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Now if # can be repregented in the form

(5.14} 0=, f(i)y f{ns) € Gy,
then in view of (5.13) we have ef{n,) [ f(n,), thus
(5.15) Ja(m) = ef () f (1a) = f(n)flne) = fm).

By the remark made after the proof of Lemma (5.7), a.a. numbers admit
a representation of type (5.14), consequently fin) = fi(%) holds for a..
natural numbers . Sinee f, has been proved to be stable, so is [ m

Proof of Theorem 2. First we apply Lemma (5.3). If f hag a decon-
centrated distribution, we are finished. If it does not, we get a function
fo satisfying requivements (i) and (ii) of the lemma. To obtain that f is
stable it is sufficlent to show, according to Lemma (2.14), that all the
functions f,/n, are stable. The stability of f, is asserted in Lemma (5.4)
and the same lemma will be applied to the functions fy/e,; We have only
to show that these funetions also satisfy the condition (ii) of Lemma (5.3).
To this end we show that if & = @/, and ¢: @ — G’ iz the natural homo-
morphism, then the image of & quasiassociaté class under ¢ will be contained
a quasiassociate clasy of &, le.

23y = &) Sely).

Write ¢(#) = @', ¢(y) = %’. ' We have to prove that for arbitrary elements
w == p(u) and v =p{) of G’ the equivalence

’wlwf — ,ulwf . 'LL’yl p— ’D'y,
holds. But by the definition of g, we have
u's = v'a > aur = avr < ouy = avy < u'y = vy’

and this eoncludes the proof. =
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On an average of primes in short intervals
by

A, PERELLI (Pisa) and 8. SALERNO {Baronissi)

Introduction and statement of the result. The distribution of prine
pumbers in short intervals is a clagsical topic in analytic number theory.
It mainly consists of establishing asymptotic formulae or estimates for
n{;y—j—F (%)) —@ (), where F{x) is & monptonically inereasing function.

The best unconditional results concerning asymptotic formulae
were cbtained by Huxley [B], those conmeerning estimates from below
were obtained by Iwaniec—Jutila [7] and Heath-Brown-Iwaniec [4],
while under the Riemann Hypothesis there are results of Cramér [2] and
Selberg [10]. Moreover Gallagher [3] obtained inferesting results assuming
a certain uniform version of the prime »-tuple conjecture of Hardy-Little-
wood.

In this paper we define the functions

) mplo, W) = D1, ho=h{a),

opE T <k
where Py, = min{p,y, ..., Pay) a0d P = Max(Py, ..., Psy), 20nd we obtain
the following '

THROREM. Assu'miﬂg the Riemann Hypothesis, for every imeg'qr Ex=1
we have

(2) Ty, (2, h) ~ 2KRplog g,

provided hffy,(x) — oo, where

P (@) = 2B DCED] g -1 |0 o logl R Dmshyy g {%, i j i’
: 3 7= L.

Remarks. In the sequel fhe Riemann Hypothesis is always assumed,
unless the contrary is explicitly stated. - '

{a) Evidently _
T (2, B) = 2 1+ 2 1,

DFPF -y Pyeesns Bop
DpinS<T Pmin<E
0<Pmax—Prin<h 0<Pmax—Pmin<h
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where ’ indicates that the sum is extended te all the 2k-tuples in which
at least two primes are equal. Therafore

S ote 3 i 3

1=y {2, ).

Dys-ee:Pag PyeeePaf: Paseess o
Pmin%® PrpinST Dpin<e
0 Pmax—Pmin<k 0P ax—Pmin = PSPmax—Pmin<h
=y

Tsing Holder’s inequality with p = 2k/(2k—1), ¢ = 2k in (8} (zec
the proof of the theorem) we can casily see that

Tgge 1 (8, B) ~ 2B og— BNy
provided Rffy () — co, whence the main term of m=, (@, &) is contained in

1.

PP EPag
Pmip<e
0<Bmax—Pmin®h

(b) From (1} and remark (a) we get straightforwardly
g (@, B) ~ 2 3 (m(p +-h) -~ (p) )
e

provided Aff,, (2) = oo, and therefore (2) can be viewed as an asymptotic
formula for an average of primes in short intervals.

{c) Again from (1) and remark (a) it follows that

(3) T, By ~ 2k D)

Upserstiaf—1

T(By gy evy Unpy)s

d<uyh
F=1,...,3%~1

where st(®m, Uy, ..., %) =HP <o puy; =p, § =1,..., 8}, and there-
fore (2) can be also viewed as an asymptotic formula for an average of
2k-tuples of “twin-primes”.

In this respect it is worth considering Theorem 1 of Lavrik [8] where
18 given the asymptotic formula for =({m,w,,...,u,) for every s-tuple
of distinet integers tug, ..., %, with 1< u, < wlog=@ %, except for ab
most 2flog™ ¢t~y g tuples, where M > 0 and ¢ > 1 are arbitrary con-
stants. Althongh Lavrik’s theorem holds unconditionally, its possible
exceptions have an order of magnitude by far larger than that of the
terms actually congidered in (3).

{d) It is worth noting that, setting

D -,

P,
pET
d<p —p<h

8, (z, B) ==

On an average of primes in short inlervals 93
we have

13
(4) Buerl@, 1) = [ 8 (2, w)du—1S,, (@, h),
0
hence from (1) and (4) we have also, by an induetive argument,

8,y b)) ~ 200/ (m 1) logw

provided hlog™%s - co.

{e) As far as unconditional results are concerned, we remark that
using the density theorems of Ingham [6] and Huxley [5] in Lemmas
5 and 6 of Saffari-Vaughan [9], we easily obtain

—1j6—=¢

7y (2, B) ~ 2hzlog %z, yprovided Az - o0,

while from Theorem 2 and (33) of Bombieri-Davenport [1] we gel

me(®, h) < (8+0(1))whlog™®z, provided h — oco.

In a following paper we shall give unconditional bounds for the least
order of magnitude for k(z) admissible in order to have (2).
Proof of the theorem. We define

2 Alng) . Ang)

Ao

Yoxle, B) =
Rmin<®
“gnm:;lgnmi.n<h

where A(n) is the von Mangoldt function and g, = Min(fy, ..., i)
Thpge = MAX (R, .0 -y Thog)s )

By partial summation it iz easily seen that (2) is equivalent
10 (@, B) ~ 2kR* g, thus we shall prove this formula.

We only consider the case h < #'°*, sinee otherwise the theorem
follows from a result of Cramér [2].

We have
[ (wathy —p@fra = [ 3 awmf*a
[} 0 {<ngt+h
= 3 A() ... Ay d(ng, .y By)
ﬂjﬂ_!‘fl’h
Ferl,e 2k

where _
ANy, .y Nyy) =meas{t [0, ] 1 <My .eny gy, <2 T-H1
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Hence,
B [ (p+h) —w () a
1]
= Z A(ﬂl) e A(M’Zk) (h’ —max "EAﬂ’min) +
111,...,?12;6
Rmin ST

O mae—Timin &t
P
! ra
LORRELT
< nmmscc-.{- W
U< ax —Rmin <t

Alng) ... Ay ) w4 —

7?’max) "

From (5) ﬁre obtain

[ (wtt+n)

We let as usual w(z) = z--R(x), whence

h

(6) —p ()it = f Pl u)duml-()(h“’““logz” ).
0

f(‘/’(t‘i"h)""ww))zkdt — el 4 [ (R{t+h) —R®)*dt -+
0 g

T

O [ RO+ —ROP815 [ Bo+h—RE)] ).

¢
Suppose now that % is such that

(8) Llo, by = f (R(;Jrh) —.R(t))zkdt — o(wh™);

' 0 .

then from (6) and (7), using Holder’s inequality, we get
h

(9 [ wule, ) du = £B¥*(1+0(1)).

Now the theorem fo]loWS from (9}, using a Well -known taubeuan al gument.
In order to estlmate Loy, h) we eonSIder

= f [ (+08) —yp (2)

&

oz, 6) — Bt

and use the well-known explicit formmnla

p(z) =2— Z m9/9+0 - mlog%), T<o.
' i
We follow the method of Saffari—-Vanghan [9] in writing
a 2y

Tula, 6) < f( [ 60—

- xwi2

w(8) =04t ) o

icm
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Heuce
1 Ay 12k L 20\l 41
10)  Tylm, ) < ) L0 T (OO
o (Lt e )2
t741=<1]0
F=1,2k
logT 1
[Iug2 ]T — (16 () o { B)12F) 4T
Hogor M > 2B ot el D
R 91‘-—”_._&% (L dyat e TV =V — o =yl
[ log2 ]2’“511,_7-1527;:“
J=1.,,%

'_:_wzk-!-lT-‘lklOgdkx,
where C,(6)
Let

Moz () = F{{01, -5 03): £(o) =0, {y1+...
PZIES

={(L 8 —1)/e.

=yl <1,
¥ i =1,..., 2k}

+¥g —Yr+1

Then clearly

N (y) < y** og™y
and
log T
[57]
(11} o, ) € 21 0log™ (1/6) -5+ log 6T g—mjggkom 4
. ) Tog{1/8
e[ B

+m2k+lT-—2k10g4kw
< @7 0log™ (1/6)log 6T 4o+ 11 logHes,

The estimate for I, (z, h) is obtained from (11) as in Saffa,rl—Vaughan
[8]; we have

3hfx 3z
(12) Lo, ) < @/B) [ ( [ lw(t+0n —p() —befar ) a6
iz x

< (m/R) (@ (h[w) log™ (w/h)log (AT o)) + ¥ 1T *logts
< ha*log*zlog (AT ) +-a** T~ ]o gy,

Let now I be such that
Thizlogis — oo,
Then from (12) we get
Ly (z, b) < hatlog¥zlogloga,
hence
Ly(, B) = o(h*)

provided A/fo (2) = co, k>1,
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Finally we remark that there is no difference between the case & =1
and the general one but for the fact that there is no need to subdivide
the zeros with |y | > 1/8 in (10).
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On a conjecture of D, H. Lehmer
by
D. @. Canror and BE. G. SreaUs* (Los Angeles, Calif.)

1. Introduction. K. Mahler assigned the measure

d
M(8) = [[max{1, 6,1}

{1

to the algebraic integer 6 of degree d with conjugates 6, ..., 8; D. H.
Lehmer conjectured that there is a constant ¢ > 1 so that M (8) < ¢ implies
that 6 is a root of unity. While Lehmer’s conjecture remains unproved,
there hag been significant progress in giving lower bounds depending on
the degree d for M (6). Recently E. Dobrowolski [1] has shown that there
exists a positive eonstant ¢> 0 such that M(0) < 1--e{loglogd/logd)®
implies that 8 is a root of unity.

In this note we follow Dobrowolski’s ideas and obtain a somewhat
simpler proof of his result coupled with an improvement on the constant.

TerOREM. If ¢ < 2 then for all sufficiently large d the inequalily
M(6) < 1+e{loglogd/logd)®

implies that the algebraic inieger 8 of degree d i3 a rool of unily.

Our main tool is an estimation of a Vandermonde determinant which
is constructed. so as to have a large integral divisor. If M (8) is too small,
this Vandermonde vanishes, proving that ¢ is 2 root of an algebraic integer
of lower degree.

2. Proof of theorem. Suppose = is a positive integer and « is a complex
number. Define the (column) vectors

vo(a) = (1, a, 0% ..., @Y

* This material is hased npon work supported by the National Bcience Founda-
tion under Grants M(CB79-0311 and MCH79-03162.
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