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La contribution pour la minoration de 0 ne provenant pas des AT, N)
entiers est au moins égale & ce qu'elle serait si ces entiers éfaient isolés,
PUISQUE Ty -+ g+ ..o +0p_y+ 4 < kA TE en résulte que sif dépasse 'entier
t, détini précédemment, alors:

1 , a—2
M(E, ¥)> o (ML, ¥)+-MT Nj+ o —
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An application of Hilbert’s irreducibility theorem to
diophantine equations

by

A, SCHINZEL (Warszawsa)

This paper is a sequel to [3]. That was a study of polynomials F with
the property that for every integer t* (or for some integer ™ from every
arithmetic progression) the equation F{w,y,t") = 0 is solvable for inte-
gers &, ¥. It has been proved that under suitable conditions on A this
property implies the solvability of F(x, y,t) = 0 for &, ¥ in @[¢]. It has
been shown also by an exarmple that the regult failg if ¢ is replaced by
a two-dimengional vector {. In the pregent paper I show how to modify
the asgertion so that it remains true for vector ¢ of any dimension. The
principal tool is the classical Hilbert's irredueibility theorem in a slightly
refined form given in [2].

I shall prove the following theorems.

TEEOREM 1. Let F e@fu, v, t], M @[t t], T = {31y ...y T,0. Suppose
that for every v arithmetic progressions Py, ..., P, there exist inlegers 73, ..., Tr
and polynomials o, y € Q[t] such that v e P, (1< s < r) and

Fle@), ", 8 = M(<", tyy{d).
Thew there ewist polynomials X e Q(2)[1), ¥ € Q(=)[t] satisfying
F(X(t),_r, t) = Mz, 1) X (t).

TEEOREM 2. Let F < Q[w, 1, £] be of degree af most four in w, M € Q [z, {].
Suppose that for every r-+1 arithmetic progressions Py, ..., P,,, there ewist
INTEGErs Ty, ..oy Try 1, @, ¥ such that 7 e P; (1< i< 7), t* e P,y and

Bz, %, 1) = M (", t")y.
Then there exist polynomials X, ¥ € Q(r)[t] satisfying
F(X (), 7, 1) = Mz, 1) X ().
The proof of Theorem 1 is based on the two following lemmata.

LeMMA 1. Let M e § [z, t] be squarefree with respect to t, I € @[z, =, t]
have the leading coefficient with respect to x prime to M. There ewist ¢ non-zero
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polynomial @ eQ[u, 1, ] such that if el xeO[t], the degree of & with
respect 1o t is less than the degree of M and
Flu(t), =, t) = 0 mod M(z*,t)
then
Dz (t), *, 1) = 0.

Moreover the leading coefficient of @ with vespect to w 45 independent of t.

Proof. Let # be of degree f in  with the leading coefficient a(z, #), A7
be of degree m in { with the leading coefficient x (7). If m = 0 the condition
on the degree of » implies # = 0, thus we can take @(w, 7,1) = 4. L m > 0
let for indeferminates @y, ..., Tp_;

m—1 h
F(Z a1, T, t) = 2 Aoy vy By, TV
i=0 j=0

and let B;(#y, ...y @p_;, 1) be the homogeneous part of 4, of degree f with
respect t0 %y, ..., #4y,_;, I A; is of that degree, otherwise .B; = 0. Clearly

(b =m—1)

m—1 h
a(r, 1) (2 mit")f = ZBj(wo', ey By, )
i=o j=0

We have for each j<h

m—1
plr)ie = E ayt'mod M (r,1), ay e @ir].
1=
Henee in the ring Q[r, ]
m—1 m—1

) Mﬁﬂgmﬁnﬂ

i=0
and similarly

LMa

Z_‘ ayt = 2 312 ay A;mod Mz, 1)

m—1
(2) ultia(r, t) (Z‘ mt"“) Z‘ t*ZaUB mod M(z, 1).
. =0 =0 J=
Let us congider the system of polynomialy
h
(3a) Filgy ..., @y, 1) = @, ) aijAj(ﬂ' pere :h T
Fr Lo Ly,

m--

Fo(@yy oovs @y T,y 1,5 1) Z @t

XY
i=9

where % i§ a new indeterminate.
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‘We aggert that the resultant B(u, , t) of the above system with respect
10 ®g, -.y #y, 18 non-zero. Indeed by a known property of resultants (sce
[1], p. 11) the eofactor of /™ in R is the resultant B, of the system

n
(3b)  Fi(@yy eury Py 0, 7) = 2 @5 B5(Toy <y Dy s7)

7=0

i =0,..,m-1).

' Now, it B, = 0 then by the fundamental property of resultants the system

F (g, .oy By, 0,7) = 0 has a non-zero solution (&, ..., §,_,) In the
/\

algebraic closure @ {z) of €{z). From (2) and (3b) we get

m—1

pleftalz, i Y fit")f = 0 mod M(r,1),
i=0

) s .
where the congruence is in the ring @Q(z)[¢]. But by the assumption
(a(z, 1), M(z, 1)) =1 and M(r,¢t) is square-free with respect to i, hence

m—1
E gt = 0mod M (r,1)

f=0 B .
and M being of degree m we get & = 0 (0 < i< m), a contradiction.
Thus B, == 0, B, i§ independent of 1. We set
(4) D(u, 7, 1) = p(n)B(x, 7,1).

Cleazly the leading coefficient of @ with respect to u i uR, and is inde~
pendent of i.
Suppose now that for a ¥ € " and # € U[t] we have

#f—1 ’
z(1) :Z‘ &t and  Flz(t), *, 1) = 0 mod M (%, 1},
i=0
Then ecither u(t*) = 0 and by (4) P(z(t), r* # =0 or pl{w) =0
and then (1) implies
i3

Z aij(f*)ﬁj(gos cary

g=0

‘Sm-li ""*) = 0 (Oé%ém—-l).

This gives by (3a)

Fi(lay ey bpory 1y v} =0 (0<i<<m—1)
and also F (&, ...y &py, 1, 7%, 1, 2(1)) = 0. Thus R(z(), ;1) = 0 and
by (4) ®z(h), =+, 1) = 0.

Tmvma 2, Let P(r, 1) be a polynomial irreducible over @ of positive
degree in t,v a positive integer and let F; e Q[#, 7, 1) A<i<k) If for
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every r arithmetie progressions P, ..., P, there exist integers ), ..., =",
an indew i < k and a polynomial x € Q1] such that =5 e P, (s < 1),

(8) Fiz(t}, v, 1) = 0 mod P(z*, &)
then there emist an index ¢ <k and a polynomial X Q1) [t] such that
(& F{X(r, 1}, 7, 8) = 0 mod P(z, £).

Proof by induction on # For » = 1 we can at once dispose of the
frivial case where for some ¢ we have F,(0, r, ) = 0 mod P(z,t). This
cage being excluded we represent F; in the form

(7) Fi(z, v, t) = Gile, T, 1) +P(r, HH(z, «, t)wd‘.

where the degree of G; with respect to @ is Iess than d;, and the leading
coefficient of &; with respect to 2 is not divisible by P. Then we take
in Lemma 1

&
(8) F=[]6Gw, 1, M=0rP(s,1.

el

Let ®(x, 7, #) be & polynomial, the existence of which is asserted in that
lemma. Let further

(9) D, 1) = By(z, 1) [[ &, (n, 1),

where @, €@z, 1], @, €Q[u, 7, 1], B, is irreducible over @ (1< o< o)
and is of degree 1 in w for ¢ < g,, of degree at least 2 in u for g > gy. By
Lemma 1 the leading coefficient of & with respect to w is independent of
t hence

{10) Dy(z, 1) = ¥y(7)

and we may denote by ¥ () the leading coefficient of &, with respect to

u. It for all positive ¢ < o, We have

_GEEL(O, 7, 1)
#y(1)

then the resultant R, of H, and P with respect to ¢ is different from 0.

In virtue of Theorem 1 of [2] there exist » arithmetic progressions Py, ..., P,

such that for all vectors t*cP, x ... X P, all polynomials @,(z, z*, t)
are irreducible (1 < ¢ < p,) and

(11) H,(r,t) = zp,_,(-c)fﬁ(w .7, z) % 0 mod P (z, £)

&y

(12) JT#.( [T Bo(e)m(z) £ 0
e=1 )

a=0

icm
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where 7(r) is the leading coefficient of P with respect to ?. If we combine
this with (5) we get a contradiction. Indeed for =*ePyx ... X P, from
(8) and (7) we get

&ilw (), 7%, 1) = 0 mod P(z*, 1),

hence by (8)
Pla(t), *, 1) = 0 mod P(z*, 1).

Let o(t) = P(z*, t)y(§) -+, (f), where the degree of &, with respect to ¢ is
legs than the degree of P,y = @[t].

We have
{13) Flay(t), ©*, 1) = 0 mod P(7*, 1)

and by Lemma 1
Bl (0, 7+, 1) = 0.

Hence by (9)

ey

By(c*, ) [ | Bolnlt), o, 8) = 0.
e=1 .
By (10) and (12) Dy(r*,1) 5 0, moreover since @,(u, t*, 1} 18 irredu;i}l:»le
of degree > 2 for ¢ > g, We have ®,(2,(8), T, 1) # 0 for ¢ > go. Thus
there exists a o << g, such that
' & 2 (2), 7%, 1) = 0

and then _
?) d,‘ne (0, =%, ¥)
@2 T e e
1( Ep’g (‘E*)

From (11) and (13) we geb |
o H,(r*,7) = 0 mod P(r*, 1)

and m{r*)B,(z*) = 0 contrary to (12). The obtained contradiction proves
that for a positive ¢ < g Wwe have :

?,(0, 7,1 ) .
fpf. 2220 g, t) =0mod Pr,1).
¥,(z} F ( ¥ () 1 Ty 7

. 3 7 = I

From (8) and the irreducibility of P it follows that for a certain i<k

G @9(0, z, 1)
i(_ W, (z)

b)

., t)EOmOdP(r,t),
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where the congruence is taken in the ring @(r)[#]. Then by (7)

' @
FX(), r,1) = 0mod P(r,1), X = — ——é_o—’ffi)e@(r)[t]
()

which shows (6) for » = 1.

Now, let us suppose that the lemma iz trme for the moduylus Pt
{v > 1).

Let

Ji

(14) Filw,z,0) = [ [{o—w,(z, ) Fulo, 2, 1) mod Pz, 1),

=1
where @;(r,t) eQ(r)[£], Fy € Q(r){w,?]. Choose D, eQ[t] such that
D;Fye@Qz,z,1] and the congraencé Fy(s,7,1) = 0 mod Pz, t) is
unsoluble for @ € @ (z)[¢]. We have for cach § < J, and a suitable Dy eQr}

(15) Dij(r)Ff(f'-‘"ij(Tﬁ t)+P(r, t)y, =, t) = P(r, WFE(Y, T, 8),
Fij EQ[@’: T, t].

‘ In virtue of the already proved case » = 1 of the lemma there exist
arithmetic progressions P, ..., P, such that if 7, € P, (L< s<r) then
none of the comgruences D, ¥ (z, t*,1) = 0mod P(z*, 1) (1<i<h) is
solva})le. We may assume moreover choosing if necesgary some subpro-
gressions of Py, ..., P, and using Theorem 1 of [2] that all progressions P,
have the same difference and that for = eP; X ... xP, the polynomia,{
13_‘(1*, 1) is irveducible. For = ¢ P, X .., X P, and for each 4 < % the condi-
1_710113 (5) and (14) imply that x() = @y (%, £y tod P(r*, ¢) for a certain
J<d.

Hence @(f) = ay(r*, #)+P(z*, t)y () and by (5) and (15) we get

Fyly (1), v, 4} = 0 mod P(z*, 1y,

I_ietP‘e = {_ﬂ €Z: n=b,mod a}, b = ¢b,, ..., b,> By the inductive agsumyp-
tions app_hed to the-set of polynomials Fyly, az+b,# (1<i<k, 1< J
< o) we infer the existence of a pair (4, §) and of a polynomial ¥ & Q(r)[¢]
such that L<i<E, 1<igd,

Fﬁ(]?(c, 1), 7, t) = 0 mod P(z, #)*~1.
It follows now from (15) thas (6) holds with
X(r,?) = 2y, -+ P (2, 1) ¥z, 1).
Proof of Theorem 1. Assume first that M # 0 and let

Mz, t) = Py(z) [ [ Py, )"
=1
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where for 1 == 1 the polynomials P;(z, {) are of positive degree in t, irreducible
and prime to each other. For each 1 < m the assumptions of Lemma 2 are
satigfied with & = 1, P = P, v = »;; By, = F. Hence by the said lemma
there exist polynomials X;, ¥; € @ () [t] such that

F(Xy(z, 1), 7,1) = PpY{z, 1)
and it is enough to choose
XT=XmodP;,, Y=¥mdP, ({1A<i<m).
Aggume now that M = 0. Let

(16) Fla,7,8) = Folz, 0 [ | Fulw, 2, 0)

where for o> 1 the polynomials F(z,r,?) are irreducible, moreover
F(z, 7,1) is of degree 1 in  for o < o, and of degree at least 2 in « for
o> oy, Let ¢,(zr,t) be the leading coefficient of F, with respect to .
From the irreducibility of F,{z, z, t) it follows for o < g, that (,(z,?),
F,(0,7,%) =1 hence the resultant E(z) of ¢.(z,%) and F,(0,z,1)
with respect to ¢ is non-zero. If for & positive ¢ < o, we have $, eQ[r]
then we take X = —M =0
' , pal1, 0} '
T¢ for all positive o< ¢, we have ¢, ¢ @[z] then let w,(z) De the
leading coefficient of ¢, with respect fo (0 < 6 < o). In virtue of Theorem
1 of [2] there exist arithmefic progressions P, .-, P, such that for
zeP,;x ... xP, all polynomials F,(x, 7*,1) are irredueible and

@ a
@y H ¥o (%) H B,(z*) + 0.
© =0 G
I we combine thiz with the condition

Fle(t), 75,8 =0
we get & éontra,diction. Indeed by (16) we have for a positive o < o3

P o), *,4) =0
and sinee for ¢ >, the polynomial F,{z, v*,t) is irreducible of degree
at least 2 in o we get o< oy Hence :

Bolr*, D00+ F(0, 75, 8) = 0, dole DIFLA0, 7%, 1)

and since by (17) Eo(e*) o 0 it follows that (e*, 1) €. This however
is impossible because @, is of degree at leagt 1 in ¢ and ¢ (z*) #
‘For the proof of Theorem 2 we shall need one more lemma.
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Levwa 3. Let LeZ[x,t] be of degree at most four in w, Py e Z[t]
be irreducible. If for all sufficiently lorge primes p and all integers 1* such
that p | Po(t") the congruence Lz, t") = 0 mod p* is solvable in Z then the
congruence L{z,t) = ¢ mod P, (1) is solvable in @[]

Proof. For the case, where P, is primitive the lemma i3 proved in
[3] as Lemma 6. In general let P, = ¢P,, where P, i3 primitive. Since
for all primes pre¢ the relations p|P,(f") and p(P,(1*) are equivalent
the general ease follows from the special case mentioned earlier.

Proof of Theorem 2. If M = 0 the assertion follows from [2],
Theorem 2. H M £ 0 it is enongh in virtue of the Chinese Remainder
Theorem for the ring ¢ {z) ] to prove the assertion for the case M = P{r, 1)",
where P cZ(r,t) iz an irreducible polynomial of positive degree
in t. By Theorem 1 of [2] there exist arithmetic progression P,, ...
...; P, such that if = eP, X ... X P, then P(r*,¢) is irreducible in @[¢].
‘We may assume without loss of generality that P, = {n €Z: n = b;mod a}.
Take an integral vector 7*, an integer t* and a prime p such that p | P{ar* +
--b, t"). By the assumption applied to the arithmetic progressions p”u --
+avy+by, ..., P'utary +b,, pPu-+1t* there exist integers w,,..., .,
@,y such that

Flo, putar” +b, p u, +1) = P utar*+b, p'u,,, +1)y,
where we have put # = (a4, ..., 4,>. Hence
F(m, at*—}—b,t*) = 0 mod p”

and the assumptions of Lemma 3 are satisfied with L = F(z, at*+ b, t),
P, = P(ar*+ b, ). By that lemma the congruence

F{x, ar*+b,1) = 0med P{ar*+b, t)
is golvable in @[t], i.e. there exist polynomials @, ¥ € Q4] such that
Flw(t), ar*+b,1) = P(ar+b, 1) y(3).

Since this holds for all integral vectors t* € Z° Theorem 1 implies the
existence of polynomials X, ¥ € Q(r)[t] such that

F{Xo(z, 1), at+b,8) = Plart+ b, 1) Xolr, 1)

and Theorem 2 follows with X = X (r———b A t), Y = Yo(r_b ,t).
a a
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