$$

Hence in the ring $Q[\tau, t]$

$$(1) \quad \mu(\tau)^h F\left(\sum_{i=0}^{m-1} x_i t^i, \tau, t\right) \equiv \sum_{j=0}^h A_j \sum_{i=0}^{m-1} \alpha_{ij} t^i \equiv \sum_{i=0}^{m-1} t^i \sum_{j=0}^h \alpha_{ij} A_j \mod M(\tau, t)$$

and similarly

(2)
$$\mu(\tau)^h a(\tau, t) \left(\sum_{i=0}^{m-1} x_i t^i \right)^f \equiv \sum_{i=0}^{m-1} t^i \sum_{i=0}^h a_{ij} B_j \bmod M(\tau, t).$$

Let us consider the system of polynomials

(3a)
$$F_i(x_0, ..., x_m, \tau) = x_m^f \sum_{j=0}^h a_{ij} A_j \left(\frac{x_0}{x_m}, ..., \frac{x_{m-1}}{x_m}, \tau \right)$$

$$(i = 0, ..., m-1),$$

$$F_m(x_0, \ldots, x_m, \tau, t, u) = \sum_{i=0}^{m-1} x_i t^i - x_m u$$

where u is a new indeterminate.

We assert that the resultant $R(u, \tau, t)$ of the above system with respect to x_0, \ldots, x_m is non-zero. Indeed by a known property of resultants (see [1], p. 11) the cofactor of u^{tm} in R is the resultant R_0 of the system

(3b)
$$F_i(x_0, ..., x_{m-1}, 0, \tau) = \sum_{j=0}^h a_{ij} B_j(x_0, ..., x_{m-1}, \tau)$$

$$(i = 0, ..., m-1).$$

Now, if $R_0 = 0$ then by the fundamental property of resultants the system $F_i(x_0, ..., x_{m-1}, 0, \tau) = 0$ has a non-zero solution $(\xi_0, ..., \xi_{m-1})$ in the algebraic closure $Q(\tau)$ of $Q(\tau)$. From (2) and (3b) we get

$$\mu(\tau)^h a(\tau, t) \left(\sum_{i=0}^{m-1} \xi_i t^i\right)^f \equiv 0 \bmod M(\tau, t),$$

where the congruence is in the ring $Q(\tau)[t]$. But by the assumption $\{a(\tau,t), M(\tau,t)\} = 1$ and $M(\tau,t)$ is square-free with respect to t, hence

$$\sum_{i=0}^{m-1} \xi_i t^i \equiv 0 \bmod M(\tau, t)$$

and M being of degree m we get $\xi_i = 0$ $(0 \le i < m)$, a contradiction. Thus $R_0 \ne 0$, R_0 is independent of t. We set

(4)
$$\Phi(u, \tau, t) = \mu(\tau)R(u, \tau, t).$$

Clearly the leading coefficient of Φ with respect to u is μR_0 and is independent of t.

Suppose now that for a $\tau^* \in C^r$ and $x \in C[t]$ we have

$$x(t) = \sum_{i=0}^{m-1} \, \xi_i t^i \quad ext{ and } \quad F(x(t), \, au^*, \, t) \equiv 0 mod M(au^*, \, t).$$

Then either $\mu(\tau^*)=0$ and by (4) $\Phi(x(t),\tau^*,t)=0$ or $\mu(\tau^*)\neq 0$ and then (1) implies

$$\sum_{i=0}^{h} a_{ij}(\tau^*) A_j(\xi_0, \ldots, \xi_{m-1}, \tau^*) = 0 \quad (0 \leqslant i \leqslant m-1).$$

This gives by (3a)

$$F_i(\xi_0, \ldots, \xi_{m-1}, 1, \tau^*) = 0 \quad (0 \leqslant i \leqslant m-1)$$

and also $F_m(\xi_0, \ldots, \xi_{m-1}, 1, \tau^*, t, x(t)) = 0$. Thus $R(x(t), \tau^*, t) = 0$ and by (4) $\Phi(x(t), \tau^*, t) = 0$.

LEMMA 2. Let $P(\tau, t)$ be a polynomial irreducible over Q of positive degree in t, τ a positive integer and let $F_i \in Q[x, \tau, t]$ $(1 \le i \le k)$. If for

cm

every r arithmetic progressions P_1, \ldots, P_r there exist integers $\tau_1^*, \ldots, \tau_r^*$, an index $i \leq k$ and a polynomial $x \in Q[t]$ such that $\tau_s^* \in P_s$ $(s \leq r)$,

(5)
$$F_i(x(t), \tau^*, t) \equiv 0 \mod P(\tau^*, t)^*$$

then there exist an index $i \leq k$ and a polynomial $X \in Q(\tau)[t]$ such that

(6)
$$F_i(X(\tau,t),\tau,t) \equiv 0 \bmod P(\tau,t)^r.$$

Proof by induction on ν . For $\nu=1$ we can at once dispose of the trivial case where for some i we have $F_i(0, \tau, t) \equiv 0 \mod P(\tau, t)$. This case being excluded we represent F_i in the form

(7)
$$F_{i}(x, \tau, t) = G_{i}(x, \tau, t) + P(\tau, t)H_{i}(x, \tau, t)x^{d_{i}}$$

where the degree of G_i with respect to x is less than d_i , and the leading coefficient of G_i with respect to x is not divisible by P. Then we take in Lemma 1

(8)
$$F = \prod_{i=1}^k G_i(x, \tau, t), \quad M = P(\tau, t).$$

Let $\Phi(u, \tau, t)$ be a polynomial, the existence of which is asserted in that lemma. Let further

(9)
$$\varPhi(u, \tau, t) = \varPhi_0(\tau, t) \prod_{\varrho=1}^{\varrho_1} \varPhi_{\varrho}(u, \tau, t),$$

where $\Phi_0 \in Q[\tau, t]$, $\Phi_\varrho \in Q[u, \tau, t]$, Φ_ϱ is irreducible over Q $(1 \le \varrho \le \varrho_1)$ and is of degree 1 in u for $\varrho \le \varrho_0$, of degree at least 2 in u for $\varrho > \varrho_0$. By Lemma 1 the leading coefficient of Φ with respect to u is independent of t hence

$$\Phi_0(\tau, t) = \Psi_0(\tau)$$

and we may denote by $\Psi_{\varrho}(\tau)$ the leading coefficient of Φ_{ϱ} with respect to u. If for all positive $\varrho \leqslant \varrho_0$ we have

(11)
$$H_{\varrho}(\tau,t) = \Psi_{\varrho}(\tau)^{f} F\left(-\frac{\Phi_{\varrho}(0,\tau,t)}{\Psi_{\varrho}(\tau)},\tau,t\right) \not\equiv 0 \bmod P(\tau,t)$$

then the resultant R_ϱ of H_ϱ and P with respect to t is different from 0. In virtue of Theorem 1 of [2] there exist r arithmetic progressions P_1, \ldots, P_r such that for all vectors $\tau^* \in P_1 \times \ldots \times P_r$ all polynomials $\Phi_\varrho(x, \tau^*, t)$ are irreducible $(1 \leqslant \varrho \leqslant \varrho_1)$ and

where $\pi(\tau)$ is the leading coefficient of P with respect to t. If we combine this with (5) we get a contradiction. Indeed for $\tau^* \in P_1 \times \ldots \times P_r$ from (5) and (7) we get

$$G_i(x(t), \tau^*, t) \equiv 0 \mod P(\tau^*, t),$$

hence by (8)

$$F(x(t), \tau^*, t) \equiv 0 \bmod P(\tau^*, t).$$

Let $x(t) = P(\tau^*, t)y(t) + x_1(t)$, where the degree of x_1 with respect to t is less than the degree of $P, y \in Q[t]$.

We have

(13)
$$F(x_1(t), \tau^*, t) \equiv 0 \mod P(\tau^*, t)$$

and by Lemma 1

$$\Phi(x_1(t),\,\tau^*,\,t)=0.$$

Hence by (9)

$$\Phi_0(\tau^*,t) \prod_{e=1}^{e_1} \Phi_e(x_1(t), \tau^*, t) = 0.$$

By (10) and (12) $\Phi_0(\tau^*, t) \neq 0$, moreover since $\Phi_\varrho(u, \tau^*, t)$ is irreducible of degree ≥ 2 for $\varrho > \varrho_0$ we have $\Phi_\varrho(x_1(t), \tau^*, t) \neq 0$ for $\varrho > \varrho_0$. Thus there exists a $\varrho \leq \varrho_0$ such that

$$\Phi_{o}(x_1(t),\,\boldsymbol{\tau^*},\,t)\,=\,0$$

and then

$$x_1(t) = -\frac{\Phi_\varrho(0, \tau^*, t)}{\Psi_\varrho(\tau^*)}.$$

From (11) and (13) we get

$$H_{\rho}(\tau^*,t)\equiv 0 \bmod P(\tau^*,t)$$

and $\pi(\tau^*)R_{\varrho}(\tau^*)=0$ contrary to (12). The obtained contradiction proves that for a positive $\varrho\leqslant\varrho_0$ we have

$$\Psi_{\varrho}(\tau)^f F\left(-rac{\Phi_{\varrho}(0,\, au,\,t)}{\Psi_{\varrho}(au)}\,,\,\, au,\,\,t
ight)\equiv 0\, \mathrm{mod}\, P(au,\,t)\,.$$

From (8) and the irreducibility of P it follows that for a certain $i \leqslant k$

$$G_i\left(-rac{arPhi_o(0,\,oldsymbol{ au},\,t)}{arPsi_o(oldsymbol{ au})}\,,\,\,oldsymbol{ au},\,\,t
ight)\equiv 0\,\mathrm{mod}\,P(oldsymbol{ au},\,t),$$

209

where the congruence is taken in the ring $Q(\tau)[t]$. Then by (7)

$$F_i(X(t), \tau, t) \equiv 0 \mod P(\tau, t), \qquad X = -\frac{\Phi_e(0, \tau, t)}{\Psi_o(\tau)} \in Q(\tau)[t]$$

which shows (6) for v = 1.

Now, let us suppose that the lemma is true for the modulus $P^{\nu-1}$ $(\nu > 1)$.

Let

(14)
$$F_{i}(x, \tau, t) \equiv \prod_{j=1}^{J_{i}} (x - x_{ij}(\tau, t)) \cdot F_{i0}(x, \tau, t) \mod P(\tau, t),$$

where $x_{ij}(\tau,t) \in Q(\tau)[t]$, $F_{i0} \in Q(\tau)[x,t]$. Choose $D_i \in Q[t]$ such that $D_i F_{i0} \in Q[x,\tau,t]$ and the congruence $F_{i0}(x,\tau,t) \equiv 0 \mod P(\tau,t)$ is unsoluble for $x \in Q(\tau)[t]$. We have for each $j \leq J_i$ and a suitable $D_{ij} \in Q[\tau]$

(15)
$$D_{ij}(\tau)F_i[x_{ij}(\tau,t)+P(\tau,t)y,\tau,t] = P(\tau,t)F_{ij}(y,\tau,t),$$

$$F_{ij} \in Q[y,\tau,t].$$

In virtue of the already proved case r=1 of the lemma there exist arithmetic progressions P_1,\ldots,P_r such that if $\tau_s^*\in P_s$ $(1\leqslant s\leqslant r)$ then none of the congruences $D_iF_{i0}(x,\tau^*,t)\equiv 0 \bmod P(\tau^*,t)$ $(1\leqslant i\leqslant k)$ is solvable. We may assume moreover choosing if necessary some subprogressions of P_1,\ldots,P_r and using Theorem 1 of [2] that all progressions P_i have the same difference and that for $\tau^*\in P_1\times\ldots\times P_r$ the polynomial $P(\tau^*,t)$ is irreducible. For $\tau^*\in P_1\times\ldots\times P_r$ and for each $i\leqslant k$ the conditions (5) and (14) imply that $x(t)\equiv x_{ij}(\tau^*,t) \bmod P(\tau^*,t)$ for a certain $j\leqslant J_i$.

Hence
$$x(t) = x_{ij}(\tau^*, t) + P(\tau^*, t)y(t)$$
 and by (5) and (15) we get $F_{ij}(y(t), \tau^*, t) \equiv 0 \mod P(\tau^*, t)^{r-1}$.

Let $P_s = \{n \in \mathbb{Z} : n \equiv b_s \bmod a\}$, $\mathbf{b} = \langle b_1, \dots, b_r \rangle$. By the inductive assumptions applied to the set of polynomials $F_{ij}(y, a\tau + \mathbf{b}, t)$ $(1 \leq i \leq k, 1 \leq j \leq J_i)$ we infer the existence of a pair (i, j) and of a polynomial $Y \in Q(\tau)[t]$ such that $1 \leq i \leq k, 1 \leq j \leq J_i$,

$$F_{ij}(Y(\tau,t),\tau,t) \equiv 0 \bmod P(\tau,t)^{\nu-1}.$$

It follows now from (15) that (6) holds with

$$X(\tau,t) = x_{ij}(\tau,t) + P(\tau,t) Y(\tau,t).$$

Proof of Theorem 1. Assume first that $M \neq 0$ and let

$$M(au,t) = P_0(au) \prod_{l=1}^m P_l(au,t)^{r_l}$$

where for $l \ge 1$ the polynomials $P_l(\tau, t)$ are of positive degree in t, irreducible and prime to each other. For each $l \le m$ the assumptions of Lemma 2 are satisfied with k = 1, $P = P_l$, $v = v_l$; $F_l = F$. Hence by the said lemma there exist polynomials X_l , $Y_l \in Q(\tau)[t]$ such that

$$F(X_l(\tau,t),\tau,t)=P_l^{r_l}Y_l(\tau,t)$$

and it is enough to choose

$$X \equiv X_l \mod P_l$$
, $Y \equiv Y_l \mod P_l$ $(1 \leqslant l \leqslant m)$.

Assume now that M = 0. Let

(16)
$$F(x, \tau, t) = F_0(\tau, t) \prod_{\sigma=1}^{a_1} F_{\sigma}(x, \tau, t)$$

where for $\sigma \geqslant 1$ the polynomials $F(x, \tau, t)$ are irreducible, moreover $F_{\sigma}(x, \tau, t)$ is of degree 1 in x for $\sigma \leqslant \sigma_0$ and of degree at least 2 in x for $\sigma > \sigma_0$. Let $\phi_{\sigma}(\tau, t)$ be the leading coefficient of F_{σ} with respect to x.

From the irreducibility of $F_{\sigma}(x, \tau, t)$ it follows for $\sigma \leqslant \sigma_0$ that $(\phi_{\sigma}(\tau, t), F_{\sigma}(0, \tau, t)) = 1$ hence the resultant $R_{\sigma}(\tau)$ of $\phi_{\sigma}(\tau, t)$ and $F_{\sigma}(0, \tau, t)$ with respect to t is non-zero. If for a positive $\sigma \leqslant \sigma_0$ we have $\phi_{\sigma} \in Q[\tau]$

then we take
$$X = -\frac{F_{\sigma}(0, \tau, t)}{\phi_{\sigma}(\tau, 0)}$$
, $Y = 0$.

If for all positive $\sigma \leqslant \sigma_0$ we have $\phi_\sigma \notin Q[\tau]$ then let $\psi_\sigma(\tau)$ be the leading coefficient of ϕ_σ with respect to t $(0 \leqslant \sigma \leqslant \sigma_0)$. In virtue of Theorem 1 of [2] there exist arithmetic progressions P_1, \ldots, P_r such that for $\tau \in P_1 \times \ldots \times P_r$ all polynomials $F_\sigma(x, \tau^*, t)$ are irreducible and

(17)
$$\prod_{\sigma=0}^{\sigma_1} \psi_{\sigma}(\tau^*) \prod_{\sigma=1}^{\sigma_0} R_{\sigma}(\tau^*) \neq 0.$$

If we combine this with the condition

$$F(x(t), \tau^*, t) = 0$$

we get a contradiction. Indeed by (16) we have for a positive $\sigma \leqslant \sigma_1$

$$F_{\sigma}(x(t),\,\tau^*,\,t)\,=\,0$$

and since for $\sigma > \sigma_0$ the polynomial $F_{\sigma}(x, \tau^*, t)$ is irreducible of degree at least 2 in x we get $\sigma \leqslant \sigma_0$. Hence

$$\phi_{\sigma}(\tau^*, t) x(t) + F_{\sigma}(0, \tau^*, t) = 0, \quad \phi_{\sigma}(\tau^*, t) | F_{\sigma}(0, \tau^*, t)$$

and since by (17) $R_{\sigma}(\tau^*) \neq 0$ it follows that $\phi_{\sigma}(\tau^*, t) \in Q$. This however is impossible because ϕ_{σ} is of degree at least 1 in t and $\psi_{\sigma}(\tau^*) \neq 0$.

For the proof of Theorem 2 we shall need one more lemma.

LEMMA 3. Let $L \in Z[x,t]$ be of degree at most four in $x, P_0 \in Z[t]$ be irreducible. If for all sufficiently large primes p and all integers t^* such that $p \parallel P_0(t^*)$ the congruence $L(x,t^*) \equiv 0 \mod p^*$ is solvable in Z then the congruence $L(x,t) \equiv 0 \mod P_0(t)^*$ is solvable in Q[t].

Proof. For the case, where P_0 is primitive the lemma is proved in [3] as Lemma 6. In general let $P_0 = cP_1$, where P_1 is primitive. Since for all primes $p \nmid c$ the relations $p \parallel P_0(t^*)$ and $p \parallel P_1(t^*)$ are equivalent the general case follows from the special case mentioned earlier.

Proof of Theorem 2. If M=0 the assertion follows from [2], Theorem 2. If $M\neq 0$ it is enough in virtue of the Chinese Remainder Theorem for the ring $Q(\tau)[t]$ to prove the assertion for the case $M=P(\tau,t)^r$, where $P\in Z(\tau,t)$ is an irreducible polynomial of positive degree in t. By Theorem 1 of [2] there exist arithmetic progression P_1,\ldots,P_r such that if $\tau^*\in P_1\times\ldots\times P_r$ then $P(\tau^*,t)$ is irreducible in Q[t]. We may assume without loss of generality that $P_i=\{n\in Z\colon n\equiv b_i \text{mod } a\}$. Take an integral vector τ^* , an integer t^* and a prime p such that $p\parallel P(a\tau^*+b,t^*)$. By the assumption applied to the arithmetic progressions $p^ru+a\tau_1^*+b_1,\ldots,p^ru+a\tau_r^*+b_r,p^ru+t^*$ there exist integers u_1,\ldots,u_{r+1},x,y such that

$$F(x, p^{r}u + ar^{*} + b, p^{r}u_{r+1} + t^{*}) = P(p^{r}u + ar^{*} + b, p^{r}u_{r+1} + t^{*})y,$$

where we have put $u = \langle u_1, ..., u_r \rangle$. Hence

$$F(x, a\tau^* + b, t^*) \equiv 0 \bmod p^*$$

and the assumptions of Lemma 3 are satisfied with $L = F(x, a\tau^* + b, t)$, $P_0 = P(a\tau^* + b, t)$. By that lemma the congruence

$$F(x, a\tau^* + b, t) \equiv 0 \mod P(a\tau^* + b, t)^*$$

is solvable in Q[t], i.e. there exist polynomials $x, y \in Q[t]$ such that

$$F(x(t), a\tau^* + b, t) = P(a\tau + b, t)^r y(t).$$

Since this holds for all integral vectors $\tau^* \in Z^r$ Theorem 1 implies the existence of polynomials $X, Y \in Q(\tau)[t]$ such that

$$F(X_0(\tau,t),a\tau+b,t)=P(a\tau+b,t)^{\tau}Y_0(\tau,t)$$

and Theorem 2 follows with $X = X_0 \left(\frac{\tau - b}{a}, t \right), Y = Y_0 \left(\frac{\tau - b}{a}, t \right).$

References

- [1] F. S. Macaulay, The algebraic theory of modular systems, Cambridge 1916, reprint New York 1964.
- [2] A. Schinzel, On Hilbert's Irreducibility Theorem, Ann. Polon. Math. 16 (1965), pp. 333-340.
- [3] Families of curves having each an integer point, Acta Arith. 40 (1982), pp. 399-420.

Received on 14.5.1980 and in revised form on 2.6.1980 (1207)