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Bince f(n) €Z for every w, we have:

E 3 3

M o{Pyim) alr® = Y Py(w)rs.
=1 =1

But it is wel! known that the expression of f in the form (4) is unique,
and it follows that the o(r;) are a permutation of the r;, and this happens
for every o.

Thug, if in the formula for f some r; has a polynomial coefficient
which is nonzero, then all of its conjugates have the same property.

But

If(n} > max|r® for an infiniky of =
£y .

and, since f is asgnmed to have polynomial growth, we conclude that

max|r;] < 1, and, by ths preceding observation, we have also:
Pjaﬂl
maxmaxe{r)] < 1.
G Pj%ﬂ
Since the 7; are algebraic integers, a well known theorem of Kronecker
implies that they are roofs of unity.
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Selberg’s sieve estimate with a one sided hypothesis
by
DAnNmL A. RAwsTHORNE (Wheaton, Md.)*

1. Introduction. It hkas been found in many interesting number
theory problems that the most successful techmniques Involve a small
sieve. One of the best small sieve technigues known is that of Selberg [81.
This sieve has been investigated by Ankeny—Onighi [1] and Halberstam-
Richert [2], among others, The results they obfain using the Selberg
gieve rely on assumptions made about the function w(d) (defined in Sec-
tion 2), and the aim of this paper is to obfain similar resnlts with less
stringent assompbions.

2. The basis of the sieve and Selberg’s Z-method. We follow the
notation of Halberstam~Richert ([2] and [4]}).

Let A be a finite sequence of integers, and let A, denote the sub-
sequence of 9 all of whoge elements are divisible by &. We use %} and
|%; to denote the number of elements of A and Uy, respectively.

Let # be a set of primes and define (the empty product being 1)

w P =[]».
peP
p<z
Define the sifting funchion 57 (UA; 2, 2) for any 2 to be
(2) L S 2, 2) = |{aeU: (a, Pl7)) =1]];

in other words, &°(U; #£,#) is the number of elements of A remaining
after we have removed all those with prime factors less than & that belong
to 2.

In order to study the funetion & (U; £, z) we need some nofation.
We choose a convenient approximation to |%], call it X, and define

R, = | —-X.
* This work is a portion of the author’s PhD thesis. Thanks go to Harold
Dismond and %o the University of Illinois at Trbana, Ill. This work was pariially
supported by a University of Illinois Fellowship.
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For each p e # we choose & non-negative number w(p) and set

w(p)

»
We set w(l) =1, w(p) =0 for p ¢, and extend fthe function w(d)
multiplieatively for square-free d. Thus

(3.) (!)(d) = H g)(jp), fDl‘ ‘Lﬁ(d) 37"—"0
nld
and we let
wld) . )
{4) By = U, — e A, for p(d) s=0.

{In practice w(p) is chosen to make the RB; muall on average.) We need
one more important funetion, namely :

(8) : W(z) :H(l_%ﬂ) _ 2&_@&@_.

B<E. [ fh gt} )
Seibherg [8] derived his upper bound estimeate by defining 4, =1,
Ag to be arbitrary real numbers, and noting that

s 2, < Y Naf = gk, YL

aell - dla € Per el
P =12 a=0mod[d) do]»

where [d,, 4,1 denotes the least common multiple of d; and d,. In the
notation we have cdeveloped, we obtain

X} e & - . CU{[d d"'

(6) FA; 2,8 < § XAy, 2a, i, 1,d }" + y |2, Agy Bra,a |
gl dyl P
221,20 i=1,2

= Y):} + &y LY}
say.
In order to vontrol the sum Y, Selberg introduced a parameter &
and restricfed the 4;'s so that A; = 0 for d 3= £ He further defined fthe
funetions

e | _ m{d) ( w{p} ) ’

wid

for p(d) =0, and
(8) G{£, %) = ,S g(@).

&g
P

Selberg then minimized the sum X; by means of Lagrangian multipliers
(many other methods e¢an be wsed) and deduced that the minimal vakue

Selberg’s sieve estimade with a one sided hypothesis 283

for X, ig 1)@ (&, c). With the choice of A/s that minimize I, we obtain
the upper bound
T N 3Ry

Q< st
aibo)

{see [4], (6.1.7)), where »(d) is the number of distinet prinie divisors of d.
By nsing these upper hounds in (6) we obtain what we refer to as the
Selberg sieve estimate, naniely ‘

(@) SO 2, < TIG(E, )+ ) 3R

q-cs?
a| Pz

3. Analysis of the Selberg sieve estimate. When applying Selberg’s
sieve estimate one normally begins by choosing & in sach a way thab
the sum of remainder terms is smaller than the expected value for the
main term. Once this has been done an estimate for G(£,2) must be
produced. The main problem in using equation (9) is that the funcfion
G (£, 2) is hard to work with in many cases.

Ankeny-Onishi [1] is the first paper to give such estimates appli-
cable to a large number of problems. If shows that by placing certain
conditions on a dimension x sieve problem (defined below) we obtain
the asymptotie formula

(10) LG(E, ) = (W(D)o() {T+o(L)}, a8 e,

where 7 = log&/logs, and o(#) is the continwous solution of the sysbem

11 (2) i Ly for O a2

) = —- -1, for LUl
(L) a Tet1) (2} U '
(12) (a7 (w)) = —wutelw—3), for w>2.

Halberstam—Richert [2] gives explicit error terms in the formula
for 1/GH{E, z).. The conditicns Halberstam-Richert wsed were

] 1
(2,) L LS
_ P Ay
for all primes p € # and some suitable congtant 4; > 1, and
o{p)log i
st b w
U <Y

it 2w <y, for some constants L, 4,1, and x The constant = is
referred to as the dimension of the sieve, and can be thought of as the
average number of residue classes sieved out by each prine. With these
conditions Halberstam-Richert obtain the following:
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TarorEM 1. Let (), (Q(», L)) hold, For v = logétflogz we have

W () {1+ 0 (.L(log10g5)2"+1 )},

(13) L, 2) = ot

where o(u) is defined above, and the O-term does not depend on L.

The presence of the L is somewhat troublesome, since in some appli-
eations it can be guite large, and be & function of X. The result we prove
in this paper is that after weakening (Q.(x, L)) to

w(p)lo 2
(Qu() > ﬂpﬂ’* —xlog < 4,,

1S <Y
if 2w <y, we can prove:
THEOREM 2. Let (2,), (2,03} hold. For z = log £ floge we have

Wi(2) (loglog £)*+! ]
(14) 16,8 < o {1+0(W10g5 )I‘

For the purpose of inserting into (9) to obtain a gieve inequality,
it iy elear that (14) is somewhat better than (13), because of the lack of
the constant L.

The proof we give of {14) depends ultimately on (13) and follows
from two lemmas. The first lemma shows that we can change the problem
to get inequality rather than equality, and the second lemmsa enables us
to use (13) on the changed problem, the new I being a function of %, 4.,
and 4,.

4. The reduction lemuma. We will eventually use the resuli of Hal-
berstam and Richert, (13). This result is applicable only if we have an T
sueh that (2,(x, L)) is satistied. Since we are only assuming {2,(x)), wo
walt to change the function o(d) to satisty (£2,(x, L)) with L a suitable
funetion of x, 4,, and 4,. The following lemma shows that increasing
ow{d) preserves the sieve inequality. The result in the case & = 2 iz found
in the leeture notes of Jurkat [5].

Lrania 1. Let p > o' (p) = o(p) for all primes p. If Q@ is a quaniity
depending on the values {o(p)}, Tet Q' be the corresponding quantity depen-
ding on the values {o'{p)}. Then for all & and z we have

{15) G(E, )W (2) = G (£, )W (2).

Proof. Let g be o prime. It suffices to treat the case w'(p) = w(p)
for all p # ¢, and o' () = w(g)+¢, for some £ = 0. ' We also assume g <z,
pince equality holds in (15) otherwigse. In thiz proof we assume that all
sums and produets are restricted to divisors of P(2). By using equations
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(8) and (8) we rewrite (15) as
() o’ (p)
(16) (1— m—") gid) = (1——-——) g'(d).

Since w’(p) = o(p) for all p £ ¢, we cancel all terms in the produets
excepb those involving g. By expanding the sums we see that showing
(16) is the same a8 ghowing

) wlg)+ ,
(1— i‘;‘-) {Soa+ Zg(d)} > (1— J?i){gg (d>+gg(d>1,

< d<$ i
ald gtd qid atd

or
- RO B (1H co(q);ii) vl -2 N .
(1) (1 . )#g(); - ;gm P
aid qid qtd

By using the definition of g(d) (equation (7)) and simplifying again,
we see that showing (17) is the same as showing

olg (___“’(4)+£) BH—— Y g(d.
G S DWIUES I

< < (243

dqfd’q da’rgq 4%:51
This last incquality is clearly true, since we would have equality if the
last sum were over 4 << £/g. This completes the proof of the lemma. =

5. The existence lemma. In this section we prove that under the
assumption (£2,) and ($2;(x)} the numbers w(p) can always be increased
to numbers o' (p) in such a way that (£2,(x, L)) is satisfied with L a suitable
funetion of », 4,, and 4,. This enables us to nse Lemma 1 and equation
(13)-to obtain equation (14}.

The constants 4, and 4, are defined in assumptions (2;) and (2,(x)),
respectively (see Section 3). Let B, be such that

»lo i
(18) B, < 2 £p —wlog L < B,
wEp<y
holds for all 2 < w <4, and let
(19) B, = »max {1, log2x}.

Ve note that B, and B, are functions of » only,
Define w'({p) recursively as follows: for p < 2z, let

(20) w'(p) = w(p).
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icm

For p* = 2z leb o' (p*) = 0(p*) I

4 23], kg
(21) 4, @ (pllogp | o )*ogp R —
PPt 4 F
and let
(22) o' (p*} = max{w(p), =},

otherwise. The idea is that we increase w{p) to be at least » whenever
the sum in (21) drops too low. We now prove that these o' (p)'s are suitable
for our purposes.

Leavaa 2. If we define Ay =— d,+B, 28,4, then with the above assump-
tion and definitions, we fave modified forms of (2,) and (Q,(x, LY}, namely

’ o' {p) . _ 1
(£1) ' max(d,;, 2)’
il
: {n)lo 3 ’
oae N ellorr v
{2402, 345)) 3A3\,(,é;jiy P #log wr < 34,

for all 2 <<w <<y (this last inequality is not sharp).
Proof. The proof of (2,)" is easy, since either

o' {p) _ w{p) < 1 ) f')(p) @' {p) # 1

< "L —_—— Or e rm —_— T e e [

P ) C4 P P » 2’

sinee in the second case p > 2x, by (20).

The proof of (.Qz(x,SAa))’ is more complicated, and will be done
in threc steps.

Btep 1. We show that

. 1w (p)logp
{33) —~24,—B,—B, < ——= —xlogp*
2 1 q(%p’ P

holds for all primes p*.
For p* < 2x we have

(24) o’ (p)logp

» —xlogp® = —xlog2x > —B,.

2L papt
Define p, < p, < ... by
{25) ) o' (p) = w(p) for p<p,,

(26) ' (P)zx for PP <Py (B =0,1,2,...),
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and

(27) wipy<x for i NP < Py (m=1,2,3,..).

For. 2 < p* < p;, Wwe have

1 ﬂ)_]ﬂ_g?_ -——:m’].()o’p*} -4, —
clOZPT = 2

P p*

olrogp®

(28)
2L p<p*

by (25}, (21), and (£2,(»)) used with w = p*, y = p**.
For p., < p* << Py, We have '

(9]
(29) > %‘ﬁ — wlogp* > —24,,

2 p<p*
by the argument used for (28).
FOI‘ pﬂn—:—l ‘gpx < P‘J.u-kz we hiwe- .

o' (p)logp

S — MR Hlogp*®

(30) 2 #logp
Segpep®

P
_ N @(posp

2 — zlogp,, . —»log (3—“—) +
2EPEPap 41 P _ ekt
I 1 #®
L\ elip)logp —alog 2
RETR 3

Pag prEp<nt

where p’ is the prime preceding p. By equation (27) we know o'(p,,5;)
= 0{Psnsy)y a0d 30 we can bound the first part of (30) from below by
—4,, by equation (21). The term involving the ratio of primes can be
bounded from below by --zlog2 by Bertrand’s postulate. By (26) o'(p)
> x for all the terms in the last sum, so we may bound the last part from
below by —B;, by (18). This gives

N @'(p)logp
i P

Jps it

(31) —xlogp* = —A,—~B,— B,

in this case.

We see that (24), {28), (29), and {31) are all included in (23), so Step 1
is finished.

Htep 2. We show that

(32) OPBE gyt < 4, 4B, +B,

»

P 2oy T

holds for all primes p*.
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Define py < py < ... by

(33) o'(p) = w(p) for p<p, and 0T Py, K P < Pansa
n=1,2,3,...),
and
(34) o' (p) Fo(p) 20r P <P <Py @ =0,1,2,..).
For p* < py we have
(35) y i’(_?%lgg_p_ —xlogp* < A, —xlog2 < A,
2 p<p®

¥ (33) and (£2,(x)).
For P,y <P* < Poyyn We have

(36) S’ w ng —xlogp*
'!gp\pt
1 ‘) 1 s
. Z o' (p)logp — logpa, .+ Z »'(p)logp mxlog(p )
2<-'P’~1-"2n+1 P ﬂ2ﬂ+1€p<1)‘ p pzn.-{-l

Bince o' (Byper) F @ (Pansr) BY (34) we know that (21) does not hold for
p¥ == p,,.,. This shows that the first part of (36) is negative. In the range
of the second sum o' (p) = » by (34), 80 we can bound the second pard
from above by B,, by (18). This gives

()l
(37) 2 _‘”_(P;)_ﬂ _ logp* < B,

2pap*
in this case,
For py, < p¥ < Po,;a Wwe have

"(p)]
(38) 2 @ (p)logp _ xlogp*
2 Epap® 2
"{p)l
= Z ff_(_?_)_fgr_ _zlog-_p]n leg( ..w.)_l_
2 P<Pyy P DPan

"(p)lo *
. w'(p) gg_xlog(p ),
Pogpp<p* » in

where p’ is the prime preceding p. By (33) we know that (21) is not satis-
fied for p* = Do This gives

o' {p)logp mgp
ORI WA L. R R

Isp N<Dyy,

< By,

J.‘.Vi.
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ginee w’(P,,) = #, and we know only that o'(p,,) = 0. In the second sum
we note o' (p) = o(p) by (33) and so we use (£2,{x)} to get an upper bound
of 4,. We ignore the negative term and use (39) to get

3 o' (p)logp

2 p<p® r
in this case. We note that (35), (37), and (40) are all contained in (32),
go Step 2 is finished.
Step 3. We now have the result

(41) —24,~B,—B, < w'(p)logp
<p=<p* P
for all primes p*, by {238) and (32). We can replace the p* in equation (41)
with an arbitrary 2 by noting that
log(p/p’) < log2,
50 we replace the npper bound with 4,+B,-+2B,.
By replacing # with w and y, respectively and subtracting the two,
we obtain (£2,(x, 34,)), thereby completing the proof of the lemma. m

6. The sieve result. By nse of Lemma 1, Lemma 2, and equation (13)
uged for the o'(p)’s we now obtain inequality (14). By inserting (14)
into (9) we obtain the following sieve inequalify.

THEOREM 3. Let (£2,), (Q:(x)) hold. If v — logé*flogz > 0, then

1 | [ Qoglog &>+ e
o) {170( logé )}’L523 il

{40) —xlogp* < B,+4,

—xlogp* < 4;+B, 4B,

F(U; P, 2) << XW(2)

< 52
&P(e)
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