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Let K/Q be a finite extension, Ry the ring of integers of K and @
a primitive element belonging to R,. The index of the subring of Rg
generated by 0 in the ring Ry we shall call the index of § and denote by
1(0). Obviousky

(1) d(0) = (0,

where 4(8) is the diseriminant of 8 and d,- the discriminant of K.

The greatest common divisor of indices of all primitive integers of
K is called the nonessential diseriminant divisor of K and denobed by i(K}).

Let p be a rational prime and f a positive integer. Denote by g(f}
the number of prime ideal divisors of p in Ry which have degree f and
by #(f) the number of jrreducible pelynomials of degree f over the field
of p elements.

B. Dedekind ([5]) showed that p |4(K) if and only if there exists
an f such that

g{f) = s(f).

From thig criterion it follows that if » | i{H) then p <« [K: @], and, as
shown by M. Bauer {[11), it p < » then there exists a field X of dsgree
# such that p | (&),

Obviously, if By = Z[0] with 0 e B, then i(K) =1. K. Hensel
{[10]) Lias constructed a form (called the indicial form of K) of degree
a{n—1}/2 in » —1 variables (where # = [K;@]) such that the set of the
modnli of values attained by it as the arguments vary independently
over Z forms the set of all indices of integers of K.

Using this same approach, M. Hall, Jr. ([9]) proved that I (K)

= mins(0) is unhounded as XK ranges over all cubic fields.
teR v
If 8. Dummit and H. Kisilevsky ([6]) investigated the values of

I(K) for cubic cyclic fields. They proved that I(K) is unbounded as K
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runs over the set of cubic subfields of the Ith cyclotomic fields, where
{=1 (mod 3) is prime, and that there exist infinitely many cubie eyelic
fields K with I(K)=1. They compnted also the value of I(K} for many
examples of cubic fields.

The same subject was considered by M. N. Gras ({8]). She gave,
again in the c¢yclic cnbie case, a criterion for I(K) to be 1 in terms of solv-
ability of some diophantine eguation.

The minimal number of generators needed to generate Ry over 7%
was determined by P. Pleagants ([13]). To formulate his result we have
to infroduce some notations.

It ¢ = p* let =(q,f) be the number of irreducible polynomials of
degree f over a finite field with ¢ elements, For any prime ideal p of By
dividing p, denote by m, the minimal m such that

7 N gyo (p™), degp) = g(degp)

and let
(2) My (K) = maxm,.
»ip
Obviously m, =1 for all but a finite number of p’s. Now put m(K)
= maxm, (K).

» .

Pleasants showed that the minimal number of generators of By is equal
to m(K), unless m(K) = 1, in which case two generators may be needed.

From this result it follows immediately that

PO i(K),

but m, (K) —1 need not be equal to %, (K), the highest power of p dividing
i(K).
In this paper we shall study #,(K) under the assumption that ail
prime divisors of p in Ry are unramified. :
The best result in this direetion was obtained by H. T. Engstrom
([7]). One of his results states that if p splits in K then this maximal
power equals

|5+
7 p™
g 2]
( -~ -,p???: p . 2
where # is the degree of the extension K/Q.
He confirmed also the conjecture of 0. Ore ([12]) that x,(K) is in
general not determined by the prime ideal decomposition of p. .
However, from our result it will follow that if P is unramified in A
then s, (K) depends only on the form of the decomposition of p. Engstrom
has ‘conjectured that x,(K) attains its maximal value it P splits in K.
We confirm this-conjecturs under the restriction that p 18 unramified.
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A. A, Sukallo {[14]) investigated the case in which

PRy =9t .. 98, k>, degp,=1for i =1,...,Fk,

and proved that if e,z e, >... > ¢, and 8, T, R are determined by
n
8= e, [K:Q]=S8T+R (O<E<A&),
f=21

then s, (K) = $8T{T -1} +1IR.
Tor other results connected with this subject see [2], [37, [4], [15],
[16]. ‘
All the facts nsed in the paper and most of the common notations
c¢an be found in [117.

1. Let p De a fixed rational prime and £, the maximal unramified
extension of @,. £, is the composite of all @,(L,,) with p + m, where £,
denotes the mth primitive root of wnity. In the following » will stand
for the additive valuation of £, normalized by »(p) = 1. For any positive
integer f we denote by L; the unique subfield of O, of degree f mver‘Qp
and by E; the ring of integers of L,. Thus L, = @, ({,r_;) and tye exten§10n
I;/Q, is oyclic. We shall denote by &, the Galois group of this extension.

If we put

Ay ={yeRp y =y,
then 0 e 4, and 4; is a set of representatives of B, mod p&; because each
nonzero class of R/pE, contains the (pf —1)th root of umity ([113, Cor-
ollary 2 to Theorem 5.3). Hence every element o € R, can be uniguely rep-
vegented az the sum of a convergent series

a = E ™ Vm €4; ([11], Theorem 5.1).
m=0

If o & G, then o(4,) = 4, and if f" | f then 4, = Ay. Observe further thab
j.f @ ERfl an2 &ﬂd .
a= 3 pn = X

m=1{ =) )
with y5) e A, 95 €4y, then

7"1(1]1..)::?}!(?21) fo:[‘ m=1,2,...

We shall denote the unigue y,, €4, in the expansion of a by i, ()

. Ml . .
and let s, (a) denote the sum 3 %(a)p". .
i=0
From & previons remark it follows that if a € Rf then t,{a}, s, () do
not depend on the choice of f.
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Further, we have
(1.1) T(_fm(a)) = tnz(T(a))

for refand m=0,1,2, ...
Indeed, a8 8(a) = a-+p Sk(T(a)) = t{a)+pty, with y, 9. e Ry,
we have

{1.2) (s (a)) —s.(z(a)} € D*R,.
Assume that for given «¢ e K, v €@, (1.1) hold if m < M. Then

7(8202(@)) — Sz (1)) = ¥ (ftsy (0)) —tar(7(a)})
and so by (1.2)
r(tﬂ(a)) = iﬂf_r(a:)) (mod p).

Both gides of this congrnence belong to 4, and so it holds if and only
if they are equal.

Let p(x) e Z,[x] De an irreducible unitary polynomial of degree f,
such that its root o generates L, over Q,. Any such poiynomial will be
called unramified.

For m = 1 we shall write ¢, , (¢} for the minimal polynomial of s, (a).

If 5 is another root of ¢(») then ¢ and § are conjugated and so are
8, (a) and s, (8) (this follows from (1.1)). Hence ¢, , (¢} = @y s (®). There-
fore to each unramified polynomial ¢ (2} and a positive integer m we can
attach a wnique irreducible polynomial ¢, (%), starting with any of its
roots.

Letf:

(1.3) Gyla) = {0 ey o(a)= a(mod p™)} = {0 €y spu{0(a))= s, (a)}.
Then

e lt) = ” (w—r(sm(a))) = [@—=(a))(mod p™)

16/, () TeCypiGl, (a)
and hence

(14} Pl@) = gy (2)°m N (mod p™).

Denote by @(m, f) the set of all minimal polynomials of s,, () for a e Ry
It is o finite set and can be written as a disjoint union
D(m, f) = JBy(m, f),
daif

where D4(m, f) consists of those polynomials in @(m, f) which have degree
d. Obviously ®;(m, f) is the same for all f divisible by d; hence we shall
denote it by @;(m).

With each y e §;(m) we associate the set of all its roots, and counting

On the nonessentiol discriminani divisor 61

the number of elements in Rf/mef we arrive at

P = N di®y(m
£
thus

Sutm) = 3 i,
AT
This la.st number i3 obviously equal to =(p™, d) — the mumber of irre-
ducible polynomials of degree d over the field of p™ elements.
Let W{(m, f} be the subset of @(m,f) consisting of those polynomials
whose reduction mod p iz irreducible over ZjpZ. Obvicusly

Fim, f} © Pe(m).
The elements of ¥{m, f) correspond to those « € B, for which ¢, {a) gen-
erates Ly over Q.

If poe®@(m,f), . @ f), m<k and @.(8), p.(®) are minimal
polynomials of s,,(a), s;(a) with the same g, then we shall say that ¢, ()
iy an extension of ¢ (®).

Observe that o each @(z) e ¥(m,f) there exist exactly p’ elements
of ¥(m+1,f) which extend (o). This gives

¥ (m, f)| =" Va(p,f).

2. Let K/ be a finite extension and p a rational prime nnramified
in £ and let

(2.1) PRy =p1.- Py Qegpem =f =10

If a € Ry is such that K = ¢(a} and f(#) is its minimal polynomial, then
Ji{z) factorizes in Z,[x]: _

(2.2) : fle) = o (o} .. g, (@)

where g,(x) are unramified and deg ¢; = fi. For ¢ =1,...,g and m>1
we can write _

{2.3) @; (%) = @ p (@)%m{mod p™)

dege;

deg‘pi,m
=1 and ¢; ,(¥) # ;. (@) for 1 5= j, it m is large enough,

THEOR]:M 1. The mawimal power of p dividing the discriminans of a is
equal to

Observe that

with unique ¢, (w) e ®(m,f) and a, =

e iy G
3 Mo =)+ 3 3 imethisd,
T=l p==l i<j i=1 B

where m, == max{m: a;,, 7 1}, My = MAX{M: Py (@) = @y (@)}
Proof. We shall need two lemmas.
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Leanra 1. If (o) € Z,[2] is wnramified of degree f and
() = gy (@) m(mod p™)  with (@) € B, f),

then the maximal power of p dividing the discriminant d(p) of p is equal to

> fle,—1).

Proot of Lemma 1. Let a e L; be a root of p{x). It is known that
(2.4) p) = =Ny, (#'(a)),

where ¢'(z) denotes the derivative. of ¢(z). Putting.

1 = max {i: I‘Gi(a)] 7 13

where ((a) are defined as in (1.1), we have

i1

ofg (@) = (o(a)—a)) = 3 v(o(a) —a) -+
aec!f\{l} §= 1 veliilay NG 4 1a) -
uE 2 )—a + y ( a)ma)
it (e} aeGg(a)\{l}
-1 R
— X165 ()] =16, (a)]) +H(16, | —1) (16(a)| 1)
F=1 j=1

Now (2.4) and (1.2) give the assertion of our lemma.
Lexwa 2. If (%), s (2) € Z, [2] arve unromified of degrees fy, fy respect-
wwely, C :

7 (®) = gy (@) *bm(mod p™), i =1,2, m>1,

with %m(w) E@ 7.]‘:.‘,) and M = max{m 1, m( ) = Pam (%‘)}, ﬁb@ﬂ the
mazimal power of p dividing R((pl, @), the resullant of ¢, and ¢, i3

cqued to
Zalma"mdegWIm fl Zaﬂm“‘f Zatm
mesl
Proof of Lemma 2, Assnme first that dege, = dege, = f. Lot
a, f € L, be roots of g, @, respectively. Put

B, = {r el a = v(f)(mod p™}}
and obgerve that B,, = & or else is a coset of @ with respect to G, (8).
The case B,, # @ occurs if and only if there exists a v €, such that
S (0) and 8, (z(8)) = v(s,(f)) are equal, e.g. when ¢, , = ¢,,,. Hence
| Byl o=ty for m =1,2,..., M and |B,| =0 for m> M. We have

= N0, ( !ng[a —1:(,6))) .

Blpy, @)
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Proceeding as in the proof of Lemma 1, one gets

a2 A
'D( H[a"'r(ﬁ))) = 2 2 Z o
=iy =1 'EBm\Bm-i-l fim=1
hence
ﬁ;; ar 2
(2'5) ’U(R(%: 992)) Ef_z, a‘!,m = fEaI,m = 2 al m .‘,mdegly’l L

m=1 Hm=1 m=1

The above equalities hold since in our case
f _ I
degpy,  degg,,

A = 2,10

Now we turn to the general situation. Put ty, = Uegw, ,, = degep, .
andlot a = a®, o, ..., o™ be the roots of ¢, (x), ordered so that $3r(a®),
820 (2®h), .. su(a‘ U’) foun the set of all roots of ¢, y{2). Do the same
with the root: BY, ., YD of ().

Let ¢, ¢, be dlstmet elements of #({M +1, 1,,), both bem.g extensions.

of ¢, 1y = g -
Obsewe that

([ B{g, %)) = 'D( H (a® _ﬁ(}'}))

15558
f f . . r 1
] (a —g)] — L oimig, o).
tar Ty

tar Ty 1<ty
As g and ¢, have equal degrees, we can apply (2.5) to determme o[ B{p;, ¢1))-
We have , }

(p;,m = ?J;,m

_ _ . ' r '
=Prm =P for m=12,., M, P11 7 Po et

and

q:;_“r»mf“tﬂ for 4=1,2and 1< m< M.

1
Tarther, we have

Ji =14, w1 ,me fzmtma'z,m-

So (2.5) gives us

f1 T < a. é
QJ(_R(Q;“ 992)) :_.1__2,2 T Y2m deg(p;,m

bar b & @ ar Gy
1S M M
= S 01 iy n 308, = fo E Oom =fs > &y i
m=1 . me=1 m=1
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TUsing the Lemmas 1, 2 and the formula

o) =f1d(%) X

we get the assertion of Theorem 1.

As p is unramified in K, we have p + dg. Hence formula (1) implies
that x,(K) is equal to the minimal value of 3v(d(e)) when o Tuns through
prmntwe clements of Br. Observe also that if m 2 my,(K), where m,(K)
is defined ag in (2), then there exists an « ¢ By such that the leynomm.Is
Py .05 P, COTPESPODding to it in (2.2) satisfy

B (g, %)2;

l<i<f=o

my, mg<m for 4§ =1,2 ..,0.

An easy argument shows now that the minimal value of 'u(d(a)) iz attained
at one of those integers a.

Let p, g, fiy ..y fo be as in (2.1).

LEwMA 3. If m is @ positive integer and v, s @(m, f;) for i =1,..., 0
then there exists an « € Ry such that if its minimal polynomial f(x) has the
factorization (2.2) in Z,[x] then

@; (@) = y;(2)"(mod p™)
where
o, = degg;jdegy; and (=1,...,0-

Proof. Let o; € Ly, be a root of (). Choose first y e B sueh that
5 = p{modp™) for ¢ =1, ..., ¢ and then a generator a of the extension
K@ in the form y4p™0 w1th 6 € Rg. One easily checks that a has the
required property.

COROLLARY 1. If p is unramified in K[Q then x,(K) depends only on
the type of faciorication of p into prime ideals in R

The proof immediately follows from Lemma 3 and Theorem 1.

3. Now we shall give an upper bound for x,(X), which in many
cases iz the best possible and is strong enough to prove Engstrom’s con-
jecture mentioned in the infroduction.

A primitive integor o of K will be called absolutely primitive if each
polynomial g, . cmresponding to it aecording to (2.3) belongs to ¥{m, f;)-
This means that all a;,,’s are equal to 1. Put

w0, () = min {x,(0): 8 — absolutely primitive in Ry},

where x,(8) = ko(d({0)).
Obvicusly
{3.1) #y (K) < w0, (K).

Write

On the nonessential discriminent divisor 65

THEOREM 2

- If p is a prime unramified in K)Q then
[ elf) ] L
Zf [ ]{ (f)—s s(fm.,gf }

where o(f) denotes The number of prime ideals dividing p which have degree
foand s(m, f) =p*Vap,f).
Proof, If # is absolutely primitive then Theorem 1 gives
mij

50 =2 3 D)

i<j m=1
where my; = max{m: @, = @ .}
Obviously for f; #=f; the equality ¢,, = ¢;,, cannot oceur. Hence

we can write
= M A(f)
¥

where
(3.2) Afy =1 > my.
i<i
==

For a given f let o(f) be the number of ¢, () in (2.2) which have degree f
and let

Fe(w) = n o {2)

iLfi=r

Fy(@) = Via(®) ... Voo (#) (mod p™)

where ¥, (%) are distinct elements of ¥(m, f) and s(m, f) = |¥(m, f)|.
From (3.2) we obtain '

M stm,f)

1 RS
A(f _?fz az,m £,
d m=1 f=I
where
M = min{M: UL = liori=1,2,...,8(m,[)}.
Because .of
8(m.1)
o e D) i = alf)
ey |
we get .
o B sm.f)
(3.3) 24(H)HeNM =5 3 > o,
: . m=1 fz=1:

5 — Acta Arithmetica XLIE1
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To obtain the minimal value of 4 (f) we shall need the following obvions
lemma.

Levoaa 4. If @y, ..., 8, ave nonnegative integers with o, +...F@, == 4,
then the minimal value of #i+... 4+ is altained for m; = [A[s]+ 8, where

g
6, =0 or 1, and S’ 8 = A—[4]s]s.
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s, f)
Using Lemma 4 we find that the minimal value of 2 o} ,, under the

restriction

slm.f)

D) G = olf)

f==1
is attained for any system {a;,} such that

e{f)
. = d;

(3'4) az‘,m [ s(m,f) ] + {,m

where &,,, =0 or 1 and
s(m,f)

~ olf)—stm. )| 22 |.

i=1

Now (3.3) gives

6o A= D[ BN etn—sim,

To end the proof of Theorem 2 it iz now enough to show that there exists
an abgolutely primitive #§ € B such that for every f the two sides of (3.5)
are equal.

Because of Lemma 3 it suffices to prove that for every f there exists
a § such that there is an equality in (3.5).

Leamva 5, Let M be a given integer and a system of nonnegative integers

[ o(f)

M—mfjﬁ']ﬂ }

{;
(ri™ ))m;mgM,lgkgs(mJ)
such thai

. 1618 5]
(3.6) D =)
k=1
and .
pf
(3.7) My =00 for mo=2., M, k=1 .., sm~17).
i=1 '

There exisis an absolutely primitive 0 € Ry such that for the polynomial
F(x) corresponding to it one has '

(m)
Pylw) = Vf""(wrﬂ’“’ T (@) S (mod g™,
with distinet VN z m,f), for m =1,..., M,
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Proof of Lemma 5. In view of the diseussion given in Section 1 and
Lemma 3, it suffices to construet s, ..., Yoty € By such that for every
1 <m < M, the elements

m (?ti): 8 (?’ti+1): riey B h’#;%—"g(m))?
where
£ - { 0, i i=1,
F M L ™, i =28, .., 8(m, ),
have the same minimal polynomial ¢, ,, € ¥(m, f), whﬂe Prom 7 Pjan TOT £ £ Fo
This can be achieved by an easy recurrentizl argument using the
properties (3.6) and (3.7) of the system (™) and the fact that each poly-
nomial of ¥(m,f) has exactly p/ extensions in ¥(m+1,f).
Now we shall show that one can determine d; , Such that the system
defined by (3.4) satisfies the assumptions of Lemma 5.
Buppose that we have done it already for & < m. Becanse of

e(f) ] ,«[ e(f) ]
5 _ —|-t5. _ < 7
[s(m—l,f) P em, By S P
we can now determine §;,, such that
»f
2 Ae—1)pl+1sm
F=1

_ Pf[ el

3 (f)
= ey
h ] “}‘; Se—3yplgim = [ Sm—1,7) ] Ot mets

for k =1,2,...,8{(m—1,f).
COROLLARY 2. If p is unramified in K then x,(K) attains its mazimal
value when p splits.

Proof. Because of (3.1) and (3) it is enough to show that for every

mz=1
o(f)
[s(m,f) ]“

;f[ s(fg)f) {Q(f)“S(m,f)mW}
.
=< [i]{%:bpm_[ﬂli}-

" 2
Observe that
% .
n [
. M : _ 2
o [ e EERED

i=1
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and
elf) ]
+1 g(m, 1)
o) 1/ ;¢ L“M__\ _ e
[s(m,f)]lﬁ(f’ s )T T zg(f)+2; 2,(f)

2™ s(m.f)
where #;, @;(f) are determined so that they minimize >ai, 3 w(fy e

i=1 =1

spectively, under the restriction thatb

2%‘=”?’: Zmi(f}zé(f)-

To end the proof note that Y fo(f) = » and that fs(m, f) > p™ holds for
overy f, m. 4

Remark. Using Theorem 1, one eagily finds that the diseriminant
ot Fy(z) (defined as in the proof of Theorem 2) is divisible at least by p
in the power
PIM(J‘) -1

S -H(),

fat|
where M (f) = max{m: p™ < fo(f)}
This gives

1 P01
%, (K) = nge(f)(Tn“l— —M(_f))- :

This evaluation seems to be close to the bést possible in the case where
all prime ideal divisors of p have the same degree. ’

4. We are not yet able to give a closed formula fox #, (K), but, given
any field K, Theorem 1 allows us to determine its value. First, we should
find the minimal value of the expression appearing in Theorem 1, under
the obvious restrictions. Then it is enongh to check if there existz a 6 € By
which realizes this minimum. Aftér checking several cases we are led to
the conjecture that this minimum can always be realized.

Engstrom in his paper gave a table of values of »,(K) for K with
a degree not exceeding 7. As an example of the application of our method
we have determined the value of s, (K) for 8 << n < 12, in the case where
p is unramified. In the following table only those types of factorization
are listed for which x, (&) # 0 for p = 2, 3, 5, 7. There is one more prime
p for which x,(K) = 0 can ocour if [K:Q] < 12. Namely s, (K) = #;;,{K)
=11if [K:Q] =12 and 11 splits completely in K. If », 7 », for some p
then we give in brackets the corresponiding, value' éf .

" pBg =pi...Pp  degp =f.
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Degree | Type of decomposition of pEg 2 3 5 7 }
of field fys fas weenJal % % %y %
1 2 3 4 5 6
8 [11111111] 16 7 3 3
[2111111] 8 3 1
[221111] 3 (4) 1
[22211] 5 (6)
[2222] 4(12) | 1(2)
[3111113 5 2
[41111] 2 1
[5111] 1
[3221] 1(2)
[32111] 1
[422] 1(2)
9 [111111111] 23 8 4 2
[21111111] 12 4 2
[2211111] 7 2
[2221311) 8 (7)
[222217 6 (12} 1(2) {
[3111111] 8 3 1 !
[83111] 1
[333] 3
[321111] 2 ]
[32211] 2 i
[3222] 2(8) :
[411111] 5 2
[42111] 1
[4221] 1(2)
[51111] 2 1
[522] 1(2)
[6211] 1
i0 (1111111111 30 18 5 3
[211111311] 16 7 3 1
[221112111)] 10 3 i
[2221111] 8 1
[222211] 8(12) | 2(4)
[31111111] 12 a 2
[331111] 2 1
[3331] 3
[3211111] 5 2
[322111] 3
[32221] 3 (6)
[3322] 1(2)
[4111111] 8 3 1
[421111] 2 1
[42211] 2
[4222] 2 (8)
[43111] 1
[511111] 5 2
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Pl 2 B 4 5 8
[62111] 1
[a221] 1(2)
[61111] 2 1
[622] 1(2)
[7111] 1

11 [11111111111] 43 17 7 4
[2111111111] 23 9 4 2
[221111111] 14 4 2
[22211111] 11 2
[2222111] 9(13) | 2
[222221] 19(22) | 2(4)

[811111111] 16 7 3 1
[3311111] 5 2
i [33311] 3
[32111111] 8 3 1
[3221111] 7 2
[352211] 5 (6)
[32222] 4012) | 1(9)
[332111] 1
[33221] 1(2)
[3332] 3
[41111111] 12 4 2
[44111] 1
[4211111] 5 2
(4221113 3 3
[42221] 3 (6)
[431111] 2 1
[4322] 1(2)
[6111111] 8 3 1
[521111] 2 1
[52211] 2
[5222] 2 (6)
[53111] 1
[611111] 5 2
[62111] 1
[6221] 1(2)
[71111] ) 1
© [722] 1(2)
[8111]

12 [111111111111] 48 21 9 5
[21111111111] 30 13 5 3
[2211111111] 18 7 3 1
[222111111] 14 3 1
[22221111] T(14) | 3
[2222211] 12(22) | 3(4)

[222222) 14.(34) | 3(6)
[3111111111] 23 9 4 2
[33111111] 8 3 1
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[833111]
{33331
[321111111]
[32211111]
[3222111]
[322221]
[3321111)
[532211]
1332221
[33321]
(4111111117
[441111]
[42111111]
42211113
[422211] 5 (6)
[42222] 12y | 12
[43111117
[432111]
[43221]
[51111111]
[5211111]
[522111]
[52921]
[531111]
153221
16111111]
16211113
[62211]
[6292]
[83111]
[711111]
[72111]
[7221]
[81111]
789227
[9111]
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Some new estimates for (%) in Waring’s problem
by

K. THANIGASALAM (Monaeca, Penn.)

1. Introduction. In a recent paper [3], some new estimates were
obtained for G (k) when & > 9. In this paper they will be improved a little
turther. For large & the method does not give significant results.

THEOREM. ((9) < 88, G{10) < 104, G(L1) < 119, G(12) < 134, G(13)
= 150, G{14) << 165, G(15) < 181, G(16) < 197, G(17) < 213, G{18) < 229,
G(19) < 245, G(20) < 262.

When & =8 the argument gives G{8)< 73 which is the same as
that obtained by Davenport’s method.

Ag in [3] we take

) 2P = NV, P, = ]/f, g = PE-1+

where N is a large positive integer and & is a small pogitive constant.
Let
1

2 =
(2) 7 5% 1’

-Pl =Pé_q; Pz “Péﬂa

let % denote the set of numbers 4% of the form

By
w= Y
§=1 '
with
(3) Pi < u < 8,25PF,
and let
(4) , = card #%.

Suppose further that £ is the set of primes v with

(5) - <o <ET



