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Some new estimates for (%) in Waring’s problem
by

K. THANIGASALAM (Monaeca, Penn.)

1. Introduction. In a recent paper [3], some new estimates were
obtained for G (k) when & > 9. In this paper they will be improved a little
turther. For large & the method does not give significant results.

THEOREM. ((9) < 88, G{10) < 104, G(L1) < 119, G(12) < 134, G(13)
= 150, G{14) << 165, G(15) < 181, G(16) < 197, G(17) < 213, G{18) < 229,
G(19) < 245, G(20) < 262.

When & =8 the argument gives G{8)< 73 which is the same as
that obtained by Davenport’s method.

Ag in [3] we take

) 2P = NV, P, = ]/f, g = PE-1+

where N is a large positive integer and & is a small pogitive constant.
Let
1

2 =
(2) 7 5% 1’

-Pl =Pé_q; Pz “Péﬂa

let % denote the set of numbers 4% of the form

By
w= Y
§=1 '
with
(3) Pi < u < 8,25PF,
and let
(4) , = card #%.

Suppose further that £ is the set of primes v with

(5) - <o <ET
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Then, as in [3], we fake

{6) Qla) = D' > elap*u).

pe® ue¥d
Torl<a<y (a,9) =1, g P, let
{7) M, = {o: la—algl < g7}
denote 2 basie interval and write m for their union and
(8) m o= {z7, L7 an
for the supplementary intervals.

2. Estimation of § () over m. The method is generally as in [3] except
that Lemmas 1, 2, 3 are replaced by the following lemma.

LEsia. Suppose that a = ajg--p wilk (a,q) =1, < 2(2X), |B]
< 17 (2X)"* and suppose further that if ¢< X, then |8 > ¢ X' ~*Y .
Then

Qula) = D) byo(an®y)

X<parX ya¥
satisfies
Qola) < TIT+X42( 3 (b, 12)"
y<F

Proof. When (b, ¢) = 1, the congruence #* = b (mod g} has < ¢
solutions modulo ¢. Thus the primes p in (X, 2X)} can be divided info r
classes Py, ..., P, with r < ¢ such that if p, e, p,ed;, then pf
= p¥ (mod ¢) if and only if p, = p, (mod g). Hence

= X, Dle(ap’y)

y<¥  pedy

Q@) = D' Q5(a), @(a)
Fe=1

and it suffices to obtain the corresponding result for ¢,. By Cauchy’s

inequality,

) Quar<( 3 iylr) 3| 3 etap'y)|
y<F ¥<¥  ped;
< 31,2 )(YX+ > 3 llalpf—pBI).
v Piﬁjé?;yg

Note that for p, €2, p, € #; one has

(10) 1811 2F—pF | < $g.

If there are any terms in (9) with 2, 7 Day p¥ = pF (mod q), then p,
= p, (mod ¢) and ¢ < X. Hence

[lex 131 *"Pz)i = ]ﬁ(?l “Pz” > ¢ Y g —p.l.

icm
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Thus the contribution from such terms is

PYEHPES

jlceg .'DEQ‘ hsﬁl,’q st

Tt remains to consider those p,, p, with p, = p, (mod ). By (18),

la(pf —ph)l = 3 a(pF —25)/q .

Sinee the number of solutions of pf —pF = L is < X* when % = 0 it follows
that the contribution from these terms ig

< DIyt > Iabjgit < D b, BXF+e)(Xa)

y<E Ri<Ex)® yer
oth

Collecting the estimates together gives the lemma at once.
3. Outline of the methed. Suppose that
(11) 7, > (P,

Then it follows at once from the above lemma that

(12) Q(a) €Q(0) N°M (gem),
where
1 1 1 1

13 6 =—(1+—— ] ——@L-p)|1— .

(13) 4k( + %—1) i ”1)( 215—1)

Then, as in [3] (cf. (58)), provided that

1 1 1 i

14 ——(1— 1— 41 >1

14 ra g ”l)( 2%1)'4}:(427%-1)

for suitable s,, s, with,

(15) 0,0 » ¥,
k ! 81 i 4! & 3z l Vs 285 18y
10 32 0.97062 38 0.980953 104
11 35 0.96831 42 0.98395 119
12 40 0.972075 47 (.984914 134
13 46 0.976871 52 0.985704 150
14 49 0.975501 88 0.987439 165
15 55 0.979078 63 0.98796 181
18 59 0.979249 69 0.989125 197
17 65 0,981754 74 0.9809432 213
18 71 0.983719 T8 0.989608 C229
19 73 0.981787 86 0.990962 245
20 80 0.984209 91 0.891053 262
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one obtains

{16) G () < 28,81

For k=10 the method of [3] enables sy, 83 y1; 2 t0 be found, as in the
table above, that satisfy (14) and (15). This gives the theorem for % > 10,

4. The case & = 9. For k = 9, it scems necessary to nge Theorem 4
of [1] also in the estimate of U,(9).
Starting as in [3] (using (42) of [8]), we have

17 U,(9) » N2 where  o®(9) > 0.591135.

Kow consider Theorem 4 of [1] with & = 9. With the notations in the
theorem, we can consider the following cases:

= 1 1
9%  (8-46) (L-4)
St =Ty T
1 1
(b)z=6,0<6<?j1—“—*“§§‘—
9la (8+T7)  (A--4)
Ob-gr =~ T

Tn both cases, it is easily seen that the number of solutions s of

mg ‘3‘?9“% — yg +p9uj

i3 < PUH-P.
Now it can be deduced in a standard way (asin [1]) that if Uy9)
> N°~%, then U,,,(9) » N°~° where

1-+92a
(18) g = 5
In case (a), we can take
55 ~T2a 8+6 600 55
T —————e—— —_ — —_— s
(19) S =mea’ T 9 I e <t

(to ensure 0 << § << 1/16}.
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In case (b), we take

64 —T2 845 1480 8
20 § = —e A=
(20) 568 -9 " g T Ggmte<y

{to ensure 0 < § < 1/32).

{19) and. (20) respectively give the estimates (using (18))

280 +2
(21) 8> i { 8042304 ’
9 28049«
(22) ﬁ?i{ 568 --4617a
9 568 -9a

Starting with (17), we use (21) twice and then (22) thrice to get

(23) 2™ (9) > 0.78095.
R 127 41025
Now we use (54) of [3] namely A= ﬁ repeatedly to get
(24) a9 (9) > 0.96180,
{23) a0 (9) > 0.97959.

It should be noted that Theorem 2 of [1] i1s used 19 times to estimate
a®)(9) from o¥(9), and this provides sufficient nuraber of terms to deal
with the basic intervals. The use of Theorem 4 of [1] (up to «"?(9)) gives
rise to exponential sums of the form

2 2 elapta®), 3 3 de(apte'a), ..., (P, -.- being primes)
» =z n ¢

for which the standard approximating fanctions do not apply. From (24)
and (25), we sec that condifion (14) iz satisfied with s, = 26 and s, = 31.
Hence

G(9) < 2{(31)4+26 = 88.

5. The case & = 8. It is possible by the methed of thiz paper to
reegtablish the known bound ¢(8) < 73 (obtained by Davenport’s method).
Following the computations in {2] (end of chapter IX), we have by using
Theorem 2 of [1],

U,(8) » N*®-*  where o (8) > 0.73318.

Now using f= 1|63 +44%a }
s b= 8 { 634« :

™ (8) > 0.95434 and &9 (8) > 0.97827.

e gel
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{Use of Theorem 4 of [1] does not give significant improvements.) Taking
8, = 21, 8, = 26, we see that condition (14) is satistied, so that

G(8) < 2(26)+21 = 73.

Acknowledgment. The anthor is greatly indebted to the referee
for making many important changes. He in fact, rewrote § 2 of the paper,
avoiding complicated arguments given by the author.
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Semigroup-valued multiplicative functions
by

ImrE 7. Ruzsa (Budapesh)

Concepts and notations. The following concepis and notations wilk
be used thronghout the paper without any further reference

N: the set of natural numbers,

arithmetical function: any function whose domain is N,

G-valued function: any funetion whose values lie in .

multiplicative function: an arithmetical function f, on whose range
an operation, written multiplicatively, is defined, and which satisfies.
flmn) = f(m)f(n) whenever (m,n) = 1.

For & G-valued multiplicative function, where ¢ is a gemigroup,
we shall use the term: G-multiplicative function.

An arithmetical function is completely multiplicative if it satisfies
the above functional equation for all, not necessarily coprime pairs of
infegers.

An arithmetical function f is strongly multiplicative if it is mulbipli-
cative and satisties f(p*) = f(p) for every prime p and natural number k.

p always stands for a prime mumber.

i denote saum, resp. product over primes.
ey
The asympioiic density of a set A of natural numbers is defined by

@Ay =limaz™ | A n [1, 2]}
if this limit exists. e :
The logarithmic density is defined by
d(4) =lim(logz)” 3 a7
x>0 o<, 0ud

if it exists. Taking the limit superior in the above formula we obtain the
upper logarithmic demsity, denoted by dlsupd.
G < @, among groups denotes that & iz a subgroup of &,.

1. Introduction. In a sense this paper is a continuation to my paper
General multiplicative functions, [3], to which T ghall refer as GMF, bub
the reader is not supposed to have read it, every concept and result needed
will be restated.



