icm

ACTA ARITHMETICA
XLII (1982}

Oscillatory properties of M () = E un)s I

T

by

J. PixTz (Budapest)

1. Mertens conjecturcd for the partial sums of the Mobius function
the inequality

(11) (M) | <Vz (221).

Though very improbable, it has not heen disproved so far. The Dest resulf,
due to H. J. J. te Riele [9]. gives
Mix
(1.2) limsup ]_(:a'_)_l_ > 0.86.
200 Va
In the present work we shall discuss the more general problem of
the lower estimation of

(1.3} S (Y} =max | M(x)]|
it
and
1 ¥
(L4 Dy(¥) = 5 f | 2 (a) {d.

Although one can easily prove by standard methods M () == Qx)
and D, (Y) = 2(/'Y), no satisfactory results are known for 8;(¥) and
Dy (T, even supposing very deep conjectures such as the Riemann hy-
pothesis or the simplicity of all zeros additionally. The second prohlem
would be to get “effective” estimates.

The third problem is to give lower bounds for the rodified functions
8%,(T), D% (Y) where the maximum and the integral, resp. are taken
on some restricted interval [A(¥), ¥l '

Such problems were considered more difficult for the funetion M(z)
than for the remainder term of the prime number formula A{x) = ¢(x) —&
because in the explicit formula of M{x) (in the case where all zeros are
assumed te be simple) the terms have the form 2%/(ol'(g)), Which are
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far more inconvenient than the corresponding terms #%/p in the case of
Alx).

2. 8. Knapowski devoted a series of papars ([5], [6], [7], [8]) publisked
in Acta Arithmetica to these questions. He attacked the problem with
Turén’s method, but owing to the diffienltics mentioned above his resnlts
were not comparable with those obtained by Turan’s method in the in-
vestigation of A{x) (see. e.z. Turén [10]), althongh the proofs were more
complicated. His strongest result gives, supposing the Riemann hypothe-
8is,

e

( | M(x) | log ¥
P

(2.1) de>VY exp(—lz e T 1ogsy)

Alf ¥y 2

where log, ¥ denofes the » times iterated logarithmic function, ¥ > ¢,
{explicit congtant) and :

log¥
2.2 = Y& — E 7
(2.2) 4,(F) I’exp( 100 log. ¥ 10g31”).
This implies naturally
17
(2.3) max | M(z) > f | M (2) |do
4)(P)z<Y YAI(F)

= logY
>V Y exp| —112
Y e:xp( i chgs:\[)

. 2
(supposing the Riemann hypothesis). :
The first effective unconditional bounds were proved by I Katai
([1] (21 [3], [4]) with the use of @ different method.
He was able to prove that for ¥ > ¢, (in what follows ¢, will always
denote explicitly calculable positive abselute constants)

(2.4} 8;¢(Y)= max | M(z)| > Y
Fr<gag T
and
¥
| M(2)]
(25) f —'T da > GSY“"‘,

1

Wwith » = (2—V3)? = 0.07 ... in {1]. Using the numerical result of Rosser
and Schoenfeld (that the first two million zeros are on the line ¢ = 1 /2)
and other ideas, he proved (2.4)—(2.5), and somewhat later [4] with 2
= 0.36 which gives 0.18 in the exponent. But unlike (2.1)—(2.3) the in-
equality (2.5} does not imply even Dy (¥) — oo,

He also reached stronger but ineffective results. Supposing the exi-
stence of a zeta-zero gy = fy+iy,, he proved [3] for ¥ > ¥,(p,, &) (in-
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effective constant) that

¥ |
(2.6) - f | ﬂ.i.(m)| dJ’J - yﬁo—e’

yl—e

which already impHes that

¥
1
| M (@) > 5 f | M (2) |da > TP,

{2.7) max
’ Yl—e

¥l-fgag¥

This naturally gives the unconditional but inetfective inequalities

(2.8) 83 (¥) = Dy X) = TF0 (T > Tyfe)).

Supposing the Riemann hypothesis, he proved [2] for ¥ > ¢; that

(2.9) Sy(T) > VT exp| —o, (log, TY).

(2.7) and (2.9) together clearly imply that the estimation (2.9) also holds
unconditionally but only for ¥ > ¥;{e), an ineffective consbant.

3. In the present work we shall show that by using a new and simpler
method the above-mentioned problems can be treated with very satisfac-
tory effective lower estimations and good localizations. Further, we do
not need any unproved hypothesis or extended computational results.
(The only computational result we use is that the first zeta-zero o, has
the form 1/2-+iy, with y, = 14.13..., but even this plays a role only
if we want to give the value of some explicitly calenlable constants.)

We shall prove the following

 THEOREM. If o, = fo-+ive is & zela-zero, then for ¥ > eWlth

1 i : e, ¥
(3.1) Dy(Y) = | M) | > —

>= i
¥ Fi(100l0gF) . {00}

(where some computation shows that c; can be chosen as 1/6).

We want to note that instead of ¢; | g, ]‘_3 one can write ¢ g, |
% log|gy| too.

{3.1) trivially implies the

CoroLLARY I. For ¥ =e%!t* one has

L (@)] > 05T (g .

—50 v

(3.2) S (X)) = MAax.
Yi(otlog Pl

If we use our theorem and the corollary with g, =g, = 1/2+iy
we immediately get- :



h2 J. Pintz

Cororrany I, For ¥ > 2

{3.3) nax [ {2)] = l

VY
Yi(1o0log¥)<a<¥ ¥

\M (2)] d 3
Fi{10lozT)

{with the value ¢; = 1/17000).

This shows that not only individumal values of (M (x)| are = oVw
but also their average and every constant can he caleulated effectively.
Unfortunately the value of the constant ¢, is not large enough to disprove
the Mertens conjecture. With finer calculation the value of ¢, can be
somewhat increased bub not very much. At the same time we remark
that Corollary T ig the first effective proof of the invalidity of the Mertens
conjecture if the Riemann hypothesis is supposed to be false. By this
we mean that no earlier inethods could prove even any effective inequality
of the type

13 (z)]

tpsl v

(3.4)

= fo+ivy, Where
is supposed, not to speak of the sharper inequality

for ¥ = ¥ (p,) an effective constant depending on g,
fo>1/2

(3.5) 8y (T) > T~ (T > T(oy, )
or
(3.6) Dy(X)> Y=t (X> T(oy, 8)).

The analogue of (3.5) for the case A(x) = p(2) -2 was a famous problem
of Littlewood, solved by Furdn [107 in 1950. But owing to the intractable
form of the residues (oZ'(g)}™" 8. Knapowski was not able to solve it for
the case of M (%) by using Turdn’s method. Tt is interesting to note that
our method worls more easily for the Mobing funetion than for the re-
mainder term of the prime number formula.

Congcerning the sign changes of M (), the present author showed that
M (#) changes sign in every interval of the form [¥exp(—¢'logi*¥), ¥
for ¥ > ¢"”, where ¢ and ¢ are explicitly caleulable positive constants.
Thig theorem will be proved in part 1T,

4. In order to prove our theorem let the entire functicn g{s) be defined

(41) gfe) & EFIR Aol

(3 —'1—.80 n S+'ZIYD—1T¢JV)

Y=

-
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further, let
(4.2) 7 & 10g 7 -2,
(4.3) r. () d;f;)__l_ [ es g 0y ds

Tsing the well-known formula (¢ > 2)

ds =

~ () 1
(+4) f x° (s —1)Z{s—1)

1

with s iy, instead of s and interchanging the integrals, we get our basic
formula

o f u,_“(] —logz)dn

1 " “M'-/s )fﬂfr)

8-+ 1y,

(s+iyo—2) s

— L fes‘llws .
'@ (8 =1 —Bo)(s +iyo—1) J] (s-+irg—1 +2v)
v=1

3
p 1
— o (1 - ?) [ [ (e+2n) +0(D).
[

This immediately gives
(4.6) | U = 6,——nr

(with ¢, > 0.9¢™* by using iy} > 14).

5. Now if H < —2 then, integrating along the line o = 2 instead
of s =3 in (£.3), we get

S T 2
(5.1) el Wl e A
ST 1—2
and so
o0 (==} 62+4 Y
—Hlogz—i—-1) ., __ .
f 71(1» —logz)ds| < J pe— MR dy = T << i
A te At

On the other hand, if H > logA+2+log(3/2) then, changing the way
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of integration in (4.3) for ¢ = —4, we have by 1—22 [y;]
9( Atlyo+t|+2 )’-“"2
= 1L g A—t2jA—HA } ‘ 2 at
63 mEi<g [ EEEE )
-0 Al
2
—MH-1) 1 o .
< ((gA)H--# f ¢t M(gt)’-dt)
b1 A ; !
—A(H~1)73 112 o .
— & (22’) (1_!_f (e—y y)ldy)
s
1
< e—l{H—logﬂ—l—log(le)) < e‘l,
and so
el«-]ugl—2-—log(a,‘2) ﬁf(m) Y
(5.4) 5 Ta(i—-logz)do| < 6 < e
1 .

Finally, transforming the way of integration for ¢ =0, wo get for
an arbitrary H:

1 [=+]
= |

—oa

‘/Zq:(‘}"o +1)* - Gs( V1 +(’}’u+t)2)3!2.
V(1480 +8 [TV (2 =1 +(po+1)°

r=1

(55) m(E) < dt < ¢

(where one can choose ¢, = 0.09 with gome computation).
Now (4.6}, (5.2), (5.4), and (5.5) imply that

3 : T+ Fr+8g
(5.6) Cy [M () |dw = GTW —Y = e W:
Yiio0log Py 0
which proves the theorem.
References

[17 1. K4tai, Comparalive theory of prime numbers (in Russian), Acta Math, Acad.
Sei. Hungar. 18 (1967), pp. 133-149.

[2] — On the Q-estimation of the arithmetical mean of Mébius funetion (in Hungarian),
Magyar Tud. Akad. Math. Fiz. Oszt. Kozl. 15 (1865), pp. 15-18. .
[3] — 2 theorems for the dislribution of prime nuwmbers (in Russian), Ann. Tniv.

Sci. Budapest. Edfvos Sect. Math, 9 (1966), pp. 87—9:%. i )
[4] — On oscillations of number-theorelis funclions, Acta Arith. 14 (1967), pp. 107-
122, . o
(8] 8. Knapowski, On ihe Mobius funclion, ibid. 4 (1958), pp. 209-216.
[6] — Mean-value estimations Jor the Mabius function I, ibid. 7 (1961), pp. 121-130.

icm

Oscillatory properties of M{z) = > pin), 1

gL

55

(7] 3. Enapowski, Mean-value estimaiions
Arith. 7 (1962), pp. 337-343.

[8] — Omn escillations of eertain means formed Sfrom the Mibius series I, ibid. 8 (1963},
pp. 311-320.

{87 H.J.J. te Riele, Compulations conserning the Mertens conjecture, J. Reine
Math. 312 (1979), pp. 356-360.

f10] P. Turdn, On the remainder term of the prime number formula I, Acta Math.

Acad. Sel. Hungar. 23 (1951), pp. 48-63.

Jor the Mibius fumction II, Acta

Angew.

MATHEMATICAL INSTITUTE OF THE
BEUNGARIAN AGADEMY OF SCIENCES
DBudapest, Hungary

Feceived on 28.10.1980

and in revised form on 9.3.7981 (1229)



