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On bases and unconditional bases
in the spaces L”(du), 1< p< oo

by
K. 8 KAZARIAN (Yerevan)

Abstract. Necessary and sufficient conditions are found for a Borel measure
w in order that the system of functions {7, (x)}}2; resulting from the Haar system by
removing finitely many members be a basis in the space L?(du), 1 < p < oo. It is
also shown that if such a cofinite subsystem of the Haar system constitutes a basis
in LP (du), 1 < p < oo, then it actually constitutes an unconditional basis in that space.

1. Introduction. Let % De a Borel set on the real line and u be a finite
positive Borel measure on E. The symbol L% (du), 1 < p < oo, will denote
the Banach space of all functions f such that

_lr D ip
(1) 11y = (LJ F@)Pau)"” < oo.
Further, by definition,
(2) Hfl\ﬁwm mg:;ss]f(b)z (velative tou)

In case where u is the Lebesgue mecasurve, we write just L% instead of
Lz (dp).

In most problems concerning the Haar system and the Walsh system,
the functions which enter those systems can be given quite arbitrary
values at the discontinuity points. In this paper, however, we are dealing
with general Borel measures, and so these values gain significance. Thus,
we define the exact values of Haar and Walsh functions in such a way
a5 1o obtain closed systems in €0, 1]. Namely, by convention, the value
at an interior discontinuity point is to be equal to the arithmetic mean of
the one-sided limits at this point and the value at an endpoint is to be
just the appropriate one-sided limit value.

A system of functions {f,(#)} is said to be closed in the Space L”(du),

< p < oo, iff every function in L?(du) can be norm-appyoxima.ted by
finite linear combinations of the f,’s. A system {f, (#)} in L?(du), ¢ denoting
the conjugate exponent to p, 1< p < oo, is said to be total with respect
to L?(du) iff the only function in L?(du) orthogonal to all the f,)s is the
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zero function. Following A.T. Markushevitch [13], we shall call a system
of funetions {f,(#)} a basis in broad sense for LP(du), 1 < p < oo, iff that
system is minimal closed in I?(du) and the system conjugate to {f,(»)}
is total with respect to L7 (du).

The problem of the existence of conditional bases in a Hilbert space
has remained open for a longish time. This problem was solved by K.1.
Babenko [1] who showed that the systems resulting from the trigonometric
system {¢™7)2_ _,, by multiplication by the functions M, (®) = |»]%
0 < a < 1/2, constitute conditional bases in the space B —

Observe that if a system {f,(#)} is such that multiplication of the
fu's by some function M () produces & basis (or & bagis in broad sense)
in some I?, 1 < p < oo, then the system itself is & basis (a basis in broad
sense) in the space Lp [w(x)ds] where () = |M (2)?, and conversely.
In the sequel we shall often use this fact without further comment.

In 1972 R. Hunt, B. Muckenhoupt and R. Wheeden [6] found
a characterization of the class of all functions which —multiplied by the
trigonometric system —produce a basis in If) o

THEOREM (Hunt, Muckenhoupt, Wheeden). Let W (2) be & non-negative
2n-periodic function. The trigonometric sysiem {62 _ ., s @ basis in the
space LT o [W{n)da], 1 < p < oo, if and only if there ewisis an absolute
constant K, such that the following estimate is satisfied for any interval I:

1 YRS IR Ca
(sl forremaf e,

|I| denoting the length of I.
In 1971 A8, Krantzberg [12] described all positive Borel measures
4 for which the Haar system is a basis in LP(du), 1 <p < oo.
TarorEM (Krantzberg). Let u be a positive Bovel measure on [0, 1].

The Haar system {x, ()}, 18 o basis in the space LP(du), 1< p < oo, if
and only if u is of the form

(2) du(z) = p(@)dw,

where p(x) is a non-negative Lebesgue integrable function satisfying for any

{(4p)

dyadic interval 4 = ((m—1)[2", m/2") (n =1,2,...;m =1, ...,2") the
estimate
p—1
3 -1/(p-1)
) (imf"’ )(mif(”’(”)) dw) <

with an absolute constant K, depending on p only.

It also tiirns out that, under conditions (2) and (3), the Haar system
constitutes an unconditional basis and the Walsh system a basis in the
space LP(dp), 1 < p < oo,
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In the author’s paper [9] it has been shown that, for any natural N,
the Haar system with the initial ¥ terms removed can be made, by muléi-
plication by a bounded function, into a basis for all the spaces ILf,,
1< p < oo. It has been also remarked that the above remains valid for the
Haar system with finitely many of its members removed. In the present
paper we find necessary and sufficient conditions for sueh a co-finite
subsystem of the Haar system and for a Borel measure u in order that the
subsystem in question be a basis for L” (du), 1 < p < oo. It is also shown that
if such a subsystem is a basis for L? (dp), 1 < p < oo, it is also an uncondi-
tional basis for that space.

In what follows, dyadic intervals of the form ((m—1)/2", m i2")
(m=1,2,...;m =1,...,2") will be called Haar intervals. By the support
of the k-th H aar f«mctwaz )’L( ) we shall mean the Haar interval 4, on which
2(®) is non-zero (except of at a single point).

The symbol I?(du) will always denote the dual space of L7(du),
1<p< oot 1/p+1/g =1 (as usual, we assume 1/oo =0 and 1/0 = oo
so that p = 1 forces ¢ = oo). d,,, is the Kronecker delta (0 for % # m, 1 for
n o= m).

The results of this paper for the case of weighted spaces have been
published in the author’s earlier paper [10].

It is a pleasant debt of mine to express my gratitude to Professor
A.A. Talalian for his attention to my work and helpful criticism.

2. On the absolute contimuity of x. We are going to show that in all
cases which are of interest for us the measure u is absolutely continuous

LEMMA 1. Suppose that {g, (2)}=., is « minimal closed system n C'la, b]
and {u,(®)}2., is a system biorthonormal to {p, (m} FHurther, suppose that
Qis a finite (or empty) set of natural numbers and ° denotes the complement
of Qto the set of all naturals. If the system {p,( .v)}nsgc constitutes a basis in
broad sense in Ll (du), 1< p < oo, for some finite positive Borel measure
u, then p is absolutely continuous.

Proof. Since the system {@, (%)} eqc is minimal closed in Lf 5 (du},
there exists a system {f, (#)}nege It L% 5 (dp) biorthogonal to {@n (@) hneoe
(1/p+1/g =1),

(4) fb Pn(@)fn (@) Ap(2) = Oy (0, M € ).
Write ’

(8) a™ = fb ei(@) fu (@) dp(@) (i€ 2, me )
and ’

®) : Ay (¥) = fu(@)dp(@)  (me ).
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Define measures »,

(7) dv;n (m) = (‘ij ('7}) + 2 (I/,E"I') v (:II‘)) dx.

]

(m e £2°) as follows:

Conditions (4)-(6) yield
b
[ oa@al@—m@] =0 (1 =1,2,..;5me2°).

Since the system {i, (#)}5., is closed in ¢ [a, b], we obtuin

(8) d["’m ({1/‘) - "’uln(m):] = 0 (lnb € “(“)a) N

The formulas

b b
tn = [ [ @ du(@) = [ f@)dm@) (me Q)

define the coefficients of the development of f e L), vy (du). Tence in view
of (7), (8) it follows that

b
tn = [ F@) (vn@) + ) dMp@) do  (me 2.
a e}

Thus, assuming that u is not absolutely continuous, we arrive at
the conclusion that there is a non-zero function f € Ly (du) whose all
coefficients arve zero. This contradicts the assumption that the system
{@n (%) }neqe 8 a basis in broad sense. The lemma is proved.

We prepare one more useful lemma, which may be of interest in
itself.

I'JEI\II\'IA 2. ;S’iiappose that {p,,(%)}rny s @ system of bownded measurable
Sfunctions, total with respect to L%a,(,] and constituting o basis in broad sense
Jor LE, 41, 1< p < oo, Let 2 and Q° hawe the same meaning as in Lemma 1.

If .the system {(pn(él;)}nef)c s minimal n LE, . (w(@)de) for some Le-
besgue integrable non-negative function v(x), then w{w) is positive almost
everywhere on [a, bl

P.l‘() of. Sinee {g,()},ege is minimal in L (v (@) da), thero exists
a conjugate system {f, (&)}nene in L, (v (2) da),

b
(9) f FPon, (m)fn (‘T) V’(*r') aw = (Smn (9?:7 m e _Q(‘) .
Let {y,()}5-, denote the system in Lf,n conjugate to {pn (@)}, Writing

b
(10) 4 = [ p@f,(@)p@)ds  (ve, ner
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we get, in view of (9),

b
[ @ [fu@w@ —vu(0) = 3 ey, @)]do =0

e}

(m =1,2,...,ne 2.
The system {g,, (#) ., being total over Ii, ,, it hence follows that

(11) @) p@) = g+ D aPy, (@) (ne).
vedd
Supposing that y(w) is zero on & set F' < [a, b] of positive measure we now
easily arrive at a contradiction: taking a bounded function @ () vanishing
on [a, bINF and such that
b
[ d@p(@)de =0 for allve Q,
a
we obtain by (11)
b
f D@y, (x)de =0 (ne ),
@
contrary to the fact that the system {w,(v)}5., is total with respeet to
Lf,1)- This proves the lemma.

Remark. The following statement is also true; the proof is analogous
to the proof of Lemma 2.

Suppose that {g, ()}, is a system constituting a basis in bread
sense for ILf,,, 1<<p < co. Let Q and Q° be as above. If the system
{@a(@) e is minimal in If,  (p(#)de) for some non-negative bounded
function y(x), then y(z) is positive almost everywhere on [a, b].

Lemmas 1 and 2 jointly with Theovem 3 of the paper [9] result in
the following

TeEOREM 1. Let {f,(#)}2., denote either the Walsh system or the trig-
onometric system, in an arbitrary numbering. Then for any posilive integer
N and for any positive Borel measure u the system {f, (@) }n. s 48 @ basis
in neither of the spaces L¥ (du), 1 < p < oo,

Evidently, the meagure x has to be finite.

Assuming that the assertion does not hold and applying Lemmas 1 and
2 we infer that du () = v (2)dx for some function v(x) which is posibive-
valued on the entire interval, Hence and from Theorem 3 of [8] follows
our theorem.

3. {,(®)} .1 being a basis, To hegin with we state and prove

the vesult for the case of the Haar system with the very first member
removed ; the proof for the remaining cases is a consequence of the above.
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TrEOREM 2. The following conditions (a)-(d) are necessary amd suf-

Ficient for the system {z, (®)};2., 10 be a basis in the space L? (du), 1 < P < oo:
(a) there exists w Lebesgue integrable fumction (w) such that du(z)

= y(a)dw;

(b) () > 0 almost everywhere on [0,1];
(¢) there evists a sequence of Haar intervals(*)

A 5 A0 5 5 a4 >

with [AW] = 27% (k= 0,1,...), such that

o)™ ¢ Lt [p(@)] ™ e T

and o }:k’

() there exists o number By, >0 such that for any & =0,1,.... we
have

s () S [y(@) ]V ag pvl\/B
XA AV CI oS
8 gg'k) 04%]:)

and such that for every Haar interoal A which is not identioal to any of the
A8 (k= 0,1, ...) we have

1 1 -1
(5 [ vnad) (L f 1) < B,
A 4

where CAFD = [0, 1]\ 400

In the proof of Theorem 2 we shall use the following fact, which is

a direct consequence of Lemmas 1 and 2, of Lemma 1 from [9] and of
Theorem 6 from [11].

THEOREM 3. In order that {1 (@)} be a basis in broad sense for L? (du)y
1< p < oo, conditions (a), (b) and (¢) of Theorem 2 are mecessary and suf-
ficient.

Now we prove a lemma, which constitutes the final gtep in the proof
of Theorem 2. Assume that the measure  tulfils conditions (a), (b), (c),
that means, the system {0 (@)}, 18 a basis in broad sense for IP (du),
1< p < co. Denote by 8,(f, «) the partial sums of the developient of
feL?(du) in terms of that systen. Consider the Haar intervals of max-
imal length on which all the functions @), n =2,..., N, are constant;
clearly, given an integer N > 2, there are N such intervals. Exactly one
of them coincides with one of the intervals occurring in condition (o)
denote this unique interval by Ty and the remaining ones by I, ..., Ty_y.
- Using this notation we state

* The upper index is introduced for convenience; the sense of this will be made
clear during the proof.
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LEMMA 3. Leét u be a measure satisfying conditions (a), (b), (¢c) of The-
orem 2. Then for every N = 2 we have

TIl’T fﬂt)dt if zel, 1<n<N-1),
n l-vqb
12) Sy(f,o)={ .
R f fya  if wely.
II'x] iy

Proof. By assumption, {y(#)}, is a basis in broz'xd sense for L”(dfu).
We will construct a conjugate system {w; (&)}l I.?u“st of all, we give
a precise meaning to the upper indices i), (see .the tootno}ze to (s?n.dlt}on‘
(¢)). For any &k = 0,1, ... we define i, to be (_’lt}.l(‘»l‘ 1 or 2, ac(c;gldmg a8
the subsequent interval is either the lefti or the right half of Ay¥.

For a given n = 0,1,...and &k, L< k< 2", we pub
(13)

A <
A A 4

2t

=@.

Mtk

[ ()] [t (0) -+ (— 1) 2] i
@ s, (@) i
According to condition (c), the system {u;}%2, is contained in’ L:: (cl,u?,
1/p+1jg =1. A straightforward verification shows that {p;() iizdls
the system conjugate to {y;(z)} .. And thus, for any N > 2 and feL?(du)
we have

Vyn 1 (7)

N
Sylf, @) = D ox(@),

(14) 2

where .

(15) o = [ f@)pi(@)du(@).
0

i i i i r N = 2 we have
The proof of the lemma is carried by induction. For N = 2 we he

o = [ f@) [p(@)] 7 [xa(@) + (1) ]y (@) do

1]
=2 [ [signy(®)]f(z)do.
caf
Hence
»e(AW,

we AW,
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Now assume that (12) is true for some N and calculate Sy (f,»)

(16) Sya(fy#) = Sn(fy @)+ oy ga tyrra (@)
From the definitions of the Haar system and of the sets I, 1 <7< N,
it follows that 4y, the support of xy.;, coincides with one of the inter-
vals I, 1<i<<N.

First consider the case where 4., is one of the I, 1< i< N—1.
Let Ay, and A%, denote the left and the right half of 4y,,, respectively.
Rqualities (13) and (18) yield

1
Oyr = f F@) [p (@)1 gy (2) () do = f F(@) 04 (%) d.

Hence, by (12) and (16) and in view of the fact that yy., (@) = £ [dy, ™"
(plus in Ay, and minus in 4% N41) We obtain

2
= f f@yde for wedy,
[yl P .
(17) Sypilfy @) = i
MNM ff Ydo  for  wedy..
A1

Sinee yy.(@) is zero outside Ay, and since the functions (), 1<
« N -1, are constant on the intervals Ay, 4%,,, the inductive assertion
follows in view of (12) and (17).

Tt remains to consider the case of Ay, = I'y = A, where &
= logy(1/|dx4]). Conditions (15), (13) and (a) then force

112
(18)  oy41 = ff [Z:H-l @)+ (—1) ”v( |411 ]) :Idd
N+l

1
[ gl

=2

1/2
F(@) g2 (@) d -+ (—1) (*j*) { fw)da.

s [ Ayl y
AfoNallps odfiw
Now, we have

( ~—1)"ksigan+1 (.r) =1 for = A;jk)\ /J;‘llu ~1<~1) .

Hence, inserting the values of ¢y w1 and Sy (f, #) into (16), we get

2
v fl@ds  for o edfoN Al
AN 4% 41)
,Sm_l(f7 2) = R & k1
- { ] (g
VI [ f@a  tor e i,

a1
fe41

This concludes the induction and the proof of Lemma 3.

R
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Proof of Theorem 2. It is well known that a neccessary and suf-
ficient condition for a basis in broad sense in L?(du) to be actually a basis
i that the norms of the operators of taking partial sums of the developments
be commonly bounded. Thus, in view of Theorem 3, in order to establish
the sufficiency of conditions (a)-(d) it just remains to estimate the norms
of Sy(f, ®). According to Lemma. 3 we have

fmv 1, )7y (a) dar —Z f:S )P () dee

111
) da
Tl ff(

Oy

< Siks [ersia] [ ara] f

Iy

ﬁl“iii:l; f If ()P (Z;('[ f [p(w ]“’“’ﬂa] f p(a

f]f @) Py () ds.

fq,u o) dw

Iy

P
J p{w (Z’I‘+}

The sufficiency in Theorem 2 is thus proved. To show the necessity,
we use the fact that if the system {x; ()}, is a basis in LP(du), then the
norms of the operators Sy are commonly bounded:

(19) I8yl < M < +o0.

On the other hand, by virtue of Theorem 3, Lemma 3 and by the bounded-
negs of the operators Sy, we have

20) ISl = 5w 8y(ligngy > WX SURISK (S Dl
g2 @ey<t <IN~

the last supremum being taken over all f with
|]fuL7,W) <1 and f(@) =0 for e Cl;.
Equality (12) shows thatfors =1, ..., N—1 this last supremium is equal to

(@1) sup 8y (f> @l

WL gyt
1p
m[ f zp(m)dm]
A i

f(@) = fl@)[p(@)] " (@)

s“p\,\ T ff #dz|.

LP(dr)

Writing
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we obtain immediately

swp | [ flada| = 1w @17y o, = [ (p(@) 10 Da)"70,

<t

Hence and by relations (19)—(21) follows the necessity of condition (d)
for those Haar intervals 4 which do not coincide with any of the A‘,jfc)
(k=0,1,2,..)

The necessity of (d) for the latters is proved quite analogously, as
shows the following calculation:

ISyl = sup
=

W71y, gy <2

= sup

Wl g,y <

1/n
=[ f«p(m)dw] sup
Y

W 2g)

“SN (f’ a’.) HL77(dll)

18y (f5 @)

L2 (an
pN( )

<1

1
— a
[FNI Cﬁ!;f(w) ?
1

g 1/n -
= | [ral” ey,

Iy

= [ \1}1\;\_ Ff v/)(w)dm]llp [oi [y (w)]"‘/(”*l)dw](m_l)/p .

e
The proof of Theorem 2 is complete.
We now give concrete examples of positive measures for which con-
ditions (a)—(d) of Theorem 2 are satisfied.

COROLLARY 1. Let {y, (#)}5., be the Haar system and let p, be any nuwin-
ber, 1 < py << co. Define:

(22) p@) = 2?1t for wel[0,1].

Then the system {x,(#)}2., is @ basis in LP(y(w)dw) for all p e[L,p),
is @ basis in broad sense in L”l('zp(w)dm), and for every v > p, this system
is mot closed in L7 (y(x)du).
Prootf. Clearly, for » e [1, p,] we have
Dp(o) 1™ ¢ LY

{0,277
and

[p()]™" € L7

27 ",1]

(n =0,1,2,...). Hence by Theorem 3 it follows that the system {y, (#)}.,
is & basis in broad sense in L?(y(«)dw), for any p e[1,p,]. Further, for
P > p, we have

[p(@)]™" e I,

icm
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whence
[p(@)]™" e LYyp(@)ds), -where p'4g =1,
and
1
[ @I g, @e@de =0  (n=2,3,..).

]

Thus the system {y, ()}, is not cloged in any L?(y(x) dz), p > p,. Finally,
for p e [1, p,) condition (d) is easily verified. The corollary is thus proved.

In the sequel we shall deal with o more general case; therefore, ab
present, we just describe necessary and sufficient conditions for the system
{sn (@) o o1 O be a basis in I”(du), without giving them a precise form.

In view of Lemmas 1 and 2 it is clear that conditions (a) and (b) of
Theorem 2 are necessary. Consider the intervals of the greatest length
on which all the functions x,(x), 1 <n < N, are constant; on cach of
those intervals take into account all the functions yx, (), # > N +1, which
do not vanish identically there. By a linear transformation which carries
the interval considered onto (0, 1) the resulting system can be identified with
the system {y,()}7,, up to a constant. Consequently, in order that the
system {y, ()} y.1 be & basig in L?(du), 1< p < oo, it is necessary and
sufficient that, apart of conditions (a) and (b) of Theorem 2, conditions anal-
ogous to (¢) and (d) be satisfied on each of those maximal intervals of
constancy of all the y,(2), 1< N.

4. {1, (2)}=., being an unconditional basis; {w, (o)}, being a basis.
In 1935 R. Paley [16] showed that the Walsh system constitutes a basis
in each L ;;, 1 <p < oo. The basic tool in the proof was furnished by
two inequalities, which now have become classical. Owing to their origin,
they are known under the name of Paley’s inequalities. Using those in-
equalities J. Marcinkiewicz [14] showed in 1937 that the ‘Walsh system
is actually an unconditional basis in Lfj ;;, 1 < p < oo

In 1974 R. Gundy and R. Wheeden [5] obtained a remarkable result
stating that if a woight funetion y(x) fulfils inequality (3), then Paley’s
weighted inequalities (with weight y(x)) are also satistied in that case.
Their result is basic for the following theoren.

TusornM 4. Let u be a positive Borel measure on [0, 11 and let p > 1.
Then each one of the following five conditions tmplies the remaining ones:

() u is absolutely continuous and there exists an absolute constant K,
such that for any Haar interval 4 = (kf2",(k+1) 2, 0<k<2", n
=0,1,2, ..., the weight function given by (2) satisfies inequality (3);

(B) the Haar system is a basis for L? (du);

(y) the Haar system is an unconditional basis for L (du);
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(8) the Walsh system is @ basis for L? (du);
(e) the Haar sysiem is a basis in broad sense for LP(du) and, moreover,
Paley’s generalized inequalities ave satisfied:

o fl ) dp)” < ( fI ( 5‘ L (@) dﬂ)]m&: 0, | fl IF(@) 1P au)™,
0 0 k=1 0

where a, denole the cocfficients of the development of f e LP(du) in terms of
{2 (@)} and ¢, C,, are positive constants depending only on p.

Proof. The equivalence between («) and (B) is just the content of
Krantzberg’s theorem [12]. Hence, in virtue of Gundy—Whoeeden’s theorem
[5] follows the implication («) = (e). The implication (s) = {(y) is a con-
sequence of Lemma 1 and Gaposhkin’s criterion [3] for deciding whether
or not a given system is an unconditional bagis in L?, p > 1. The proot
of the implication (g) = (3) is analogous to Paley’s proof of the fact that
the Walsh system is a basis in Lf} ;. Nevertheless, to be precise, we now
carry in detail some of Paley’s arguments.

Write

D, (@, 1) = D) wy(2)w, ().
k=1

Our further considerations are based on the equality

m

(23) Dol s (@, (t) = YD (@, 1) =D, (a, 1),

Im=1
where
m

o .
n :Z DMy My My > > Wy, Wy, = [logan];
=1

equality (23) is due to Paley.

In Paley’s paper the Walsh system has been examined exclugively In
Paley’s numbering. However, as it has been observed in [11], equality (23)
is valid for Walsh’es numbering, just as well,

Condition (g) implies, according to Lemma 1, that p is absolutely
continuous:

du(e) = p(0)dw,

where y(2) is a Lebesgue integrable function. It i hence readily seen that
the system {[y(2)]™'y, (@)}, is conjugate to {xp (@)} in LP(du), and
so the coefficients e, are given by the formulas

1

= [ £ IpOT by ()@t = [ (1) g, (0d.

0
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In view of the fact that the system {wk(w)}‘;‘:“; ., Yesults from {xk(w)}i:;i“
by a eorbain orthogonal transformation (4 =0, 1 ,2,...), it iz clear that
the system {w; ()}~ is also a basis in broad sense for L7 (du).
Obgerve that

(24) 2 @) =35+ 3 3 b,
=1 =0 sl
where the numbers
1
(25) by = ff(t)wh(t)dt (k=0,1,2,..)
)

are the coctfeients of the development of f in terms of {w,(z)}2_,. Denote
by 8,(f, %) the nth partial sum of that development.
The following inequality can be derived from condition (g) without much
difficulty .
m
| 3 (8 s (5 ) =80, (5, )|
i=1 h

- 017
Lp(llﬂ)%-;ﬁA W1y
holding for arbitrary naturals n, < m, < ... <n; <...and fo%' m=1,2,...
Applying identity (23) we hence infer that for any function fe IL”(du)
and any positive integer # the partial sum 8,(f, ) satisties in norm the
estimate (the meaning of n,’s being as in (23)):
n

18.(S5 “’)Huj(‘,ﬂ) = H 2 (Sq77i4-1(f“’qa-(~11 o) “Sﬂni(fwn+1¢ ©)) @11 (@) “
i=ml 7

LP(du)

< 2 =2 fw, =2-2|f]| .
Liry 1105 41ll 0, " LR

Thig eoncludes the proof of the implication (g) = (8)'. . g
To obtain the implication (8) = (B), let us notice thad;llf the Walsh
gystem is a basis for L?(du), then there cxists a constant B, such that

ki
(26) | 3 00 @)y < By (0 =152, 000,
Tewal

T . . ) . ) [loggn]
wheroe b,’s are given by (26). Using inequality (26) and writing »' = 2°°%
we obtain

n 13’1 \n~|
V' « H O ‘ + H g Xt
Hlﬁ A X o k%{ i X £2(du) l\:m%};—ll'l | LP(dw)
3 Y < 3B,
= 12_11 by wy, P2z - H km%:_l 500 || oy S © P2V Lo

and thig implies condition (B).

2 — 8tudla Math, 71, 8
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The proof of Theorem 4 is complete.

The Walsh system does not constitute an unconditional bagig in
I?(du), for any measure u and any exponent p 2 (p > 1). This is an
easy consequence of a theorem of V.F. Gaposhkin [3].

COROLLARY TO GAPOSHKIN’S THEOREM. Let {p, (2)}2., be a system
of measurable functions on [a, b]. Suppose that these functions are commonly
bounded and normalized in L, .. Lot further y(w) be o positive Lebesque
integrable function. Then the system {p, (@)}, 8 not an unconditional basis
in L g (w(x)dw), for any p #2 (p > 1).

Proof. We first consider the case of p > 2.

Assume that {(y(2))" e, (@)}, is an unconditional basis for LE -
Then, according to Gaposhkin’s theorem, the following inequalities hold:

(@7 mp(fb (f @ (v (@)7 ¢, ()" d”)w
a n=l
b oo
<Iflgy < Mp(( Lf ‘n;: a (p (@) g3 (@) dm)l/z’

here m,, and M, denote certain absolute constants and a,’s are the coeffi-
cients of the development of f(#). Now, on the one hand, the common
boundedness of the functions of the system implies thatb

b oo 3
(28) ([ 3 @)™ peas)” <, ( 37 at)™,
J\Z =l

M, denoting a certain constant, On the other hand, we have

( fb ( g a2} ()" p(a)ds) "
>(/

and since the system {g, ()}, is commonly bounded and square-normal-
ized, we hence obtain

0o b

ad ol (m)) 1‘1;(,,})61“})1/2 (f (@) dm)~(r-ﬂ)/np’
1

2= @

b 0 )
(29) (J (X aa@)® pan” > my | 3 @)
o n=1 =1

with a suitable constant m,. Inequalities (27), (28), (29) show that the
corregpondence between functions feLf,, and the sequences of their
coefficients establishes an isomorphism between the spaces L¥ . and I*;

. . - 2 ’ . [u,b]
and this is impogsible, in virtue of a theorem of Banach (see [2], p. 7B).
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As regards the case of 1 < p < 2, observe that if the system {p, (#)}_,
is an unconditional basis in If, , (v(x)dw), then the system {[y(2)]*
?,(®)}n-1 15 an unconditional basis in If , (v(2)dz), where 1/p +1/g
=1 (and so g > 2). Thus the agsertion in this case follows immediately
from the preceding case, and this ends the proof of the corollary.

It is well known that, given a uniformly bounded orthonormal system
of functions on [a, b] and & measurable function M (z), in order that
multiplication by M (#) should make the system into an unconditional
basis for ILi,,, it is necessary and sufficient that M (x) and [M ()]’
be almost everywhere bounded (see the papers by Babenko [1] and Olev-
skil [15]). Accordingly, our Theorem 4 shows that a necessary and sufficient
condition for the system {M (x)w, (®)};, to constitute a conditional basis
in L}, is that the function w(x) = (M(»)}’ should satisty condition
(o) and one of the functions M (x), [M(2)]™ be unhounded.

Applying Theorem 4 we can eagily construct an example of a system
of functions, which is a basis in I ;; for all p ¢ (e, d), where (¢, d) is any
preseribed interval, 1 <<e < d< co; we can also construet examples of
conditional bases in Lf, ;.

The following statement is easily demonstrated by a straightforward
verification of condition (3):

PrOPOSITION. Consider the Haar sysiem {y,(2)}o., and let p,>1
be any number. Write

(30) M, (m) =a', ge[0,1], &=

+1,
and consider the system {M.,, (@)y,(®)}5=;. For & = —1 this sysiem is
@ basis in Ll if and only if p € [1, p,); for & = 1 this system is a basis
in Lfy 1y 4f amd only if p € (py/(p,—1), oo).

This proposition together with Theorem 4 lead directly to the following
two theorems: )

THEOREM 5. Consider the Haar system {x, (@)}n, and lel (¢, d) be any
interval, 1 < ¢ < d << oo, Write

M_, q(20) for
| Moy (2(2-112))  for
. The system {M(2)y, (@)}, i8 an unconditional
basis in L 1, if and only if p e (c, d).

THEOREM 6. Consider the Walsh system {w,(%)}n,. Then the system
{M(a”) W,L(W)}::;“ where

s,p1<

2 e[0,1/2],

(31) we(lf2,1]

M (@)

M(z) =da", xe[0,1],

and r is amy number in the interval —1/2 < r < 1/2, constitutes a conditional
basis in Lfy .
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5. {4, (#)}r- y41 being an unconditional basis. In this section we prove
the following theorem:

THEOREM 7. Consider the Haar system {, (%)}, . Let p be an exponent,
1<p< oo, and N be a positive integer. The system {yx,(®)}w—ni1 8 an
unconditional basis in L (du) if and only if it is a basis in LP(du).

Proof. The “only if” part is obvious. We shall prove the “it” part
for the case of the system {y,(%)}:-,. The assertion in the general cage
then follows by virtue of the considerationy at the end of Seetion 3.

We shall need several lemmas.

LeMMa 4. Let
(32) Ay 2 Ay 2 oo 2 Ay = ..

v gl = 128 (k =0,1,2,.)

be a sequence of Haar intervals, ¢(0) = 2, and let y,,(x) denole the Hoar
Junction supported by A, . Given a series

o
2 Uy Kagry ()
k=0

(33) = F(2),

let us write
(34) F(w) =¢ for

Then for any sequence {ek},"j:n, where &, = 41, we have the inequality

1 2

pedg Ay (0=0,1,2,...).

(35) = 27" Zlozl

=0
for
Proof. We shall show by induction that

_0+221 -1,

for wze

#e gy Ny  (=10,1,2,...).

(38)  ayyyle

Ai(i)\Ai(i-H) (4=0,1, 2? NE
inequality (35) is a direet cousequence of this.
Tor j = 0 we have

(37 S’m,w (@) = () — @ 45 () -

Iuﬂl
Sinee i(0) = 2 and since the function y(#) is the unique term of the
series (33) that does mnot vanish on the interval [0, 1]\ Ay, We obtain
in view of (34)

(38) ayxs(2) =6, for wel0, INNdyy.

©
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Now suppose that (36) holds true for j = 0, .. Then

- Jo-

— (c,- + Sl 27'“1“101) for

=0

(39) a; 25 (@) = (S Ai(ju—i—l) (J < Jo)-

We have, by (33) and (34),

jo41

Z 2y () = G4

j=0

(40) for  we dypen\ digyray

Hence by (39) follows equality (36) for j = j,-+1. This concludes the induc-
tion and ends the proof.

LemuA 5. Let w(x) be a positive-valued Lebesque integrable function
and let p > 1. Let further { Ay Yieo be a sequence of Haar intervals satisfying
conditions (32) and let B, > 0 be a constant such that

1
41 —_— ®) dx
I RCE (o

n=1

f Co(o 10~ o]

<B, (k=0,1,2,...).

Az(k)[

Then theve emist constants B and S > 1, depending only on B, and p, and
such that the following estimate is valid for any positive integers j and 1
1<igy):

([ vwra]”|

Proof. We have, for any positive integer %,

~llp

f [y (2) ]2~ ”d) < B(1j8)~

[eX] i)

(42) ( f [1/)(1:)]"”(1’”1)6154;)( J [?p(m)]_”(“'l)d.n)—l

Oy 1) Gty
=1+ w1 ede) ([ [pte)e0as)”
ANk 1) i)
. olp-1) -
=1 f [ ()]~ 1/(1’"1)dx) - B M=) (»i‘—) ( f 1/}(:12)61;0)1/(2] )
| ]

AN 1) i

(@) dm)“ ®=D

Ai(k)\“’ i(le+1)

«

A \Ti(k+1)

>1+B~1/(v~1)( 1 )Mp—l)

l 1,(7)]

[p(@)]~9 da).
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Since the inequality

1<';‘|(f«/» ) (f [y ()]~ g, )1’*1%’17
s

is true for an arbitrary interval I, we obtain from (41) and (42):

—- —_1) g\
(43) [ @) [ [p@] e D)
EEHCERY) Cdyre)
=1 .;;1/(11 H( (1/2) piw=1) .. gole-1)

Using condition (41) once more, we hence get the estimate

1 ( o\ . (=1
piada) ([ Tp()e0)
[l \, 1—([]) f

Gy
(p—1){p g ~(n=1)/p
<B}f"( f['zp ~Ue=1 g, ) ( f [ ()] V2D G
i Cdyh)
B8y,

holding for alljand 1 (1 < 1< j), as asserted.
‘We now formulate one more lemma, which i8 just a specific case of
a theorem of Hardy, Littlewood and Polya (see [167, p. 198).
LeMMA 6. Let {w,}o., and {v,)v o be numerical sequences, {u,} el
v} el, 1<p< oo, and let {ow, )., denote their Cauchy product: w
3

= Y, ;0. Then {w,} € I? and we have
K=o

{2}y < Mt g 1{n} -

Proof of Theorem 7 for the case for N = 1. Agsume that
the system {y, (%)}, is a basis in LP(du), which means that conditions
(2)-(d) of Theorem 2 are satistied. For any function fe L¥(du) there is
a unique series

Z “’ﬂ/ Xn T‘)

n=2

n

(44) (convergence in L"(dp)).
By virtue of & theorem of W. Orlicz (see [8], p. 30) this serics converges
unconditionally in L”(dy) if and only if the series

00

2 6711 a’n Xn (a;)

n=2

converges in I”(du) for any sequence {¢,}%_,, &, = =-1.
Let i(k) denote the index of the Haar function supported by‘ the
interval 4% occurring in condition (c) of Theorem 2 (k=0,1,2,
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= 2). Let us split the series (44) into the sum

Z Oy 1 () = 2 a’i(k)xi(k)(w)'[' 2’ a’n%n(m)’

n=2 k=0
where 2’ denotes summation with ommision of the terms distinguished
in the first sum.
Theorem 2 and Lemma 3 imply

Y‘a S

(46) iy Xiy () = 5 dyy|
“124(37)

= RIONICERY

for  wedp\N ey  (1=0,1,2,..).

Since {¢;} € I¥ and sinee the measure u satisfies condition (a) of Theorem 2,
the convergence in L*(du) of the series (44) forces the convergence in
L?(du) of the geries (46).

According to Lemma 4 we have

12%%4,5 )|< 221 Yol for  me Ay Ndgey (G=0,1,2,...).
Writing
(4’7) 2 Eka’]cX'l(k) G(w)
fe==0
we obtain
iy A ip
6 @l < (3 X 5l [ (@) do)
J=0 =0 AON\Yil+1)
o ) J _ _ (»-1lp
<( SEX( [ ser@al” [p(@)] @ Dda)” T x
=0 0 Lm0 ANy 41) imNdi+1)
p\ 2
X ( f (@) dm)l/p ) )
i) Ni(i+1)
@ il 1 -1
) / - p— p— J/p
<(3(3 ot v as] " ([ bvtol e
Je=0 M= dpyNAipn) M Cayq4)
Up & y
<( [ w(m)dm)””)p) (35, Fla)iP (o) da)™.
4i5) i=0 AN+

Henece by Loemma 5 we get

”G( )HLW(d/t) _yp”f”LT’([hl +

+B( X (Z(

=0 =0 d;qy\4ili41)

p
If(w)i"w(w)dm)”z’ (1/3)1‘—1-;)1’) ’

where S > 1.
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Finally, applying Lemma 6, we conclude that there exists a constant
B, > 0 guch that

oo
(48) H 2 er “}:Xi(la] (56‘) HLW((I/L) < B;z ”f”LY’(dl:) .
k=0

Now, the function G(») belongs to L?(du) and its development in
the hasis {y, (#)};_. reduces to terms with indices 4 (k) (& = 0,1,2,...);
other coefficients are equal to zoro. The cocfticients of expansion in terms
of the system {y, (@)}, are uniquely determined by the values of the
sum on the intervals of constancy. These observations serve as a motiv-
ation for the convergence in L? (du) of the series (47).

Applying Theorem 4 to each of the intervals Ay Aygyay and to
the series ) s,a,%,(w) we see that this series converges in L?(du), inde-
pendently of the choice of the ¢,’s (e, = +1).

This ends the proof of Theorem 7 in the case of the system {x,, (#)}5.,.
As it has been already remarked, the proof in the general cage is a simple
consequence of the above.

6. On the Haar system with finitely many members removed. In deal-
ing with such a system it is advisable to use notation and definitions
introduced in the paper [9]. Let us recall them brietly.

The symbols 4, and 4, denote, respectively, the left and the right
half-interval of 4,, the support of the mth Haar function A (@), 0= 2.
For n =1 we set 4; = 4y = [0,1]. The field of sets generated by the
intervals 4, 45, 1< i< N, and the whole segment [0, 1] iy denoted
by 8(4,, iy -y Ais Jiy)e Tt is considered as a measuve field, with
the Lebesgue measure.

DErINrrron. Let {L}Y, be a finite collection of atoms of the field
Sy, 45, ., Aigr A )y 1< Ty < Ty < 1o < Topy . We call (T}, am adomiss-
ible collection itf L,n4 & # @1 <0< N, and for any integer j (L << V)
the field 8(d4,, 4, ..., 45, 4;7) has exactly § distinet atoms containing
(each of them) at least one of the sets Ly L<ti (.

It is easy to show Dy induction (see [L1]) that for any N integers
biy 1< ky < by < oo < Iy, one can find an admissible collection of N
atoms in the field §(4;, Ay ooy Miyy Ary). Thoeorem 8 of the paper [11]
and Lemmas 1 and 2 of the present articlo jointly result in the following:

TumoreM 8. Consider the Haar sysiem {An (@)} and the system
{tn; (®)}52. obtained from the Haar system by removing from it a finile col-
Lection of fumctions {xkj(m)};\;“ 1<k <ky... < lky, N denoting any positive
initeger. Let u be o positive Borel measure on [0,1] and let 1 < p < co. The
Sfollowing conditions are necessary and sufficient for the system {y, (@)}, to
be a basis in broad sense for the space LP (du): '

®
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() du (@) = p(x)dw;

(by) w(®) >0 a.e. on [0,1];

(cy) there ewist an admissible collection of atoms {L;}{L, in the field
B( s Aidys -or Doy dity) and sequences of Haar intervals {AD}e,, 1< ]
<N, with

Lo dP o 4P 5 .. 5 49 = ...
4P| = §ldy ),
|A§j)| == |A§rj-1>~1 A<ji<s k=0,1,2,..),

such that

(@17 ¢ LD, [p@) eI (1<j< N3k =0,1,2,..)

YNk

and
' [p(e)]™ e LMOD .

¢ UL
j=1"

From Theorems 2 and 8 we easily derive:

TurorEM 9. Let {z, (®)}i1, {xkj(;m)}jF;], 1<k <ky... < 7:.:\:, u and
p have the same meaning as in the preceding theorem. Then conditions (ay),
(by), (e1) of Theorem 8 together with condition (dy) formulated below are
necessary and sufficient for the system {y,, (0)}Z, to be a basis in the space
L2 ()

(d,) there ewists a number By, > 0 such that, for any j and k, ISj< W,
kE=0,1,2,...,we have

1 1 v 2\
(o [ o)z [ e Vs < B,
‘Alg [ (‘- i‘dk { o 0

) gy

and such that for every Haar interval A with |4} << |4, | which is not ident-
deal to any of the AP (L <j<N;k =0,1,2,...) we have

10 A
L f y(w)dw ) {~—- [ [1/:(;1»)]"”“’”&&;1)) <« By,
14l 4]

Lroof. Neesssily. Conditions (a,), (by), (¢q) are §atisfiet1 in yiew of
Theorem 8. It remaing to verify condition (d,). To this end, conmodoer the
system {D, (#)}i, conjugate to {xm(m)}?;%. Denote by {2, (®)}i=, the
get of all Haar functions whose supports lie in 49, 1 <j< V. Pub
@ (w) for we A0,

0 for weCd4P
(I<ji< Nk =1,2,...).
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respect to p.

Fix j, 1<j< N, and apply a linear transposition of the interval
A onto (0, 1). The function y(x), restricted to A, is carried into a fune-
tion y;(a) defined on (0, 1); the systems {y; (#)};2.; and {py, ()}, trans-
form infto systems on (0, 1) biorthogonal with respect to the measure
dpy () = y;(w)de. Now, the system resulting by transposition from {y; M)
coineides, up to & congtant, with the system {x“ (m)},‘;i,,_g, and the latter
is o basis in broad sense for LP (du,), on account of condition (o).

We have assumed that {6, (@))% 18 o basis for L¥(du). Hence, in
view of the above considerations, we infer that the system {, (@)},
constitubes a basis in P (du;). An appeal to Theorem 2 concludes the proof
of necessity.

Sufficiency. Conditions (a,), (by), (¢,) imply, in virtue of Theorem 8,
that the system {y,, (#)}72, is a basis in broad sense for the space L7 (du).
Denote by {®, ()}72; the system conjugate to {#n; (®)}i21. Using an argu-
ment similar o that applied in the prootf of necessity (now in the opposite
direction) and resorting to Theorem 2 we end the proof of Theorem 9.

In just the same way as we proved Theorem 9, from Theorems 7 and
9 we derive the following:

TuporeM 10. LZet {y, ()}, {xkj(m)}ﬁ_,l, L by < By < oo < iy,
w and p have the same meaning as in Theorems 8 and 9, and assume p > 1.
Then each of the following statements implies the remaining two ones:

(1) The system {y,, (@)}i2, constitutes a basis in L (dp).

(ag) The system {otn; (@)L, constitutes an  unconditional basis in
L?(dy).

(a5) Conditions (ay), (by), (cq), (dy) are satisfied.
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