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A negative result in differentiation theory

by
BERNARDO LOPEZ MELERO (Madrid)

Abstract. Given a differentiation basis in R™, we construct counterexamples
to a.e. differentiability which remain counterexamples after any rotation of the
basis, and we prove that they are typical elements (in the sense of Baire’s category)
of the Orlicz sgpaces to which they helong.

Notation. A Busemann—Feller differentiation basis # is a family of
open subsets of R™ with every # ¢ R™ belonging to sets of arbitrarily
small diameter which are in . |A| will denote the Lebesgue measure,
and we refer to

D [ f@) =lim{(1/IR|) [ f, s R e 4)
i3

and to
D [ f(w) = limsup {(1/]R|)ff, zel eaf}
»

a8 the derivative and the upper derivative of [ f relative to # at the
point «, the lim’s being taken as the diameter of R decreases to 0. M
will be the maximal operator associated with 4:

Mf(z) = sup{(l/|R|)f Ifl, ze R ew}.
R

C will be some positive constant, not always the same.

Introduction. It is a well known fact that if we substitute n-dimen-
gional intervaly for the balls or cubes in Lebesgue’s differentiation theorem,
it turng out to Lo false for sowe fe L', and even in one sense (Baire’s
catogory) for almost every f e L' at every point of R™ (Saks’ rarity theorem,
gee [8]). To seo the relevance of this fact, let us suppose for inktance
that we are dealing with the rectangular Cesro means of a function
feI*(RY ut the point (@, Yo):

s @0y 40) = [ Flwo—, yo—y P 5 (@) K (y) dody,
where Ky(a) = (1/272R) (1 — cos(2nka))/o?) is the Fejér kernel.
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We have lim fp (@, Yo) = f{®, ¥o) for ae. (®9y Yo), but we cannot
R0

expect to have the same for the unrestricted R, 8§00 limit ?oecause
Ky (@) > ORyg_yz,1m» 50 that fp g controls the mean of f over ‘uhe interval
(—1/R, 1/R) x (~1/8,1/8) and the existence of the latter 1113(111; would
imply Lebesgue’s differentiation theorem for the interval basis.

Saks’ rarity theorem is only an examplo+of the following general
situation: let # be a Busemann-Feller differentiation basis in R™ that
is homothecy invariant and let @ be its halo function, l.e.,

) @(IMI) =sup{|{MxA >l/’ll/}|, A CRm, I_AI B 1},

Then in every Orlicz elass ¥(L) with ¥ smaller than & at infinity, we
can find some f which is not differentiated by the basis (see'[3]), and
thig implies that the same is true for every f € ¥(L) except those in a set
of the first category, as Moriyén [6] has proved. )

Ii & is again the interval basis in R? we know from the theorem of
Jessen, Marcinkiewicz and Zygmund [4] that it differentiates every
feL(logTL),,, so that ®(u) cannot be greater at intinity than u(logu),
and direct computation shows that it is exactly of the same order, so
that we can substitute anything like I (log*L)** or I (log*L)/log* (log*L)
for ! in Saks’ rarity theorvem.

On the other hand, Zygmund had raised the following question,
which may seem natural in view of the previous considerations: given
feL'(RY), will it always be possible to find a pair of roctangular axes
such that the interval basis in those axes will ditferentiate f?

Marstrand [5] answered this in the negative, exhibiting an fe It
such that : or every rotation of the axes the upper derivative of f relative
to the rotated interval basis is + co almost everywhere, and this wag
improved upon by El Helou [2], who found such an f in (M) L(log™L)%

Our purpose here is to show: a<l

(a) that the idea in Marstrand’s congtruction works with any trang-
lation invariant Busemann-Feller differentiation basis, and )

(b) that things are, here also, as they ave in Saks’ rarity thoeorcn.

These two ideas were suggested to me by Antonio Obrdobs and
Miguel de Guzmén, whom I am glad to thank hero. .

Result. We suppose first that # is also homotheey invariant and
define, for 0 <r <1,
H(ir)=U{Re%, Ec By, |[RNB|[\R|>r}, () = u"|H(Llu),

where B, is the ball with radius r around 0. (For the definition in the
general case, see Remark 1.)
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TusorEM. Let ¥: (1, co)—>R be an inereasing, - convex function such
that

lim (¥ (u) /& (u)) = 0.

U>00

Then every f € W(L) exoept those in a set of the first category in ¥ (L) verifies
that: for every rotation y of R™ the upper derivative of J f relative to the
basis %, oblained by rotating & through y, is -+ co almost everywhere.

J HO)

Fig. 1

We note that for the interval basis in R® (see Fig. 1) an easy com-
putation shows @ (u) ~ Ou(logu), which gives the result of [5] in the
stronger version of [2] if we take for instance ¥(u) = u(logu) (loglogw)™.

A small-scale model of the proof. We thall now use some of the ideas
of the proof below to give a demonstration of this known fact: there is
an f e L'(R*) which is not differentiated by the interval basis. In fact,
we shall construct feZ' such that D [f(®) = co on a set of positive
ICARUYC,

For each m, we divide the unit square into n2 equal squares and
consider the a2 balls with radius #~'7, concentric with them. We denote
the union of these balls by 0,. Next we consider the images of H(r,)
by the homothecies that apply the ball B, onto each of the balls in O,
and we call K, their union. '

Observe that |0, = |B, | and [K,| = |H(r,)| ~r,log(1/r,).

Now we take f, = A,xc, and f = supf, (the numbers #,, 1, > 0 will

n

be determined. later).
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¢

To get feL*(R?) it is enough to have

Dk, < oo,
n

By the definition of H(r,) and the homothecy invariance of the
interval basis, K, is a . union of intervals B with diameter legs than o~!
and such that

@

Ay < (L/IR)) [ fu < (L/R) [,
I I
so that if o elimsup K, and
n

2) lima,r, = oo,
n

# belongs to a contracting sequence of these intervals, and we have
D [ f(#) = oo. So, let us look at the meagure [limsup K, | As it stands,
A 3
it need not be greater than lim |X,| = lim#,log(L/r,), which must be 0
n L

n
to fulfil (1), but if we “move” the K, to prevent their intersecting too
much, that measure is likely to increase. In fact, an ecasy application
of the Borel-Oantelli theorem tells us that if we have

DK, = oo,

then for some #, e R* we have

3

[lim sup (2, +K,)| > 0.
n

"This means that we shall get our f as the sup of the shifted f, (v —w,)
if we can find numbers 7, 4, > 0 satisfying (1), (2) and (3). We simply
verify that :

Ty = (nlog®n)™, A, = nlogn

will do the work.

Proof of the theorem. We construct So a8 in the previous section
except for the fact that we divide the wnit cube of R™ not into w™ hut
into M7 equal subeubes, where the integers M, o0 will bo determined
later. Consequently, the balls in €, now have rading M te,, and we have
a8 before |0,] = |B,,|. Tinally, we fix a rotation v and consider the imagoes
of y(H(r,)) to form the set K, (y), and we still have K ()| == I (v,)].

icm
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If we put f = supf, and the 4, are increasing,
n .

Jen =3 [ Pu)<o Y mwny,

Op-"U 0y
n<k
so that if we want fe ¥(L) we only need
(1) D (,) < oo
n

Next, by the same reasoning as before applied to K,(y) and the

bagis 4,, we have D, [ f(w) = oo for » € limsup K, (y) provided we have
n

(2)

lim4,r, = .
n

Bo we again want [limsupX,(y)| > 0. Note that the Borel-Cantelli

n
theorem cannot help us now because the sets K, (y) are different for each
y and they are very “thin” sets as » increases, so that the required shift-
ings8 m, will be a crazy function of . So we abandon random shifting
a8 the mixing method and use the following idea, which is the key to
the whole construction: if the M, increase quickly enough, the sets K, (y)
are probabilistically almost independent, i.e.,

lKnnKn+1l = |Kn| |'Kn+1|

/)
NewslIP RS

o PR [T
||
U1

Tig. 2

(see Fig, 2) and the same is true for their complements, so that we obta,ix.}
the following estimate (sec Remark 2):
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(B) 1-| U K< [] =@ Ew)).
pEn<g pRN<Q
But as
limsup K, (y) = () U Ka(y)
P NB>D
and
1— limgup K, (y) 2 1—| UK »);
to get limsupX,(y)| =1 we only need, according to (B),
H (1—(1/2)IE ()} = 0,
or
(3) D H(n)] = oo, -

We have arrived at the same three conditions as in the previous
section and ‘we have reduced our problem to that of finding numbers
Tny A, satisfying (1), (2) and (8), and for this we apply to

h{r) = |H(r)| g(r) = t™F(Lfr)
the following lemma, whose proef is easy: '

LeMMA. Let h,g: (0, 1)—>R such that

and

bmg(r) =

r—>0

hm( (r)) =o0.

Then we cam find two sequences r,~0, A,~>co such that

D hlr) = 00, 3 (A )g(L/A) < oo

We have now obtained a function that misbehaves a.e. in the unit
cube, and it is a trivial task o extend this to the whole R™ by adding
a geometric series of multiples.

Only the “rarity” assertion in the theorem remsins to be proved.
For a given f and b,8>0 consider the st

B(f,y,b,s) = {# eunit eube such that (1/|R|) i{f< b
foeReB, and diam(R) < 8},

Given ¢ >0, we are going to prowve that for the f which we have
constructed and a small enough % e ¥(L) we have

B (f-+h,y 9,0, 8)] < &.
We take n, such that V> m, 4,n, > 2b and M < s,

icm
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OrAmM. For more than half the points y € H(r) (in measure) there is
some R'c B suoh that
yeR, |BnB, R >r
and
|BNB,| >

where a depends on & and r but not on y.

Let us then suppose that we took only that half of H (r) as the whole
H (r) from the beginning (this does not modity our construction) and we take
b e ¥(L) such that ||hf; < A,a(r,)M;™/2. Then, for « €K »(y) and the
bomothecy n such that o e oy (H(r,)), let y = (noy) ™ (z), B as in the
claim and R = (yoy)(EK). We have

(/IR [ (F+8)> (L/B)(Alroy (BB, ) — [ Ib])
R R

a=aqa(r)>0

> (12) /1R [ fo> Aptal2,
R
8o that, if n > n,, (lllR]),{ (f+h) > b and diam(R) < s, i.e.,

o ¢ H(f+h,v,b,s).

We now take n, > no such that [] (1—
implies, as before: ngKnSny

(1/2)}H(r,)l) < &, and this

i-1 U

ng<n<ng

K, (y)] <.

As none of the preceding constants depended upon y, we have proved

that if by < min 2,a(r,)M;™/2, then
npEN<ny

Yy |H(f+h,v,b,8)| <s.

But as [bll; < Obllwg, (by the Jensen inequality), we have proved that
S is interior in the ¥(L) topology to each of the sets

By e = {g € ¥(I), VylB(g, v, b, 8) <se}.
Given g e L™, we can repeat the same argument beginning with Aty
> 2(b+ligllos), which. gives (1/IRI)Rf (f+h) > b+ {9l L0, (lllRl)Rf (f+

+g-+h) > b, so that the interior of F),, contains f-+L*, which is dense
in ¥(L).

It is now an easy exercise to prove that a function fe W(IL) is as
n Fn,lln,l/n’

which proves the theorem if we justify the claim. But this follows from
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Hry=JU{Re?, BBy, IRNB,|/|B| >r and [B| > 1/n}.

A trivial corollary of the rarity assertion in the theorem is that the
typical f e ¥(L) is doubly as bad as the ove we have constructed: if
verifies D, [ f(#) = —co as well.

Examples and remarks.
1. If # is not homotheey invariant, we define

Hir,s) = {Re #, R B, |BB,|/R>r), 0<r s<1

and we build K,(y) with translated, rotated copies of H(r,, M, b, 1If
we now define h(r) = liminf[H (r, 5)|s7™, we still have the estimate
80

(B') 1——1p<y<nffq(y)|< [1 1=@@ney)

pgsn

(which reduces to (B) if # is homothecy invariant) and the theorem re-
mains true with &(u) = w™h(1ju).

2. The validity of our estimate (B), which we entrusted in the proof
to the geometric evidence of Fig. 2, can be justified by the following
lemmas: : . '

Levwma. Suppose B, are measurable subsets of the unit oube @ of R™
such that for every suboube Q' in the j-th dyadic subdivision of ¢ we have,
if k>j, i

(B, NQ'| = | B, 19"

Let {4,} be a family of measurable sets such that for & > 0 there are a com-
pact K, and an open V, verifying K,c A, c Vyy |V—~K, <& and
dist(K,, V2) = d(e) > 0 uniformly in a. ‘

Then we have

Hm (A, N By — | A, By =0
koo

uniformly in a.

We apply the lemma to gef (B'). Suppose we have chosen My, ...
vy My {4} will be the sets () (@ —K,(v)) forall y and allp =1, ...
n<gen—1
iy =1L
By, will be the complement of the union of 2¥" rotated, translated
copies of H(r,,27%), ie., the candidate to be Q—K,(y) if we choose

e ©
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M, = 2% Wo have for all p, p:

| N @—K)/ [] [1—aphey)

pEgEn pgn-1 :
< (L—2"™|H (r,, 279))) +(r,) /4
< L= (h(ry) =T (r,) [4)+h(r,) 4 = 1—(1[2)R(r,).

The firgt inequality is true for all & > some j because of thé lemma
and the induction hypothesis; the second is true for some % > § because
of tho definition of A(r,). Thus wo may take M, = 2* for this &.

3. We havo-computed & () for some bages that are only translation
invarinnt; they are of the type “intervals with dimensions s, X... X8, X
X Py(815 000y 80) Xooe X Pyp (815 0015 8,)", the ¢/'s being increaging functions
in each. &; in the cage of r == 2, m = 3, Oérdoba [1] has proved L(log™L)
to be the border line, and the conjecture for the general caseis L(logt L)y ;
for our theorem we also obtain & (u) o~ Ou(logu)™ in the computed
canes. '

For the interval basis in R™ the result is also sharp: &(u)
a2 Ow(logw)™ !, which we know to be as much as is possible from the Jessen—
Marecinkiowicz—Zygmund theorem.

4, For the “rectangles in lacunary directions” basis, the computation
was already made by Stromberg [8] to get a “lower bound conjecture”.
In fact, if @ is the usual halo function and @,(L) is the largest Orlicz
clags that % differentintes, wo obviously have at infinity & < & < @,.

For the k-genorated sct of exponential directions we have & (u)
o Ou(logu)*+! and so far nobody seems to know if &, ~® (the best
result iy Py (u) < u® Vp > 1, by Nagel, Stein and Wainger [7]).

B. We know that the first inequality in Remark 4 is sometimes
a striet ono: the “roctamglos in all directions” basis gives & (u) = u3,
P (u) = oo, It it an open question whether or when the second inequality
can be striet (see [3]).

6. By making & wild induction from the preceding examples one
cowld guess owr rosult to be sharp it @ () < w? for all p > 1, but we can
offer no reasons for suel n belief but the desire to have an index so easily
computablo. Ag the last example of this easiness, we give the result for
tho “rectangles in a Cantor set of directions” basis: @ (u) ~ Cu*** where
& ==log2/log8 for the usual Onntor set.
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