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Now in view of the work of Schinzel and Tijdeman [10] and Baker [1]
on the equation (15), the assertion follows immediately.

(iii) It is easy to see that the equation (14} has only finitely many
selutions in inbegers # > 1, ¥y > 1, n>1, m with « £ 4, ylo, m—n>= 2
and n{m—n) > 6 if and only if the conjecture of Pillai [7] that (1) has
only finitely many solutions in integers m > 1, #» > 1, o> 1, ¥ > 1 with
may 2= 6 is correct. This conjecture of Pillai is still open. k6 = ¢ =d = 1,
Tijdeman [13] proved that (14) has only finitely many solutions in in-
tegers o> 1, y>1, n>1, m with # %y and m—n = 2.
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An application of a formula of Western to the evaluation
of certain Jacobsthal sums

by

R. H. Hupsow (Columbia, 8. C.) and K. S. WrtLiaus* (Ottawa, Ontario)

¥. Introduction and svmmary. Let k= 2 be a positive infeger and
let p be a prime such that p = 1 (mod 2%). The Jaecobsthal sum & (D)

is defined by

e +D
(1) 2um) = 3 (2,

where I} is an infeger not divisible by p and (5) is the Legendre symbol.

When %k = 2, Jacobsthal ([5], pp. 240-241) evaluated @,{D) when D
is & quadratic residue (mod p) but left a sign ambiguity in its evaluation
when DI iz a guadratic non-residue (mod p). Recently, the authors [3]
have shown how to remove thig ambiguity by using the law of quartie
reciprocity in a form given by Gosset [2]. When & =3, von Schrutka
([9], p. 258) evaluated @,(D} when D is a cubic residue (mod p) but left
an ambiguity in its evaluation when D iz a cubic non-residue (mod p),
and the authors [3] have shown how to remove this ambiguiby by using
a form of the law of cubie reciprocity given by Emma Lehmer [6].
When L =4, Whiteman [12], [13] has shown that

—4 (1),
+A(—1)9 M,

if D is an octic residue (mod p),
it D is a quartic but not

an octic residue (mod p),

0, it D is a quadratic but not

& quartic residue (mod p),

it I} is & quadratie non-regidue
(mod p),

(mod 8), ¢ =1 (mod 4).

(1.2)  2,4D)

l

14,

where p = o2+ 248 =
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Since 2 iz a quadratic residue of a prime p = 1 (mod 8), S,(2) is
known from (1.2). In Section 4 of this paper we show how to remove
the sign amhbiguity in the evaluation of @,{g), where ¢ is an odd prime
which is a gquadratic non-residuc (mod p), by means of a form of the
law of octic reciprocity given by Western [11] (see Section 2). For example,
we prove the following:

THEOREM 2 (). Let p = a%-+b% = 2+
prime = 1 (mod 8) such that 3

2d3 (a = ¢ =1 (mod 4)) be a
8 6 quadratic non- oesed’ue {mod p). Then

Ba3) = —4(—1)7a,

where b and @& are chosen lo satisfy one of a =0 =d(modd) or a =5
= —2d (mod 5).

In grder fo evaluate @, (g) by this method, it is necessary to determine
g7 "% (mod p) when ¢ is a quadratic non-residue (mod p), i.e. when
g¥~"% iy a primitive eighth root of unity (mod p). In Section 3 we ex-
plicitly evalnate ¢~"#(mod p) for ¢ = 3,3, 7,11, 13, 17 and 1% when
(%) = —1, p =1(mod 8), in terms of fhe representations p = a2+
-+ = ¢4+ 2% by giving necessary and sufficient criteria in terms of
&, b,¢c and d, for ¢ to satisfy

(1.3) ¢* ™" = ((a—b)djac) (mod p),

7 =1, 3,5, 7. We state our results only for j = 1 as the analogous results
for j = 3, b and ¥ may be obtained from these by self-evident trans-
formations. Niustragive of the results in this section is the following

THEOREM 1(d). Let p = a~+l’r =4+ 2d° =1 (mod 8) be a prime
with a and o chosen so that @ == ¢ = 1 (mod 4), and let E =1, 3, or —3
according as ¢ =0, +2d, or +4d (mod 11). Then

a4 =% = —kd (mod 11),
@ = 3b = —2kd (mod 11),
a = 4b = 3kd (mod 11).

(14) (=112 = (¢—b)d/ac (mod p) <

The results in Section 3 complement those of von Lienen [3] who
gave necessary and sufficient criteriz for each prime g< 41 to be an
octic residue (mod p), given that ¢ is a quartic residue (mod p). This
leaves the problem of evaluating ¢ ~"®(mod p) when ¢ is a quadriatic
but nmot a gquartic residue (mod p), in other words, when g
= +b/a (mod p). In Section 5 we give necessary and sufficient criteria for
each prime g <19 to satisfy ¢@~'% = Lb/a (mod p).

THustrative of these resulty is the following:

TemoREM 3 (d). Let p = a*+b* = 2+ 04 == 1 (mod 8) be a prime
= 1(mod 8) wiik a and ¢ chosen so that a = ¢ =1 (mod 4), and let k — 1,

icm
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5, or —38 aceording as d =0, ¢ = 4d, or ¢ = 4:5d (mod 11). Then

__11)(13—13,'3 =b/a (modp)«:b{b = —ke (mod 11),

(L5} ( \p = —5ke (mod 11).

The fact that the values of % in Theorem 3 (d) coincide with those
in Theorem 1 (d) in magnitude, sign, and order is faseinating —it is net
8 coincidence. In Section 6 we include a proof that this phenocmenon,
apart from a possible ambiguity in the sign of the k's, oceuars for all primes
¢ >3 which are = £3 (mod 8).

2. Western’s formulae, Let p = 1 (mod 8) be a prime. Set { = ¢

= (L4} V2 and let R denote the ring of integers of the quarbic field
Q(). The elements of R are of the form ag-+a,f+a,0°+af®, where
Gy, Oy, (g, @, BTE Tablonal integers; moreover, R is a unique factorization
domain. In R, p factors as a product of four: primes :

(2.1) P = Ty T TGy

where

(22)° m ) (=1, 3,5,7), a{l) = o+t Sal el

Repl‘l(mg () by a suitable associate, we can Suppose that
{2.3) o =m = a{{} =1 (mod 2)

(see, for example, [1], p. 69), so that

(2.4) g, =1(mod?), == a, =a, =0 (mod2).
Next we note thab

(2.5) amy = a-bi, mm =e+dive,
where _ -

(2.6) P = a4 b = o*+2d,

(2.7) a = ay—a;+2a6.0, = 1 (mod 4},
(2.8) ¢ = f—al+ai—a; =1 (mod 4).

For g an odd prime and j ==0,1,..., 7, it follows from Western’s
formulae ([11], p. 248) und. (2.5) that for ¢ == 1, 3, §, and 7 {mod 8) respect-
ively, we have -

(2.9) g%V = {(a—b)d/ac) (mod p)
if pe P (g bi) @ (g — @iV 2)e Y = ¢ (mod ¢),

(—g)? 08 = ((a—b)d/mc)f(mod )

(2.10) _—
it mes)ta(m_}_ bi)cqﬂm (G _dﬂ/g)(q-m‘.z = C’.(mO('i 91),
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(2.11)  ¢¥ " = ((a—b}djac) (mod p) :

i p@ (g — bi) TV (o4 ZiY2) IR = P (mod 0,
(212)  (—q)* " = ((a—Bb)d/ac)’(mod p)

i P9 (@ by (o + @ VIYHVE = (mod g).

3. Evaluation of ¢? "*(mod p) when (-gw)z ~1. Let p = a*+

48 = - 24° =1 (mod 8) be a prime with & and ¢ chosen so that

¢ =¢:=1(mod+4). Let g be an odd prine such that (}?—) = ~1. In

this section we give necessary and sufficient conditions for g to satisfy
{(—1ya-tE )@=t = (g —b)d/ac (mod p)

for each prime g« 19. When ¢ == £1 (mod 8) these conditions involve

eongrnences of the form a = Ab {(mod ¢) and ¢ = ud (mod ¢) {see Theorem

1(e), (£)), and when ¢ = 43 (mod 8) they involve congruences of the

form o = b = rd {mod q) (see Theorem 1 (a), (b), (d), (e), {g)).

We just give the details of the proof of Theorem 1 for part (g) as,
apart from the differences mentioned above, the other parts are proved
similarly.

THEOREM 1. Let p = &° +b° == ¢*4+-24" = 1 (mod 8) be a prime with
a and ¢ chosen so that @ = ¢ =1 (mod 4). Then we have
(a) (—3)"P = (a—b)djac (mod p)+> & = —b = d (mod 3),

=b=
(o) 5PV = (a—D)d/ac (1n0dp)¢{ 2 —p— c_l__(glgo(?-nik 5,
() {=T7)""Y* = (a—b)d/ac (mod p)

wlt= 2b (mod 7) and ¢ = kd {mod 7},
¢ = 3b (mod 7) and ¢ = —kd {mod 7),

where k= 1,8, or —3 aceording as ¢ =0, =24, or £4d {(mod 11),

a = —b = —kd(mod 13},
(6) 13¥ 7V .= (¢ Bb)d[ae (mod p)e>] a = —2b = 5kd (mod 13),
a = 6b = —4kd (mod 13),

where k =1, 4, 5, or —3 according as ¢ = 0, £2d, £3d, or +4d (mod 13),
() 17%7YF = (a—b)d/ac (mod p)

—20 (mod 17) and ¢ = —kd {mod 17),

3b (mod 17) and ¢ = kd (mod 17),

—6b (mod 17) and ¢ = kd (mod 17),

—8b (mod 17) and ¢ = —kd {mod 17),

i

¢
s s 88
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where b = 1, —2, 3, or b according as ¢ = +d, 24, +-34, or £5d (mod 17),

&= —b = —kd (mod 19},
o [a. 3b = —6kd (mod 19),
(g) (19" = (a—b)dlac (mod p) « | @ = —6b = 2kd (mod 19},

] & = Tb = 9kd (mod 19),

[a, —-86 = —4kd (mod 19),
where & =1,7,3, —2, or —4 according as ¢ =0, +d, +4d, +5d, or
+7d (mod 19).

Proof of Theorem 1(g). For brevity, all congruences will be
assumed to be modulo 19 in the following proof unless otherwise stated.

It is straightforward to check that for each congurence on the right-
hand side of (g), we have

Pa+ bl le—divVe) = 10(1+i)V2 =
and so, by (2.10), with ¢ =19, we have
(—19YP~V%® = (g —b)d/ac (mod p}.

[/

For example, for ¢ = —b = —d, ¢ = 0, we have, as b'® =1,
Do+ (e—diV2) = 4(—1 i (—iV2)
= —4(4—4i)(161¥2) = 10(1+1)V2 = L.
Convergely, suppose that
(3.1) (~19)2~1% = (q—b)d/ac (mod p).

Then { —19)*"* = ..1 (mod p), and by the law of quadratic reciproeity,
‘we have
P

3.2 )
o [2)-
It iz clear from (3.2) and p = @*+ 8 =¢*+2d" that b 20 and 4 % 0.
Setting ¢ = pd in {3.2) we obfain
3. - —
{3.3) ( T ) 1,
8o that p =0, +1, -4, +5, 7. :

Next, from (3.1), we have { —19)® " = b/q (mod p). Setting a = b,
and appealing to the law of guartic reciprocity (see for example {27),
we obtain

3.4 a—bi 5"_ J.w—i)s_i
(3. (a—;—bi) _(/H—z' -

go that 1= -1,3, —6,7, —8.
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Next by the law of octic reciprocity, see (2.10), we have
(3.5) C pHa+biY(o—adiv2) =¢.

Using the congruences a = b, ¢ = ud, and sebting & = fb, so that
¢ = pfb, in (8.5), we obtain

(3.6) (R 1P (A1 ( —z]/2)"(—ﬁ—)5———9(1+i)1/§,

as b =1, £ E(%) Next, as

(3.7) (A4 = (A9 +5A)+ (B4 4+ 922 +1}4
and, ‘
(3.8)  (u—4V2) = (p°+4p? +10p5 +1208 +11p) —
(9154 B8+ 1048 +1642 116)i V2,

we obtain » F _ o
(3.9) (B1P (A3 = { 3:—_3;;:9)% i z :;,;3; -6, 7,
and | ' '
(3.10) V3P EISN'Z_’" it =0, £l +5,

—3i¥2, i u= 44, 7.
Sinee :

(—3-+30) (£3673) = TOU+i)V2, (3—80)(£3i¥2) = £9(1+1)V3,
we must have from (3.6}, {3.9), and (3.10), that

Jij ) . JA=-1,3, —6,7 and g =0, 41, +5, or
3.11 —|=+1 it
_( ) (19 * 11 = —8 and g = 44, 47,
and ‘
i . (A= —1,3, —6,7 and p = £4, £7 or
3.12 — = — if
@.12) (19) 1 2= —8 and g =0, +1, 5.
From a?4+b* = g2+ 2d° we obtain
' ‘ 24l
3.13 ' 2=
(3.13) I 2

Appealing to (3.11}), (3. 12), and (3.13) we hanre the following table of
values of f§:
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A

\ —~1 3 —~B 7 —8
)3

0 1 9 | 18 5 2
(3.14) +1 11 4 5 17 3
44 13 3 18 8 7
45 9 5 11 7 18
+7 14 12 | 15 13 9

The rth row in this array is determined by mﬂltiplying the enfriey of
the first row by the first entry in the rth row, r = 1 , B (and gimilarly
for the rth colnmmn).

Finally set
(3.15) h=1,7,8 -2, or —4

aceording as g = 0, -1, 44, 45, or 47 respectively. Then from (3.14)
and {3.15) we have for all 25 values of f,

. A .
(3.16) o= —1, —6,2,9, or —4
sceording ag A= —1,3, —6,7, or —8. »
This eompletes the proof of Theorem' 1 (g).
Remark. Seb a = Ab = pd i ¢ = £3 (mod 8) and set ¢ = 1b, ¢ = ud,
i g= £1 (mod 8). If (a—b)dfae on the left-hand gide of Theorem
1 {a)~(g), is replaced by ((a—b)d/ac)’, j = 3, B, or 7, then the congruences
on the right-hand side are satisfied if and only if 2 is replaced by —A2
ifj = 3, uisreplaced by —puif j = 5, 1isreplaced by —4 and wis replaced
by —pif ="
BxaypPre 1 (g = 5, see Theorem 1 {b)).
(i) Letp = 1297 =1%.3-36" = (—35)"+2-6*sothata == b = d (mod 5).
Then we have
(a—b)d  (-85)(6) _
‘ac - =35
and it ig easily checked that for p = 1297 we have
-1 — 5% = § (mod p).

(ii) Let p = 137 = (—11Y°+ 42 = (—3)*-+2(8) sothat @ = b = —24
(mod 5). Then we have
— — —12 :
(e—hd _ (Z1I5@) 120 | o6 moa1s),
ac (—11)(—3) 33
and it is easily checked that for p = 187 ws have

BE-I B = 96 (mod p).

6 (mod 1297),
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(i) Let p =17 =124+ 4* = (—3)*+2{2)* so that the right-hand

side of (b) i3 not satisfied, rather, a = —b = —24 (mod 5). Sctbing
a = Ab and noting that only the sign of 1 differentiates ¢ = —b = —24
from the congruence & = b = —2d in (b), wo must have

, by
5(1)-13,’3; (a’ ) (]llOd.p)g

ac

and it is easily cheeked that this Is, indeed, the case.

4. Evaluation of &,(g) when (ﬁ—) = —1. We now use the results

of Section 3 to show how to evaluate @,(q) for 4 prime ¢ which is a qnadratic
non-residue (mod p). Explicit results are obtained for ¢ 19.

From the work of Whiteman ([13], p. 90) or Lehmer ([7], p. 63),
we have

(41) (D) = {D‘P ms((f’ 1)/{‘5)4-1)3(9 s 3(%; 11))/? )}(mod »).
-1/ _ [

A ((p ) _(3( i) e ovtain

(4.2) Q4(D) = (Eﬁ i)’/’;) {D(pwl)ls_{_DS(p—D!B}(rnod Py,

Next as

(4.3) (g‘; i;; )E 26(—1)7 " (mod p),

see, for example, Jacobi [4], p. 168, Stern [10], or Whiteman [131}, p. 97,
we obtain

(4.4) B(D) = —20(—1)P-D0e {D®-1f8 4 DHP=1I8L (mod p).

The congruence {4.4) can be used to evaluate @,(D) when |9D,(D)] and
D (mod p) are known. Appealing to Theorem 1, we use (4.4) to

evaluate PD,(q) for ¢ =3, 5, 7, 11, 13, 17, 19, (-g-) = —1. 'We just give
r

the details for ¢ = 5 as the details are similar for the other values of ¢.

For a prime p =1 (mod 8) with (%) = —1 we ecan choose the
signs of b and d so that
(4.5) a=b=dmod3) or =)= —24(nod5),
and if follows from Theorers 1 (b), that
—byd
4.6 g, (2—b)d _
(4.6) — (mod p)
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Henece we have

{£.7) BP—DE L 5318 = 9 /s (1mod p),
and thus from (4.4) and (4.7) we obtain
(4.8) @,(3) = —4(—1)®""g (mod p).

Since D,(b) = +4d, by (1.2}, we mmust have
(4.9) Dy (5} = —4{—1)P~V8q,

This completes the proof of the case g = b of the following theorem.
THEOREM 2. Let p = a?-+-b* = ¢24-24* (@ = ¢ = 1 {mod 4)) be a prime

=1 (nod 8) such that (j%) = 1. Then

(4.10) D ((—1)&PRg) = —4(—1)P~ g

provided b and d are chosen to satisfy the eongruences {mod ¢} given in
Theorem 1 (a)~{g).

Exavpie 2. Let p = 17 = 124+ (—4) = (-3 1+ 2(2)°. Note that
a=c¢=1{mod4) and the signs of b and d have been chosen so that

(4.11) a =b = —2d (mod b).
By (4.9) we must have
(4.12) &,(5) = —4d = —8.

Indeed for p ==17 we have, appealing to (L.1),

B(5) = Z(M(”lf 5))

22:(1%)+(f_7)+(57) (i) ) () + () )

We complete this section by briefly illustrating the ideas involved
in explicitly evaluating @,(D) for composite D. We just treat the case
D = —6.

—6 —3
Let p be a prime =1 (mod 8) such that (—P-—) = —1. Asg (T)
= 1, we can choose b and d so that ¢ = —b = d (mod 3). Then by

Theorem 1 (&) we have

(4.13) (—3)2~08 = (g —b)d/ac {mod p).
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Bince {sce for example [I1] and [T}

(—1)="%(mod p)
w-vis ) ~1)2" 28 g (mod p)
(4.14) 2 = (_1}(1-7+7);’8(n10dp) i
(=1Y#*+P%p jg (mod p) i
we obtain from (4.13) and (4.14)

(—=1)2~Y8((a—b)d ac){mod p)  if
b = 0 (mod 18},

(=1 """ {(a+-b)djac}(mod p)  if
= 4 (mod 16),

(—1)2*""%((g —b)d/ac)(mod. p)  if
b = 8 (mod 16},

(~1)PF"((a-}-B)d ac) (mod p)  if
b = 12 (mod 16).

b = 0 (mod 16},

b = 4 (mod 16),

b = 8 (mod 186),
= 12 (mod 16},

=

i

(415) (=67 =

Tt follows ab once from (4.15) thab

(—1)¥"2d /6 (mod p) if
b =0, 4 (mod 16},

(—1)2t"823 /e (mod p)  if
b = 8,12 (mod 16),

so that, by (4.4), we have ®,(—6) = —4d (mod p) if b = 0 or 4 (mod 18)
and @;(—86) = 4d (mod p) if b = 8 or 12 (mod 16). Thus, by (1.2), we
have

(4.17)

(£.18) (—6)P~ R _ﬁ)m—n,{a

Il

B,(—6) = —4d i b =0, 4 (mod 16),
* 444 i b =8, 12 (mod 16).

Exavpre 3. Let p =17 = 1°+(—4) = (—8)*-+2(—2)* so that
a=¢=1(mod4),a= —b =d(mod 3), and b = 12 (mod 16). From (4£.17)
we have O,(—6) = +4d = —8, and, indeed,

- = D (252)
==((5e)+ () () o)+ o)+ )+ () + (55)

5. Evaluation of 47 "*(mod p) when (_g_) = +1. Let 2 = a*4 b
_ _ P :
= ¢*+2d* =1 (mod 8) be a prime with a and ¢ chogen so that a = ¢

= 1{mod 4). Lef ¢ be an odd prime such that (%) == -}-1. In this section

icm

An application of a formula of Western fo Jacobsthal sums 27

we give necessary and sufficient conditions for g to safisfy ({ —1)@ " g)e-1i
= bfo (mod ») for each prime ¢ < 19. When ¢ = 1 {mod 8) these con-
ditions involve congruences of the form a = b (mod ¢) (see Theorem
3 (e), (£)), and when ¢ = 43 (mod 8) they involve congruences of the
form b = y¢ (mod ¢) (see Theorem 3 (a}, (b}, (d), (e), (g)). Apart from
this difference, the proofs of {a)-(g) are similar, and may easily be written
down by analogy with the proof of (g) which is given below.

TeHEOREM 3. Let p = @ +b° = ¢ +2d° = 1 (mod 8) be a prime with
a and ¢ chosen so that a =e¢ =1 (mod 4). Then we have

(8) (—3)7 2% = pja (mod p)«b = ¢ (mod 3),

[b = —¢{mod b),
| 5 = 2¢ (mod 5),

=Dl fa=0b(modT7) and ed =0 (modT),
(© (=T)" = b/a (medp)@la = —p(mod 7) and ed % 0 (mod 7),

b = —ke{mod11),
b = —Bke {mod 11),

=0 (mod1l), ¢= 44 or

(b) 5P VP = plg (mod p)<

{d) (=11 = jja (mod ;p)-ﬁ-[
whevre k =1, 8 or --3 according as
454 (mod 11),

b = ke (mod 13},

N p—-1f8 :
(e) 13® = b/a (mod .’P)#‘{ b = 6ke (mod 13),

where & = 1,4, —5, or —3 aocording as d =0, ¢ = Ld, ¢ = b4, or
+6d (mod 13), ‘
' = Bkb (mod 17),

bl @
(B 1T =bja (m‘}d?)"{a — —7kb (mod 17),

where b =1ifed =0 or ¢ = 64 (mod17), k = —1 i o = t4d or
-+8d {mod 17),
b = ke {mpod 19),

(g) (—19)2"28 = bJa (mod p)<>1 b = 2ke (mod 19),
, b = The (mod 19),

where k =1,7,3, —2, or —4 asccording as d =0, ¢ = 24, +94, 384,
or 43d{mod 19) respectively. '
Proof of Theorem 3 (g). For brevity, all congruences are to be

taken module 19 unless otherwise stated.
Cage (): d == 0. It is easy to chefk that for each congruence on the

right-hand side of (g), we have
pi{a+bi) (e —div2)P =1,
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and so by {2.10}, with ¢ =19, we deduce that
(—19)#~ D% = pja (mod p).
For example, for & =0, b = —2¢, we have
ptatbif(e— V) =S (9+6iV2) =4,
as a =0, ¢ = 9b imply b* = 5b+ 247 that is, d = +6b; ¥ =1;

6
and, appealing to (3.8) and noting that 6° 5( ) +1,

) =
(9L 6iV2)° = 6°(+iV2)® = 1.
Convergely, suppose that
(5.1) (—19)?"1% = p/a (mod p).

Then {—19)y®1 = 1 (mod p), and by the law of quadratic reci-
procity, we have .

= 1P
5.2 ) = 1.
(5.2) (19) +

Setting ¢ = ud In (5.2), we obtain

A
( 19 ) =+

50 that
(5.3) 4= +2, £3, 48, +0.

Also, from (5.1}, we have (—19)"""% = —1 (mod p), and so by
the law of guartic reciprgcity, see [2], we have

a—bi\?
0.4 ’ = —1.
©49 (CH—M) *

Clearly o = 0 and we can set a = Ab in (5.4} to get
(5.5) 1= 0, +2, +5.
Next, by the Jaw of octic reciprocity, sce (2.10), we have
(5.6) Pro+biy (e — V2 =i,
Using & = b, ¢ = pd, and setting b = ye so that a = iupd and b = prd

in (5.6) we obtain, as @'* =1 and ()’ = (‘f“g“)r

(5.7) (2 +1P A+ (p—1 u/é')’(%) =1,

An application of a formula of Western to Jacobsthal sums

[ )
-1
o2

From (8.7) and (3.8) we obtain

5.8 Paiyaes i H 2=0,45,
.8) epusr =]t § 1202
and

e +1 = 9, 43 —8 —9
s _mp={t E = mis s
(5.9) r ) —1 =42, —8, 18 9.

From (5.7), (5.8), and (5.9) we must have

#y

l). =0, £5 and p = -8, 13, —8, -9,
{5.10) (-~) = +1 if or
19 L= 49 and g = 42, —3, +8, 49,
and
uy ‘ A=0, +5 and p = 12, -3, +8, +9,
(5.11) (E) - -1 if or
A= 42 and g = 2, +8, -8, —9.

From a:+b* — ¢+ 24 we obtain
pit+2
pAHA 1)
Next, from (5.10), (5.11), and (5.12), we have the following fable of values
of y:

(5.12) =

~. 4
= 6 | x2| x5
M
(6.13) +2 7| -8 -8
43 —4 | 8| —9
48 —2 | —4 5
49 3 6 2

Finally, setting
(b.14) =17 —4, -2, or +3 according as ¢ = 24, .34, L84,

or +9%,
we obtain for all 12 values of y,
(5.15) %5 1,2, or 7 according s A = 0, 42, 0r +5.

This proves Theorenm 3 (g) in case (i)

Case (ii): d = 0. The proof is the same as in case (i) except that
we clearly cannot set ¢ = pud. However, setting b = ye, (5.6) becomes
in this case,

2132 Y A
G16) (217 (A +4) (19) =1
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Hence by (5.8) we have
(5.17)

Wext from a2--b = ¢2--24° we have
1
(b.18) YETELL
Putting (5.17) and (5.18) together, we geb (just as in (5.15) taking k& = 1),

{5.19) y=1,2, or T according as 4 = 0, £2, or 5.

This completes the proof of Theorem 3 (g) in case (ii).

EXAMPLE 4. (g = 5: sce Theorem 3 (b}.)
(i) Let p =281 = §*+16* = 9*+-2(10)* so that b = —e (mod 5).
Then we have
b 16
a5

= 228 {mod 281),

and it is easilv checked that for p = 281 we have
5P 5 = 298 (mod 281).

(ii} Letp = 1289 = (=~38)2+82 = 332--2(10)% so that b = e (mod 5).
Then we have

‘ b
SV = I = 470 = =—— (mod p).

35
(iil) Let p = 89 = 5°+8" = 9°+2(2)° so that b = 2¢ (mod 5). Then
we have

I = 51 = §5 = 3 = L3 {mod p).
5 a
(iv) Let p = 241 = (—13)*+-4* = 1374-2(6)* go that & = 2¢ (mod 3).
Then we have

b
P =50 = 17T = — = — - (mod p}.

Bemark. Although the number of cases to be considered grows
quite rapidly as ¢ increases, there are no technical difficnlties in uging
the methods given in the proofs of Theorems 1, 2, and 3 to extend the
results in this paper beyond ¢ = 19.

6. Values of  in Theorems 1 and 3 when ¢ = 43 (mod 8). We observe
with considerable juterest that the values of ;& which oceur in Theorem
1(d), {e), (g) azre identical with the values of k¥ which ocenr in Theorem

icm
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3 {d), {e), (g), both in magnitude and sign. The values of % in Theoremn 3
bave been written in an order which corresponds to their order in Theorem 1.
In this section we investigate the pattern which tnderlies this ordering
for every ¢>3 which is = £3 (mod 8).

Let Fy ;.0(q) e the value of & corresponding to ¢ = +7;4 (meod g)

when (i) = —-1,3" =1,2,..., and let &, ;.,(¢) be the value of & corre-
sponding to ¢ = <4-&;d (mod g) when (?%) = -+1, where &, (¢) and &, ,(q)

are equal to 1 and correspond to ¢ = 0 {mod ¢) and 4 = 0 {(mod g) respec-
tively. For exanmiple, when ¢ = 19 we have from Theorera 1 (g) and
Theoren: 3 (g) that Ky = Ky = 3, 7, = 4, 8, = 8. Ohserving that 13-4
= (=3)(5) = 4 (mod 19) and that the samic congruence is satisfied (mod ¢)
for cvery choice of j in Theorem 1 and 3, parts (d), (e), (2) as well as in
pert {b) when reformulated in analogy %o (d), (e), and (g}, we are led
(with the above nofation) to & general theorem relating the values of q
in Theovems 1 and 3 when ¢ is a prine = £3 (1mod 8), g > 3.

TuroreM 4. Let g be a prime > 3 which is = -3 (mod R). Then

(6.1) By ) = (7“2,3‘:—1)2@(‘7’)‘)2(5’3‘)2 = 4 (mod ¢),

Proof. Let ¢ be > 3 so that r; and s, exist. Applying (3.4) with the
exponent 5 replaced by (¢-+1}/4 if ¢ =3 (mod 8) and by (g—1)/4 if
g = i (mod 8), one can show that one of A =1 or 4= —1 is always
& solution. Then, by (8.13) and (3.16), we have (r; replaces u in (3.13)),

(6.2) oy, e @ = (05(0))*+2) (mod g),
Similerky, applying (5.4) with the same veplacement, it is obvions that
this congruence is always satistied i 2 =0 (¢ = 1b). Taking y/k,; = 1

(mod g}, 7 =1, 2,... (see (5.18)), and nsing (5.12), we hawve {s; replaces
p in (5.12))

j=1,2,..

i=1,9,...

. . AslaF+2 .
(6.3) (@J+J@szILLMAW%l(Hmqu =12, ..
The result follows then from (6.2) and (6.3), as the k, ;., and By ;. Bre

-
chosen in the range —lg<T < lg.
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A mote on recurrent mod p sequences
by

TU. ZAawNiER (Pisa)

Important arithmetical funetions, ramely the integral valued linear
combinations of polynomials multiplied by exponentials functions, have
the striking property of being periodic mod p for all sufficiently large
primes p.

In this paper we are concerned with the following problem: which
other sequences, apart from the above mentioned ones, satisfy dome period-
icity condition mod p for almost all primes p?

Our resulb is that no other sueh sequence exists, provided & certain
kind of growth condition ig satisfied.

We consider sequences satisfying a more general property, i.e. those
which are solutions of recurrence equations mod p for large p. (Periodicity
is actually a special kind of recurrence.)

In the sequel €y, O, ... will denofie numbers which depend only on
the sequence. '

We have the following

THEOREM. Let f: N—Z. Suppose that

(1) for every prime p > p, f-salisfies a non trivial recurrence equation
in Z|pZ, of length v, <€ p*, for some fized k.

(i} |fin} € n® for some constant B. :

Then f satisfies a non trivial recurrence equation over Z.

Proof. We recall the following Biegel’s classical lemma (see for
example [17): “Let M, N denote integers, N > M >0, and lef u; (1
SIS M, 1K< N), denote integers satisfying |u,l<{ U. Then there
exigts a mon trivial integral solution #,, @,, ..., Zy, of the linear system

tuyx; =0 for ¢=1,2,..., M
=1

such that
Jang] < (H YA 5

Let now ¥ be a large integer, and consider the anxiliary function

F(l) = o, f(t+1) +-.. +ayf (I +N).
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