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{Use of Theorem 4 of [1] does not give significant improvements.) Taking
8, = 21, 8, = 26, we see that condition (14) is satistied, so that

G(8) < 2(26)+21 = 73.
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Semigroup-valued multiplicative functions
by

ImrE 7. Ruzsa (Budapesh)

Concepts and notations. The following concepis and notations wilk
be used thronghout the paper without any further reference

N: the set of natural numbers,

arithmetical function: any function whose domain is N,

G-valued function: any funetion whose values lie in .

multiplicative function: an arithmetical function f, on whose range
an operation, written multiplicatively, is defined, and which satisfies.
flmn) = f(m)f(n) whenever (m,n) = 1.

For & G-valued multiplicative function, where ¢ is a gemigroup,
we shall use the term: G-multiplicative function.

An arithmetical function is completely multiplicative if it satisfies
the above functional equation for all, not necessarily coprime pairs of
infegers.

An arithmetical function f is strongly multiplicative if it is mulbipli-
cative and satisties f(p*) = f(p) for every prime p and natural number k.

p always stands for a prime mumber.

i denote saum, resp. product over primes.
ey
The asympioiic density of a set A of natural numbers is defined by

@Ay =limaz™ | A n [1, 2]}
if this limit exists. e :
The logarithmic density is defined by
d(4) =lim(logz)” 3 a7
x>0 o<, 0ud

if it exists. Taking the limit superior in the above formula we obtain the
upper logarithmic demsity, denoted by dlsupd.
G < @, among groups denotes that & iz a subgroup of &,.

1. Introduction. In a sense this paper is a continuation to my paper
General multiplicative functions, [3], to which T ghall refer as GMF, bub
the reader is not supposed to have read it, every concept and result needed
will be restated.
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Tn GMF the local distribution of group-valued multiplicative funetions
has been investigated. The main result asserts that for every Abelian
croup @, g € G and G-multiplicative f the sequence e = {n: f(n) = ¢}
has an agymptotic density (Theorem (1.4)), and it was peinted out that
this does mot hold for semigroup-valued functions in general (Theorem
(2.2)). The counterexample was based on Begicoviteh’s consfruetion [1]
of a seguence 4 which is & multiplicative ideal (i.e. if it contains a numbe}',
then it contains all its multiples as well) and does not possess agymptotic
density. For such a sequence A a commutative gemigroup G and  G-multfi-
plicative funetion f can be constructed so that A4 = f~(g) for some gy € G.

Davenport and Erdds [2] proved, however, that these sequences
always possess logarithmic density. This result inspired the following
theorem (and plays a erucial role in its proof).

(1.1) DEFINIrIoN. An arithmetical function f is stable, if the set
fY(g) possesses an asymptotic density for every geimf. If these sets
possess logarithmic densities, f is called logarithmically stable.

TrrorEM 1, Let @ be a commautative semigroup. Bvery G-multiplicative
function is logarithmically stable.

This will be proved in Section 3.

The above theorem can be strengthened to-the asymptotic stability
for some special semigroups.

{1.2) DEFINITION. We call a commutative semigroup G stabilizing,
it overy G-multiplicative function is stable.

A result in this direction bas been alveady stated in GMF without
proof {Theorem. (2.3)). It hag the following congequence. Call a semigroup
‘@ clmost group, if G = @4 U @, where G, is a group and G, iz finite. (This
includes e.g. groups, zero-extensions of groups and arbitrary finite semi-
Zroups.) S :

(1.3) COROLLARY. Any semigroup which is the divect product of finitely
many almost groups s stabilizing.

The class of stabilizing semigroups iz obviously descending, i.e.
together with a given semigroup it contains all its subsemigroups, while
the clags occurring in the above corollary is not, neither is the class given
in Theorem (2.3) of GMT'; on the other hand, they are closed under direct
multiplication. In Section 4 we shall specify a wider class of stabilizing
semigroups which will be both descending-and closed under niultiplication.

(1.4) ProereM. Is the class of stab:iiizi%g semigrouﬁs “closed under
direct multiplication? ‘

2 Preliminaries. Here we state some definitions and auxiliary results
which will be needed in the sequel.

We shall confine ourselves to commutative sémi'gr'q.«ﬁps:wif]i;lugity
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¢ and multiplicative funetions f satisfying f(1) = ¢. Note that this is auto-
matically fulfilled if & is replaced by its subsemigroup generated by the
values of f.

(2.1) Lemma, (Theorem (1.4) of GMF.) Abelion groups ave stabiliz-
.

{2.2) DEFNITION. Liet & be an Abelian group. Call a G-multiplicative
function f concentrated, if there is a finite subgroup @, of & such that

D 1jp< =,
flp)gecr

and deconcentrated otherwise.

(2.3} LEwmnrA. (Theorem (3.10) of GMF.) Let G be an Abelian group
and . f G-multiplicative. Then either

(a) f is deconcentrated, d(f~(g)) =0 for all ge@, or

(b) f is concenirated, d(f'(g)} >0 for every g eimf and

Qi) =1.

galF

For & semigroup @&, g e@ and K < G write
g 'K ={h: helG,ghcsK}.

(2.4) DEFINITION. A class & of subsets of a semigroup @ is called
divisible, if K €, g €& imply

glK e &.

(2.5) Lrmyma. (Theorem (7.3) of GMT.) Let & be & semigroup, f, f,
G-multiplicative functions and & a divisible class of subsets of @. Suppose
moreover that

D ip<eo
T ()

(i.e. f and f, are essentially the same) and thai either f(2%) = f3(2%) for all
L oor f5(2%) = £,(2)" for all k. If the sequences fi* (K) have densities for all
K e R, then so do the sequences f~1(K). The same assertion holds for logarith-
mic density.

In GMY this was stated and proved only for asymptotic density,
but the same proof works for logarithmic density as well.

(2.6) Leyma. (Statement (1.8) of GMF.) Let § = N. The following
three condilions are eguivalent.

(a) There exists an Abelian group G, a ¢ € G and a completely G-mulli-
plicative f sueh that

8 =7"(g.

6 «— Acta Arithmetica XI.II.1
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(b) There exists a subgroup Q, of the multiplicative group Q of positive
raiional numbers ond o qeQ such thot

(2.7 8§ =qQ, "N

(that is, 8 consists of the natural numbers conlained in 4 coset of a subgrowp
of the multiplicative group of positive rabional numbers).
(c) For arbilrary 81, ...y 8400y bay .ivs 8, €8

(2.8) Htjinsi:>(ns{/ntj)es.

(2.9 Lrnta (Davenport-Erdos [27). Let @ = {g;, ¢», --.} be a sequence
of numbers and let B be the set of natural nunbers which are divisible by some
element of Q. The set B has a logarithmic density; moreover, denoting by
dy. the (asymplotic) density of those numbers which ave divisible by af least
one of Gy ...y @y we have :
dlR = limd,.

(2.10) COROLLARY. If R, is the sel of those numbers which are divisible
by some element of @ but not by any of ¢y, ..., 4, then we have

AR, +0.

Naturally, with the notation of the previous lemma we have
dlR, = dE—d,.

(211) DerFINITION. Let & be a semigroup, g a congruence relation
on ¢ and f o G-multiplicative function. By the facior-function f/o we mean
the @fp-multiplicative funetion defined by f/o = ¢of, where ¢: @ > G/p
is the canonical homcrorphism. Specially if ¢ is an Abelian group and
G < @, then we shall write f/&,.

{2.5) will generally be applied to the smallest divisible elags containing
all the one-element sets, which is

(2.12) G ={a{b}: a,b cG}.
Let g, be the congruence relation defined by

(2.13) T Y <= ax = ay.

Observe that f(n)ea™ {b} is equivalent to

f/_@a(%) = p(b1),

where @: G ~»G/[p, iz the natural homomorphism and b, is any solution
of ab, = b. Thus the existence of the density of f~(4) for all 4 @ is
equivalent to the stability of all the factor-functions f/g,. Combining
these considerations and Lemma (2.5) we obtain the following assertion.

i
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(2.14) LEMuA. Let & be g commaulalive semig: oup and let the functions
J and f, satisfy the requirements of Lemma (2.5). If all the functions fo/p,,
a €@, are stable, vesp. logarithmically s*table, men so is f.

3. The Iogarithmic stability. Here we prove Theorem 1. Assume
firgt that f is completely G-mulkiplicative. Let ge@ and 8 =f* (g
8 evidently satisfies

(3.1) Mgy Pgy Py E S = pm €S,
Now define '
(3.2) I = {t € N: there is an # e § for which at e §},

the “quotient sequence” of S,

(3.3) Lmvma, If s &8 and te, then st 8.

Proof. There is an # €8 such that »t e 8, Now apply (3.1) with
foy =Ty Ny =&, M = A

(3.4) LeMma. (a) If tl,t eT, then ti,eT.

(b) If 1, 1, e X and i |t, then /i, e T.

Proof. (a) Let & e § be arbitrary. (The ease § = @ is trivial) By
Lemma (3.3) we have

sef =tsel =1lsel,

thus t3, € I' by definition.
(b) Let s €8. By (3.3) we have ;s €§ and {5 € 8, therefore

bty = {t:8)[(1s) e T. =

(3.5) Lieaara. There exists an Abelian group G, and o O y-multiplicative
Jo such that
' = fy (€),
where ¢ 18 the unity of G
Proof. Immediste consequence of Lemmas (8.4) and (2.6). T will
be the inverse image of the unity hecause 1 eT. w
Now we proceed with the theorem. (3.3) implies

(3.6) 8T = JsT = 8.
: ses
Let the elements of § be sy, 8, ... and leb
Sk —_ 'US,:T.
i=1

Accordiﬁg to (3.6) we have 8, = 8.
{3.7) LEanta, As kb - oo,

dlsup‘(S\'S'k) -0,
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Proof. Let U, be the sequence of numbers which are divisible by
gome element of 8§ but not by any of 8y, ... 8. We show

S\Sk = U.’n'

Namely if s € §, then s is divisible by an element of 8 (by itsell). If it
ig not divisible by sy, ..., 8, then it belongs to U,. If it is divisible by
8, =<k, then sfs; el and thus

sesdl < §,.

The proof is completed by an application of Lemma (2.9).

(3.8) LEaxmua. 8, possesses asymplolic densily,

Proof. Applying the sieve formula we can express the counting
Tunction of 8§, as a finite linear combination of counting functions of
sets of the form

V=rnTo..ne,T.

(Fy.o.y Ty arve taken from among s, ..., 8.)

Henece it is sufficient to show that these sets have agymptotic densities.
According to Lemmas (3.3) and (2.6) we have T =@, n N, where @, is
a multiplicative subgroup of rational numbers. Therefore r7' = rQ, n rN,

thus
V=T = (@} 0 (N7N).
(\7:@q, being the intersection of cosets of a fixed subgroup, is either empty
or itsel a coset, say r@,. The first case is obvious, consider the second.
We have
1N =uN, w=I[r,...,7,],
hence
V =1y nuN = ulru7'Q, n N) = uW,

The sequence W ig, again by Lernma (2.6), the inverse image of an element
under a group-valued multiplicative function, thus it has an asymptotie
density by Lemma (2.1); therefore obviously so does ¥ and the proof
is completed. =m

Proof of the theorem. Lemmas (3.7) and (3.8) yield that & has
logarithmic density, thus for completely multiplicative functions Theoremn
1 is verified. To turn to the general case, let f be simply multiplicative
and let f, be the completely multiplicative function defined by fo(p) = f(p)
for all primes p. The functions f,/g, are also completely multiplicative
and consequently logarithmically stable, thus from Lemma (2.14) we
can conclude that f is logarithmically stable as well, m

4. Stabilizing semigroups. We deal with commutative semigroups
G with unity e.
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(4.1) DEFINITION. We say that a divides b, symbolically a|b if b = ac
for some ¢ (a4, b, c €@).

(4£.2) DEFINITION. We say that e and b are associates, symbolically
a ~b, if both 2|b and b|a.

The relation ~ i clearly a congruence relation.

In GMF the following theorem was stated. Let @ be a semigroup and
Gy =G ~. If in G, each element has only a finite number of divisors (we
call these semigroups P-semigroups), then G is stabilizing, Tt is easily seen
that the class of P-semigroups is closed under direct mmltiplication and
it eontains all the almost groups in the sense defined in Section 1; a sub-
group of a P-semigroup, however, need not be one. Even a cancellative
semigroup can fail to be 3 P-semigroup, regard e.g. the additive semigroup
of positive real numbers. Of course this problem can be removed formally
regarding the class P; of those semigroups that can be embedded into
a P-semigroup, but we prefer an inner characterization. This will be
achieved by Theorem 2.

We recall the relation g,, which has been defined in (2.13) by

Lol = ar = ay.

(4.3} DEFINITION. a is a quaesi-divisor of b, symbolically a ¢ b, if
8y < 0p- (This iz equivalent to that a divides b in a suitable extension
of G.)

(4.4) DEFINITION. o and b are quasiassociales, symbolically &35,
if g, =0 (le. a @b and & P a).

~

Obviously § is a congruence relation.

(4.5) DEFINITION. We say that & is an R-semigroup if for every g =@
all the divigors of ¢ lie in a finite number of gquasiassociate classes.

THEOREM 2. Ewvery R-semigroup is stabilizing.

This will be proved in the next section. Now we shall establish tome

properties of E-semigroups and show that our Theorem 2 implies the
theorem stated in GMY and repeated at the beginning of this seclion, i.e.

(4.6) LeMMA. Every P-semigroup is also an R-semigroup.

Proof. In a P-semigroup the divisors of a fixed clement are contained
in finitely many associate classes. Now observe that associates are quasi-
associates as well. m

(4.7) STATEMENT. A subsemigroup of an R-semigroup is also an R-
semigroup.

Proof. Let & be an R-semigroup and &' ity sub-semigronp. Regard
the divisors of a g € ¢'. They are its divisors in & ag well, therefore they
lie in finitely many quasiassociate classes in &. Now we have only to note
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that if @ and ¥ ave gquasiassociates in @, then
Ve, b e@ (av = by « ay = by),

thus they are e foriiori guasiassociates in G'. @

(4.8) STATEMENT. The direct product of two R-semigroups is also an
E-semigroup.

Proof. Let @ =&, x@,. It is easy to see that the corresponding
relations ave also multiplied, that is

(@) @5) | (byy Ba) =@y [ By a’nd s | bay
(@1y @) G {byy by) <+ 0y, Ty and 4T by,

from which the statement follows immediately. m

Statements (4.7) and (4.8), together with the observation that an
almost group (see Section 1) is an R- or even a P-semigroup, show that
Corollary (1.3) is really a corollary of Theorem 2.

5. Proof of Theorem 2. Without any further reference we assume
that the occurring semigroups are commutative with an unity and that
multiplicative functions assume this unity at 1.

The proof will be based on a series of lemmas.

(5.1) LEnawa. Tet G be a semigroup, § G-multiplicative and g € G.
We have either

a(f " (g) =0
or
(5.2) Dl iip < 0.
H(o)te

Proof. Let py, ps, ... be those primes for which f{p)+ g. For a fixed
prime p the density of numbers in which the exponent of p is not 1, is
1—p~t+p~® Consequently the demsity of numbers that contain none
of p,, .-+, P, With exponent 1, is : '

1]
[T a=p7 +p7% 0 (&~ )
i1 :
i (5.2) does not hold, But if f(u) = g, then = satisfies the above re-
quirement, as otherwise we would have ‘ :

g = f(n) = f@)f(n/ps),

contradicting the definition of the ps. m

(5.3) LEMMA. Let f be a G-multiplicative fumetion, where G 45 an R-
semigroup. Hither f has a deconcentrated distribution (i.e. d(f(g)) =0
Jor all g), or o completely G-multiplicative funciion f, and o finite number

%3]
-1
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of quasiassociate classes K,, ..., K, can be found so that
(i) f and fy satisfy the requirements of Lemma (2.3), and

(it) for every prime p we have
m
Jolp) € LJ: K,
-
and for each j =1,...,m
_\j 1/p = oo,
fu(p)elij

Proof. Apply the previous lemma for each g e @ ¥ f does not have

4 deconcentrated distribution, it yields f(p) | g for some g and all primes p

with the exeeption of some having a convergent sum of reciprocals. The
divisors of g belong to finitely many quasiassociate classes; let K., ..., K,
be those of them for which
Z 1/p = co.
_ HpjeE
Let % be any element of K, and define fy by setting
if el K,
() = {f(p), flpy e UK,

‘I otherwise. |

{5.4) Lemya, If G is a semigroup and o G-multiplicative funmation f
satisfies the condition (ii) of Lemma (5.3), then it iz stable.

This is the cruecial step towards Theorem 2. To the proof we need
some preparstion.

(5.5) DEFINITION. A semigroup is associafe-free, if no two elements
of it are associates, save they are equal.

(5.6) Lemva. For any subgroup G the factor-subgroup @ =GJ7%
18 associate-free.

Proof. Let &', 4" € ' and &' ~ y'. This means " = «'y’ and y* = v'w’.
Let », y, #, v be elements from fhe classes which form 2 ete. We have
3 uy and y G we. From 2 3 uy we can conclude y O «, becanse if ay = by,
then euy = buy, and thus az = by by wy 3 ». Similarly from y 3 vr we
obtain = () y. These two statements together mean #3 ¥y, le. 2" =y'. &

(5.7) LievMA. Let G be an associale-free Semigroup, iye.slpm €6
and I a completely G-multiplicative function satisfying

fipye{g: 1<i<m}
Jor all primes p and .
(5.8) 2 1/p = o0
fle)=y;

Jor each 1< j < m. Regard the sequence

(2 -+ Gm)"-
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If it does not stabilize, then f has a deconcentrated distribution; if it does
stabilize at an element a, then [ has a distribution concenivated inio a, that
is, A(f (@) = L.
Proof. Denote
g1 oo O = b. _
Suppose first that the sequence stabilizes, i.e. b* = & for all # = r. Then
for my = v+1, ..., 0, =r+1 we have

(5.9)

Namely the left-hand side is a multiple of 5" = a and is a divisor of b* = q,
where s = 1+maxn;; since ¢ is associate-free, it must be equal to a.

(5.8) implies that almost all numbers (i.e. with the exeeption of a se-
quence of density 0) are divisible by more than # primes satisfying f(p) = g,
thus for almost all %, f{#) is of the form (5.8) with »; > r, and consequently
f{n) = a for a.a. oumbers n.

Next suppose that = {«) hag a positive upper density for some a € &.
We are going to prove that the sequence " stabilizes at a.

Sinee a eimf, it can be represented in the form

g gl = .

— gk 3
& =gt ...g.m,

Putr = 1-+maxk; and ¢ = ¥". By the above considerations f(n) is a multi-

icm

ple of ¢ for a.a. value of #, thus ¢ | a; on the other hand, we have ac

evidently, thus a = ¢. Moreover we have ag; | ¢ for each § be the definition
of a and ¢ and also ¢ = a | ag;, thus ag; = ¢. By this equality ab = o
follows, which immediately vields 3" =4 for n>r. m

T Remark. Similarly we can show that in the first case (i.e. when the
sequence stabilizes at @) a.a. numbers % are representable in the form

{6.10) flny) =Fme) = a.
This fact will also be nsed later.

Proof of Lemma {5.4). Let ¢ = @[3, f' = fjZ. If f' has a decon-
centrated distribution, then obviously so does f, henece wo may assume
the opposite. We apply Lemma (5.7) for f'; it yields that for a.a. 2 we
have f'(n) = a’ with some &' € G'. Being the limit of a sequence b*, &
must be idempotent. Regarding o' as a guasiassociate class of &, this
means that it iz closed under multiplication, i.e. it is a subsemigroup;
to emphasize this fact let us denote it by &,. Thus ¢, iz a semigroup in
which any two elements are quasiassociates.

Now define
N (ﬂ){ = fln), it f(n) Gy,
not defined, i f(n)¢d,.
J1 s 2 partial completely multiplicative function in the sense that if f, (m)

and f, (») arc defined, then so i3 f; (mn) and it is equal to f, (m) f, (»). Moreover,
f1 18 defined on a.a. numbers.

H = My,
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Call two elements a, b, of & merging and write aIb if az = b for
all # e, Since G, consists of a single quasiassociate class, if the above
equaliby holds for any #, it must hold for all, i.e. a’[b.

T1is clearly a congruence relation. Let

o, =G1f1’ fz =f1fz'
We show that &, is cancellative. For ¢y it means

ar]ay =a|y.
But this is evident:
ar T ay = afe] aby = o] Y.

@y, being a eommutative cancellative semigroup, can be embedded
into an Abelian group G,. We extend f, to a completiely @;-multiplicative
funetion f;. Let n be an arbitrary nataral number. As f, is defined a. every-
where, we can find a number m e domf, such that ma € domf, Now leb

fy(m) = fa(mm)fo(m)~".

By the partial complete multiplicativity of f, it easily follows that this
definition is unique, f, is completely multiplicative and it is an extension
of f.. .

For f, we can apply Lemmas (2.1) and (2.3). We obtain that f, has
a distribution; if it is deconcentrated, we are finished since for any g e G
we have

FHe) =9 = g = F7Hge),

where g, = @(g) and ¢: G4 -G, is the natural homomorphism, while
the #’s for which f(n) ¢ 6, also form a sequence of density 0.

Tence we may assume that f, is concentrated. According to (2.3)
we have d(f™ (9)) > 0 for every g eimf;; on the other hand, f;(#) € G
for a.a. #, thus im f, = G, in particular we have f;(1) €@, Let e be an
arbitrary element of ¢'{f;(1)). For an arbitrary g eimf, consider the
elements ea, a eg~!(g). The elements of ¢~'(g) are merging, therefore
the elements ea coincide; denote their common value by 3 (g). Asg =1, (n)
with a suitable %, we have

‘P("P(g)) = plea) = fo (1) fs (o) Efs('”’) = 4.
(a)

=g we have

(5.11)
Furthermore by gléa) = ¢
(5.12)

eala i plo)eimfy.

(5.11) shows that v is one-to-one; since f, is stable, so is the function
fa=yofs
T f(n) e, then by virtue of (5.12) we have
(6.13) falw) = ef(w) Tf(n).
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Now if # can be repregented in the form

(5.14} 0=, f(i)y f{ns) € Gy,
then in view of (5.13) we have ef{n,) [ f(n,), thus
(5.15) Ja(m) = ef () f (1a) = f(n)flne) = fm).

By the remark made after the proof of Lemma (5.7), a.a. numbers admit
a representation of type (5.14), consequently fin) = fi(%) holds for a..
natural numbers . Sinee f, has been proved to be stable, so is [ m

Proof of Theorem 2. First we apply Lemma (5.3). If f hag a decon-
centrated distribution, we are finished. If it does not, we get a function
fo satisfying requivements (i) and (ii) of the lemma. To obtain that f is
stable it is sufficlent to show, according to Lemma (2.14), that all the
functions f,/n, are stable. The stability of f, is asserted in Lemma (5.4)
and the same lemma will be applied to the functions fy/e,; We have only
to show that these funetions also satisfy the condition (ii) of Lemma (5.3).
To this end we show that if & = @/, and ¢: @ — G’ iz the natural homo-
morphism, then the image of & quasiassociaté class under ¢ will be contained
a quasiassociate clasy of &, le.

23y = &) Sely).

Write ¢(#) = @', ¢(y) = %’. ' We have to prove that for arbitrary elements
w == p(u) and v =p{) of G’ the equivalence

’wlwf — ,ulwf . 'LL’yl p— ’D'y,
holds. But by the definition of g, we have
u's = v'a > aur = avr < ouy = avy < u'y = vy’

and this eoncludes the proof. =
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On an average of primes in short intervals
by

A, PERELLI (Pisa) and 8. SALERNO {Baronissi)

Introduction and statement of the result. The distribution of prine
pumbers in short intervals is a clagsical topic in analytic number theory.
It mainly consists of establishing asymptotic formulae or estimates for
n{;y—j—F (%)) —@ (), where F{x) is & monptonically inereasing function.

The best unconditional results concerning asymptotic formulae
were cbtained by Huxley [B], those conmeerning estimates from below
were obtained by Iwaniec—Jutila [7] and Heath-Brown-Iwaniec [4],
while under the Riemann Hypothesis there are results of Cramér [2] and
Selberg [10]. Moreover Gallagher [3] obtained inferesting results assuming
a certain uniform version of the prime »-tuple conjecture of Hardy-Little-
wood.

In this paper we define the functions

) mplo, W) = D1, ho=h{a),

opE T <k
where Py, = min{p,y, ..., Pay) a0d P = Max(Py, ..., Psy), 20nd we obtain
the following '

THROREM. Assu'miﬂg the Riemann Hypothesis, for every imeg'qr Ex=1
we have

(2) Ty, (2, h) ~ 2KRplog g,

provided hffy,(x) — oo, where

P (@) = 2B DCED] g -1 |0 o logl R Dmshyy g {%, i j i’
: 3 7= L.

Remarks. In the sequel fhe Riemann Hypothesis is always assumed,
unless the contrary is explicitly stated. - '

{a) Evidently _
T (2, B) = 2 1+ 2 1,

DFPF -y Pyeesns Bop
DpinS<T Pmin<E
0<Pmax—Prin<h 0<Pmax—Pmin<h



