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On multilinear singular integrals on R*
by

JONATHAN COHEN (Knoxville, Tenn.)
and JOHN A, GOSSELIN (Athens, Ga.)

Abstract. Let ¢ denote a multilinear singular integral on R” of the form.
Q@-y T
Of(@) = p-v. an T ﬂ P01 2, 9)f (9) By

where P, (b; ,y) denotes the mth Taylor series remainder of b at # expanded about

m
y and M = 3 m;. The main result of this paper is the inequality
f=1

10%fl < 4 ﬁ (3 wineg)iri

‘ Feal la}-fnj
1
where 1 > ? = 2 ;j— l<p< o, Q satisfies certain symmetry and inte-
j=1

grability conditwns, and O* denotes the corresponding maximal operator. Our proof
is based upon the method of rotations of Calderén and Zygmund.

Introduction. In this paper we study singular integrals on R" of
the form

(z—y)
Of(w) = P'V [o— yl"+M ”ij b7; a":yf(?/

where £(-) is homogeneous of degree zero and integrable over Z,_,,
the unit sphere in R", P, (b; 2, y) denotes the mth Taylor series remainder
hid

of b at x expanded about y, and ) my = M. The one-dimensional version
Jml

of our result with Q(-) = sgn(-) was established in [3]. We extend the
onc-dimengional result to R™ by the “method of rotations” introduced
by Calderén and Zygmund in [4]. Special cages of our result in R! or R™
include results in [1], [2], [3], and [6]. The special case of our result with
the product of two first order remainders was proved by Yee [7].

This paper is divided into seven sections, In the first section we state
the main result. In Sections 2 through 5 we deal with the “odd” case of
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our result. The results in these sections are fairly straightforward exten-
gions of one-dimensional results via the method of rotations. The last
two sections deal with the “even” cage. The methods needed in these
sections are different and more technical than those used in any of the
earlier known cases.

1. In this section wo state the main result of this paper. We shall
refer to result (i) as the “odd” case and to result (ii) as the “even’ ease.
TesorEM. Let Q(x) be homogeneous of degree zero and integrable on
Z,1 the unit sphere in R™. For j = 1,2, ..., m, let b’ (w) have derivatives

, 1 1
ofo'rder my i LI, l<r<oo. Let 1<p<< oo, 1< g< oo,-é- .__.5—;-

-+ 2——, and let
i=17j

o= [ o HPm,b @, )W)y,

lz—y]|>e

C.f(2) = sup [0:f (21,

m
where M = ij. Then

i) if .Q(—m) = (—1)M““.Q( ), then the operator Oy is of strong type
(9,0 and

1Cufllg < ﬁ (> i )ifl, [ 12@)de
2

J=1 |e|=mj

where do denotes surface measure on Z,_, and C depends only on p,ry, ...
vy Ty M, and n,
(i) if Q(—a) = (—1MQ(w), Q is in Llog*L(Z) and [ 2°Q(w)do = 0

Sfor all o such that |a] = M, then the same conclusions hold as in (i) except
that [ |Q(2)|do has to be replaced by [ |Q(x)|(1+log¥|2(m)|)do
3 =

The proof of this theorem will be similar to that in [1]. We shall be
brief in those areas of the proof which carry over with minimal change.
‘We refer the reader to [1], [4] for additional details. We note that the
boundedness of 0,f(x) in the one-dimensional case was established in [5].
Finally, we note that ¢ will denote a constant which may vary from
line to line, but which depends only on the parameters mentioned in the
theorem.

2. In this section we establish some lemmas which will be needed
later. The first lemma is analogous to 3.1 in [1].
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LemMA 1. Let N(x) be homogeneous of degree 0, and let D(t), > 0,
be such that t°®(t) is decreasing for some s <0 and ftM‘““l D(t)dt < oo.
Let b’ have my-th derivatives in L', 1 << 1;< co, and Olet l<p<K oo, 1< g
< oo and 1lqg =1[p+ g’r,. Let

0,110 = 5+ [ M@)o L) [ [ 200550, 9500000,

i=1

D.flo) = mp e [ Vom0 (52 ) [ 20y, w10}
J=1

=0
Then
WDufly < O ﬁ (2 1)l 1 (o)1 o

j=1 a|=m7

Proof. By standard arguments, it suffices to prove the estimate
for D.f in the one-dimensional case with f,d',...,»™ in 0F. Suppose

that | tM@(t)dt < oo and #®(1) is decreasing. Sinee
0
2z
0< o™ (20 P (20)2 < [ HB(1)dt >0
x

a8 & —» co, it follows that z*+'®(x) -0 as @ — co. Similarly, M+ &(z) >0
v m

as z->0. Let F.(y) =ft"’n 1Py, (b @, t+a)| 1f(2+a)ldt. Now
=1

i=
(b5 @, t+2)| < OT™A( bf )(m) where A is the Hardy-Littlewood maxi-
"Y function. We have

m v
F ) <0 [[A®h) @) [ 01t +o)ldt
j=1 0

< Ol A(f) @) [ [ A

j=1

Integrating by parts and using the above estimate on the boundary terms
yields

e flsv( )[]Pm,(b,wa(yw)\

= [ (L) o)y [ ] 1By #5050 g + o1y
o N F=1
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ceev a3 o)
< 04(f)(@) H A(®h,) <“)( f (Z)M—M”’{(%)J"j(%)})

j=1

<04f)@ [ [ 40h) @ f YY)y

Jml

The one-dimensional case now follows by an application of Hélder’s
inequality and the boundedness of the Hardy-Littlewood maximal oper-
ator on L? and I, j =1, ..., n. The n-dimensional result follows by a
standard rotational argument (see [4]). We note that the restriction
¢ = 118 not needed in proving the one-dimensional result, but is required,
to obtain the m-dimensional result by the rotational method.

The second lemma is a multilinear version of Lebesgue’s theorem
in n variables.

Levya 2. Let N (m) be homogeneous of degree zero with [ |N (t')|dt'
Zn—1
< oo where dt' represents swface area on X,

ne1- Assume for j =1,2,.
i ( R ____];_
..y m, f; e L'i(R") mmgﬂ g <L Tor o> 0, Lt
L(fay o) = [0 ] | ( f o 7t) o) dr)at
F=1

Then U T, (fy, ..., fu)(®) = 0 a.e.
>0

Proof. Let M(fy, .., fu) (@) = [ 1N(t’)|jﬁ FH@, ¢)at where f3(a, 1)

17 .
= gup (: f lfj(w+rt’)|dr). By Holder’s inequality and the Hardy—
>0 0
Littlewood theorem it follows that

n

f (r[fj (w478, 1) )qd'r 0[1( f TAT *|-7't)[’7dr)q”f

J=1 —co

Integrating over the space of lines parallel to #' and using Minkowski’s
integral inequality, we have

1) Ufol,. ,fm(madm)”“ (ff(fuv |[]fg(mz)dt)"dw)"“

J=1

icm
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le(z)[(ff(ﬂf (w, t')da)) " *a’
<o(fimwya) j]j[ ( f [ 1f; (@) r1da)™.

Let Bo(fry -y o) (@) =fN(t')ﬂ(%of‘f,(m+n') ——f,(w)dr)dt’. We now

show that R,(fi, .- fm)(@) =0 a.e. as & > 0. It is clear that R.(fi, ...
«es Ju)(@) =0 everywhere if fy,...,f, e 0. Let 6,J0. We keep f;, ...
vy fm In O and let f; e L (B™). We write f; = gi+-h] where g ¢ oy
and [l < < 8. Then R,(f1,fo --+s ) = Bulgly Soy - o) Ju) + Be(B], fos-
oy Jou)e Now BAG, foy +ovy ) (%) > O everywhere as & — 0 since all the
functxons are in OF. Also |R(h],foy--+s fu) ()| S 2" MR, fry o-0y Fu) (2)
a.e. Thus by (1), we have
|{m:1in}]R,(j,,

) @) > 8} = 1{w: Bm|B(, fyy - fu) @) > 8}

< lo: MK, foy -y fu) (@) > 2778 )
< 27™METUM (BT, Foy +o s )l

<amgs, o(f 13 @) ar ) f[ TS
J=2
<zmace ([ v () ar ) f[ (o715
I=2

Tt follows that R.(fiy---)fm)(®) =0 a.e. The result for f; e L"(R"),

j=1,...,my, follows by a simple induction argument on the number
of functions not agsumed to be in 0. We note that E( fl, vy ) >0
a.e, if H f; is locally in I? for some g > 1. Now let (gl, cevy 0) be an

m-tuple of mtmnal numbers. Let J be a subset of {L,...,m}, and let

|J] = card(J). Now H Ifi— ¢yl is locally in L?. Thus if J = {f1y -y Jobs
R, (1f; le, o 1 "Ej, )(%) >0 a.e. (z) as & — 0. Let E(Jy'?jl:'wej,)
denoé:a ’nhels,et of measure zero where this fails. Let B = U UEBW; 0y

-y 0;,) Where the second union is taken over all 8- tuples of rational num-
bers, 8 being the number of elements in J. Then |B| = 0. We now show
that T,(fu, -+e) fm) (@) = 0 a8 ¢ ~ 0 if & € R*\H. For e R"\E, we have

T,(fryees Ju) (@) = fIN(t’)Iﬁ(i—f lfj(w+w')—f,(w)1dr) ar’

Jeml
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<[ mwa H ( f 1y (@+1t) — g1} = Ify ) -

ol +21f; (@) — g1 dr) ar

= ij D 2 [Tiso) -l [ 15 n (% f!m(w-m')-*ejw
k=1 J:{J|=k ked’ 0

15— gl Jar +27 [] - Jwvenar.

Fe=1

Each integral in the first terma is R,(If;, — O ly +ees 1y, — 05, (@) for a
subset J of {1,2,...,n}: Since » ¢ B, 11; follows that each term in the
sum goes to 0 as ¢ — 0 for any (g,, ..., 0,). Choosing (g,, ..., @,) 80 that

m

Hl |fi(@)—g;| is small, it follows that T,(f, ..
o

This completes the proof of the lemma.

o fm)(@) =0 ag &0,

3. In this section we show that the integrals

|2(z—y)|
o —y|»+H

[ [\ ®50, 001 )19

|lz—y|>8 J=1

are finite almost everywhere. Proceeding as in [1], let § denote a solid

sphere in R". Then
12(z—9)|
=0 H Py, (075 2, )| 1£(9)] dy do
- [1ew lff - Ianmj(b @—ryf(0—ry) drdo.
V=1 J=1

Now § is contained in {#| @ = 2z+sy’, #Ly’, 2| < B, |s| < B}, and
hence the inner integral is dominated by

(3.1)
— =1
ouds ! HIP’“} (b5 2+sy’, 24 (s —)y')f 2+ (s —7)y’) | dr ds de.
For j =1,2,...,m, let B(s) = b(2+sy’) and observe that for each Js

]ij(b z+sy, z+ (s —r)y )!fr“”‘1<A(B’ )(s) where A denotes the one-
dimensional Hardy-Littlewood max:tma.l function along the line {z+9y’;

icm°®
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s € R}. Thus the integral in (3.1) is dominated by

fHAB’ (s)f 7 f e+ (s—7)

lg|<B [s|<Bj=1

Vy')| drds de

m o

b0 dsdz ([ 17a+ey)pd)”

J []aw

lzl<B|8|<Bj=1

<Ca,}3 f f( 2 bJ (279’ )ﬁdy]llﬁ( f I 2+ y') lpdf)llpdz

l<Bj=1 —oo [oj=m;
Integrating with respect to 2 and using Hﬁlder’s inequality with ex-

s Tms 1 where~——+ ———l———_l
my 7l P ng: 7
integral in (3.1) is bounded by a constant independent of y’. The result
stated at the beginning of this section now follows.

ponents p, 7y, . shows that the

4. In this section we establish the existence almost everywhere of
limits of the truncated integrals C,f as ¢ — 0 under the assumption that 2
and f are smooth and f has compact support. By a standard approxima-
tion argument it suffices to prove the theorem with this additional assump-
tion. Let K denote the support of f, let § denote a solid sphere in R",
and let d = sup |¢ —y| where x € §, y e K. To prove C,f has limits almost
everywhere in §, we use induction on m, the number of factors in the
product defining C,f. The case m = 1 is simply the result in [1]. Assume
that C,g has limits almost everywhere in § whenever the product defining
0,9 contains at most m —1 factors and g € €5 with supp g < S. We now
consider C,f where the product defining O,f contains m factors. Then for
© €8, we have

2(0—y)
wn o= | H P, (0 2, 9) Lfy) —f(@)1dy +
0
e [ ol [ ] 2ots 0,000
a>jx-yi>s j=1

Sinee | f(y) —f(@)|
that

< e —yl, Lemma 1 with @(t) =t~ """y (t) shows

£2(
e ” 1By (075 2, )1y

is finite almost everywhere and therefore the first integral in (4.1) con-
verges a.e. in S. To prove that the second integral in (4.1) converges

d>lz—y|
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almost everywhere in S, we apply Green’s theorem. Let h(x) = Q(x)/
/jef¥*+*, By Euler’s formula on homogeneous functions, we have
2 (#°h(2))a = —Mh(z). We also have for |a| =1, .

{af=1 .

bl o)

0
g. [
-me(b !myy) - yl

ayﬂ
By Green’s theorem the second integral in (4.1) is equal to a term inde-
pendent of e plus

(4.2) (@—y).

[ |metitg—1

3 ——

lo|=1 d>|z—yi>¢

m
+ [ le—yih@—y) [[ P50, 9)dy.

lg—y[=2 J=1
We now show that (4.3) and (4.4) have limits almost everywhere in §
a8 & ->0. Using (4.2) we may rewrite (4.3) as

]| Touiso, u)}ay,

Jeml

(4.4)

(4.5)
1 1 y+a y ) d j
7 = (0~ *b(a—g) [ [Po,052,9)8),0)d0.
o1 3 1Sy 7 as gy =

Observing that «"+“h(w) is homogenecous of degree M —~my, we obtain
by the induction hypothesis that each of the integrals in (4.5) has limits
almost everywhere in 8. It remains only to prove that the integral in (4.4)
has limits almost everywhere in §. The following motation will be con-
venient. For 1< k< n—1, let #, denote the family of subsets of {1,2,...
..., n} having k distinct elements. For J e #, let J’ denote {L,2,...,2\J.
Then if {a;}j-, and {b;}, are two collections of numbers, we have

n 1 n—1
[Tw+v) =[Ja+]]o,+ 3 3 [] ab.-
Jm=1

j=1 =1 w1 JeF), jeJ
ke’

(4.6)

Using the integral form of the remainder, we have

)
. N\ m,
(&T) Py (b2, 0—u) = _)_J -a-{-uf P (6 — ) —

la]mmy ¢
1, u UuR a
— Zmb,{(m)u + Z —Jb(’.(a’)’“
Jul tet=m laf=my
m; . B s . 1 -
= 2 L f Py ’[bﬁ(w—-m)—-bﬁ(m)]d’i‘+ Z ”&‘{bi(w)’“ .

Ia|=mj 0 f"l-m]

icm°
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Ukring (4.6) and (4.7) we obtain

w—ylh@—y) [ [P ®'s 0,12

[@—yl=e J=1
et [ ety [ [ Put?s 0, 0—et)at
{t]=1 F=1
m 8
m,
=¥ | n —Lye | it (b (w —rt) —b] dr]dt'
‘ ML()Q[ZM J i) e far +

|ﬂ|-"lj

e M f () ﬁ [2 T:Tbg(m)(st')"]dzcur
A ,:::1 1oy
[r0 X ST 2

+S
Wi ry |
LY r=) JeS5, j&J lal=my

lnj.t"‘fr"‘!“[bZ(w——rt’)—bﬁ(m)]dr) X
al P

x ( Yy —E,—bﬂw)(az')“) it = I'5) + B(@)+ L)

la) =my

Now

sai< [ e [ D2+ Wi —rt) ~vianan)]

[67]==2 LY [a]nmj

m 1 &
- 2 R (_”'_{(?f lb,{,(m—n')—sz(oa)ldr))dt'.
im0 S

Applying Lemma 2 to each term in the above sum, we conclude that
I(z) — 0 a.e. (x) a8 & — 0. For I3(x), we have

B(z) = s-MEI 2 f h(t’)H( 2 %’—t’ﬂf‘w—l [b (& —rt’) —
JjeJ 0
keJ"’

vl Jef, |U|=1 |a|wmm

- bf.(w)]dr)( > )

lal=mny,

m-—~1
Wl ‘. m, ’ 0
-3 3. 3 =[] [] (e )
jeJ  keJ’

vl JeF, ay,.enarg) 16 |m=1
Bra Bl

X (f r”‘i‘l[bi/(m—-'rt’)—bij(w)]dr)dt’.
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Thus I3(x) is a sum of integrals of the form

e~M+3Imk () knb (@) f {” n I
jeJ kel

=1
"7 (o —rt) L (@)1 dr )y
0

Bach such intiegral is dominated by

ou [ Jogon [wen]](+ f o= rt) ~v @lar)ar.
pet’ [[MED JeJ

To each of these integrals, we may apply Lemma 2 and conclude that
I(x) - 0 a.c. Finally, we note that I3(z) is independent of . In fact,

[0 3 [T &0

[t]=1 @yennylyy Jo=1
]a |=mf

YHC)

Ii

=1
h(t’)t’“l“’“'*“mat’) [ b (m)d.
ety =1 g1 %°
lajl=my

It now follows that the integral in (4.4) hag limits almost everywhere,
and therefore, the truncated integrals O,f have limits a.e. (@) in 8.

5. In this section we prove the theorem under the hypotheses in
(i). Since

|2(x—y
|$ ,y|M’—n

HPm,b,, 2,9)| Wldy < o ae. (@),

|zl >e

we may pass to polar-co-ordinates in expressing O,f(x). Becausc of the
symmetry Q(—a) = (—~1¥Q(x) we obtain

i@ = | ———”—”W"’—},;]]ijb 7 9)f )y

|
le—yl>e
1 .
iy f Q) f i ” Py, (V5 @, 0 —rt')f(w — o) drd’
1#1=1 ri>e =1

Thus

Ouf@) <3 [ 1) 10, )& <} [ 120)|0uf(w, 1)dt,

[t'1=1 =1
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where C,f(x,#') denotes the one-dimensional truncated commutator in
the direction of t' and C,f(x, ') denotes the corresponding one-dimensional
maximal commutator. By the result in [5], if # = 2411/, 211, then

oo

f O f(e+rt, t')dr

m oo oo

<co[]] f ( > |b,{(z+n')[)’fdr]“”f (f [f<z+rt',t')1ﬂdr)”".
Jml —oco [a1=mf —o0

Integrating over the space of lines parallel to #' and using Hélder’s in-

equality, we obtain

( f j 0, f(w, ¥y < 0 n Lj[ lb’(w )'m]””( f [ 1f(@)?|da)"™-
laf=
Applying Minkowski’s integral mequahty, we obtain
( [J |o,,f<m)1qdm)1/q< 0( f 1)) ( [ [ Cutla, ¢da)"
1 RY

<ol f e [T 1| 3 wioipad o

1#7f=1 |a|='m,7-

( f 1o Idt)”( 3 1) 151,

J=1 lal=ms
This proves the theorem under the hypotheses in (i).

6. We are now ready to prove the main result in the “even” case.
Let h(z) = Q(x)/jo[*". Let Rf(-) denote the vector valued function
with jth component equal to the jth Riesz transform of f. If ¢(-)is a vector
valued function, let (E-g)(-) denote the sealar function obtained by sum-
ming the jth Riesz transform in the jth component. With this notation
we may write any f e 0 a8 ¢R-(Rf) where ¢ is a fixed constant indepen-
dent of f. Let N,(2) = Rh(v) where owing to the singularity of k at the
origin, we interpret this for # 320 aslim [ R(z—y)h(y)dy (which con-

e—+0 |z—y|>8
verges in the mean as & - 0 on any compact set: not containing 0, see [4]),

and the trunecated integrals f B (2 —y)h(y)dy areinterpreted in a manner
|x—1/ e

analogous to that in [1]. Morcover, we note that N, () is homogeneous

of degree —M —a in each component and N,(—z) = (—1)¥+'N, ().

Thus N, (o) satisties the conditions of part (i) of the theorem and therefore

it suffices to estimate sup|C,(R:g)(w)—OLRf)(x)] where g = Rf and
&>0

CLBf) (o) = ¢ [ Nya) HP (b%; @, )g(y)dy-

le~y|>s F=1
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Let o(1), t > 0, be a C° function which satisfies ¢(t) = 0 fort < iy pt) =1
for t> % and 0<¢o(¢)<1 for all t. Now O,f(w)*—o'i(Rf)(m) D, f(w) -
+ B, f(m)+ F.f(%) where

pf@) = [ ba—y) [ [P0, 0 B0 @@ -

lz~y|>e Jral

- [mo—vp(*S "J')Hpm,b 2, D(EB-2) (9)d

=]

Biw = [ o y)«p( y')R[m]Pm,b 2, )90 ) dy —

le—yi>e =1
mn
- [ m HPm,a» @,9)9(9)dy,
lZ—yl>e Fu

R T e ){HP,,.,(b 0, 1B -5)(4)—

—R-[H Py, (W52, )()] )}y
Jul

Let D,f(x), Bif(x) and F,f(x) denote the corresponding maximal oper-
ators. We shall estimate each of these operators separately. Now

ws@=| [ we-ne( 7Y an,w 2, 9)1
>z >els
= yl)nrm,b , 9)(B-) ()] dy..
lz—vi<e

The desired estimate for D.f now follows by applying Lemma 1 with
9 = %,y The estimate for B,f is essentially the same as that in [1].
As in [1], [4), we introduee Ny(w) =lm [ R(z—y)k(y)p(ly))dy and
note that 0 |a-y|>s

(i) 1Vy(@) —Ny(@)] < O~ M~ for |a|>1

(i) |Na(2)i < G(x) for |o| <1 where G is homogeneous of degree
zero and satisfies [ |G (a")|do’ <0 f]h ML +log* |n(2)) da’,

12| =1

(iii) if g(-) is a vector valued funcmon with entries in L9, 1 < ¢ << oo,

[rwo(F78) oy - s [ (5 awas.

then
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One then obtains

g M -n fN,( w:y)-ﬁl’m,(b’; @, Y)g(y)dy —

RN f=1

- f N;(w—y)-ﬁl’m,(b’;w,y)gw)dyl

|z—vi>2 gl

— —M-n-1
< Qs=-n ( le—yl )

[}

Pm, (5, y)g(y)‘dy+

lz—ylz=e

Le=M-n fIG(m yn (o' w,y)g(y’

lz~yl<e el

An application of Lemma 1 yields the desired inequality for H.f.
‘We now estimate F,f. This is the most technical part of the proof.
Recall that

71 = [ 1o (E71) [ Rty - ] 2ts2, 1

j=1

— [ @i 2, 0} sty
=1

where b is homogeneous of degree —n —M, M = 2 my. Our entire proof

ig basically an induction argument based on the number of remainders
in the commutator. The case of one remainder is simply the result in [1].
‘We shall refer to the number of remainders as the order of the commutator.
‘We are congidering the case of an mth-order commutator and will assume
the appropriate boundedness of all commutators of order less than m
a8 our induction hypothesis. The estimate for F,f requires systematically
integrating by parts M times. Unlike the case in [1] the inner integral
a8 o function of ¥ does not have derivatives of order M in the appro-
priate space. After expanding the product in the inner integral as a large
sum of terms, it turns out that at cach stage of integration those terms
which cannot be differentiated again can in fact be written as a compo-
gition of lower order commutators and can therefore be removed from
the sum. After the final integration the inner integrals are mth order
commutators each having an mth order derivative of the Riesz kernel
ag its kernel. Since the Riesz kernel and all its derivatives fall into case (i)
of our result, the “odd” case, we can estimate this term. Finally, at each
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stage of integration, terms arigse in which a derivative has been placed
on ¢(|z—y|/e). We shall refer to these as error terms. While these terms
can be estimated essentially by Lemma 1, the proofs are technical and
somewhat cumbersome. ' .

We now introduce some notation. Let ¢ denote the collection of all
ordered subsets of {1,2,...,m}. For Je g let J' denote the ordered
complement of J (e.g. if m =6 and J = (2,5), then J’' = (1, 3, 4, 6).)

Given J’ = (Pq, --10); let o(p,) denote a multi-index with » entries.
For J e ¢ and J' = (Py, .., D) We define @[J; o(p4); «+-) 0(D5))(Y, 1)
a8 the term

17|

1 ?
”___.__.13 ¥E g ) (@ —y)oPR,
=1 o(Px)! mﬂk“l“(l’k)l( ooy Y1 1) (@ — )"0

We also impose the restriction that whenever we write Q[J; o(py), ...

cen (D], lo(@)l < my, for B =1,2,..., 0. With the aid of the
formula

1
(61)  Pald;o,8) = Pulbia, 0)+ Y Puialbs, Do —y)°

jaj<m

and the above notation, we may now write

m m ’ 1
[[2a@50,0 = [ [{Pa, 02,00+ 3 2P0 a0, 0001

F=1 J=1 |al<mj
= [[ 252,914 D) [ [Pass0,0) D0UT5 002, ..oy olor50 0 0
Juel Je s jeJ
J'#=0

‘where the inner sum is taken over all possible choices of o(py), ..., o(P;))-
‘When no confusion can arige, we will abbreviate the inner sum as
2QIJ; (). Given a term Q[J; o(J")], we define |Q[J; o(J")]], the
order of this term, as 3 (my,, —|o(p,)])-

1<E<17")

Applying Buler’s formula on homogencous functions and Green’s

theorem, we have
e —y|
o(E2) [ 20

{np % 3, 9) HP,,,Jb @ s)} (4) didy

=1

=~ 2 [ e=vma—no(“Z) [ 29—

Ja)=1

P.f(@) = [ h(e~y)
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®52,9) — [ [ 2w, s 0, 0} 90 atay —
F=1

e
)0

- Zf(w YWz —y)ep (
{ﬁpmyb %5 Y) HP,,,, (5 @, t)}g(t)dth+
F=1

lal—l
o [ hlo -—y)(‘” Mo (222 [ R0y
{np (v, y) — ani(b’ @, t)} () didy

j=1 j=1

= Ff(2) + P (a) + Fif (o)

The third term F3f(@) is an error term and will be estimated with all error
terms in the final section of this paper. For the second term we have

PP

la|=1k=1 |Bl=mp~1

f (w—y)”"h(w—y)qz(w—:y—l—) x

X I I P, (b5 2, )bfa (9)f (9) dy
J=1
J#k

Bach integral in F2f is a commutator of order strictly less then M. By the
induction hypothesis and Holder’s inequality it follows that

m

Isup T2 g < O [T D 1020, )1 11 R reg 1) -

J=1 lej=my;

To estimate F1f we must integrate by parts again. Before doing so we
must expand the expression in brackets in F,f and remove some “good”
terms. To do this we use the notation introduced earlier. We have

Pl f() = ———me Y)°h(z—y)e ( )fR —1)-

la|=
S 2w 52,0 3 @15 00w, 0 gaidy

JeF jeJ
TS
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_%ZZme —~ )R (0 — fl/)q?( yl)”Pm,(bi’a’yy
Q

{al=1 Je JeJ
§ 2

[ By —1-QU5 o))y, g ()

i

Fif (o) +6of(@)

where GLf contains all terms with |Q[J; o(J’)]| = 1. Such terms oceur

only when |J| =m—1 and if J' = {p}, lo(p)] = m,—1. In such a case '

QU5 oIy, t) = ——Pi(bimy; 9, ) (@ —y)"®.

(p)'
Thus G}f is a sum of integrals of the type

f(m —y)*+ Oh(w—y) ( ”I) P, (b 2, 9)

Jed '
x [ Buly 1) Pa(bls v, g () dbdy
Noting that a**“®h(x) is homogeneous of degree —n—M -+|a|+|o(p)|
= —n— 3my;, we observe that each integral in G}f is the composition
jer

of a commutator of order m —1 and a commutator of order 1. By the indue-
tion hypothesis and the boundedness of the Riesz transform we obtain

Isupl&f My <€ TT{ 37 12015 1) @l oy -

Fml |a|='mj

To summarize, we so far have F,f = F*f--error terms --terms with the

appropriate boundedness. We now apply integration by parts to Fif
and obtain

Ffo) = M 2)[ 222]‘@0 9)*h (@ —y)p (l —?II)

laj=l Jg ¥
[Bl=1 |J|<m lQI>1

[ Basol=1) [ [ P00, 910075 00w, Doty by +
Jed

+%ﬁ?&2 2 Zf(mmy)awh(m——y)qo(ﬁgﬂ)fRa(y._t),

la=1 Jef @
1Bl=1 [JI<m |Q|>1

o7 [ [P0 2,001 o700, 0} gty

jed

e ©
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(MM2)’ Z thw y)(lw yl) (’m:yl)fR.(y—-t)'

lal=1 Je#
17[<m IQI>1

AT 252, 910173 010, D} g ) aty

jeJ

= Fif (@) + Fif () + Fof (w).

Ag Dbefore, Fif is an error term and will be estimated later. Before esti-
mating Fif and Fif, we describe the situation after k integrations by
parts. We do this now because the argument required to estimate FSf
is essentially the argument which treats the general cage. The (k-+1)st inte-
gration by parts is as follows:

5 (@) ={(_1)k+1%~k_1)! 2 Z Zf (@ —y)"h(@—y) X

lal
lﬁ|=l i-7|<m IQl>k

xqa('”"”)jlww—t [ [ 20,50, 910175 001w, D90 atay +

JeJ
—1)** Y Y —k—1)!
Rt ) f(w—y)"“’h(w o250 x
: lalm=k J

J
18l=1 |T|<m 10!>k

x [ By —1)- a,—Jﬂ{ [J2nts 910673 0701, D}g(t)ddy+

. _1k+1(1;[1[!—_70——1)' ZZf(x y)*h(z — y)( )

laj=k Jef
IJl<m ]Q|>lc

x9' (E20) [Ruly =) [ | P, 050, 90Q173 017Ny, Do )00y
Jed
= F4k+lf F47c+"f( )-l—l’"’ﬂ"‘“f(w)

As always we congider F#¥+3f with all the ervor terms. To handle Fg¥*®
we must caleulate

02 | 3 S0 e mnews e, o
Y JesS el

Wien Q1%

where |f| = 1. To handle (6.2) il is convenient to introduce one additional
piece of notation. Given an integer 1 <4< m we let #(¢) denote the col-

lection of all subsets of {1, 2, ...,4—1, i+1,..., m}. Given J € #(i) we

2 — Studia Math. 72. 3
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let J' (4) denote the complement of J with respect to {1, ..
.., m}. We: then have
1w, 1) }

©3) 3 {Z ZHPM,b 2,9)Q17; ol
2 Z%{Pm;(bi; @, Y)} | J[Pm,.(bj; @, 9)Q1; (I ()] (y, 1)+
Q> ¢

m

E
lJ|<m |Q(\k
i=1 Jef@) Q@
Q

+ZM! 2 21 {ZPm;~I1'I wf’/: )( )}
i=1 Jes() Iyl<m;

Ql>k

<[] 2

jeJ

52, 9)xQ[J; o(d'(®)] (¥, )+

m

N O 0
+24 2 Z 8 2 ( Pmt-lvl( vy?/: 1) (o — y)}
i=1 Je (1) Q o<yl <mg—k+1Q

1QI<k
x [] 2a®%s o, 91017 ol G5,
Jed
- {P (V%5 2, 1)} P, (V; =, ;5 of " 7
=1 J;ngc o . Q ,{ 9QT; ol ()] (v

m
ki
+ 2 2 Z { Z Pmt—lyl(biﬂi; Y, t)(x "“’.’I)"} X
i=1 Jes (i) IQI(ék Iyl=m;—k+1QI—-1

x [ [Bn®52, 91015 ol @] w, 0

Jed
m
PP
i=1 Jes (i -
€ ()‘Q&kiyl mi—k-+1Q|—1

{Pmi i vl—ﬂ7./:t> —y)}x

x [ [ 2a, 50,9075 07 (]|, 9

JeJ
since P, (b‘ %, 1) is independent of ¥. We now return to
y stimate of
Filettf Usmc (6.3) we have .
e LR O B Y
B M

(6.4)  PiH2f(g)

bi—1,i+41,...
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SEAY - ({le—y]
kA —
X > 2 X f x—y)"h(z— —-
33 -srhie—io (£
lal=k i=1 JeSf () Q[J u(J @] Wyl=m;—k+Q|—1

1pl=1

2@ 29 [ Boly =) % P B 9,0
jeJ

[ ] 2oyercton s v, D9 0 iy
ped’(H)

where 7 =a+f+y+ 2 o(p). Then |yl =k+1+m—k+|Q|—1—

eJ’(1)
- Z’ (mp lo(p)1)+ 2)16 ()| = m;+ Z(Jn =M Z‘m, Thus &"h(z)
is homogeneous of deﬂree —n—M+ (M Z my) = -—n Z my. Also we
note that m; —-lyl-{— 2 m, —lo(p)| = k= a] It follows thad; each term

in (6.4) is the composmmn of a commutator of order |J| and a commutator
of order |J'(4)|+1. Since |J| < m, we may use the induction hypothesis
on the outer integral, the “odd” result on the inner integral, and the
boundedness of the Riesz transform to conclude

lsup FE ()] g < O H (3 1l 11yl Qlprogzcny  for k< I —1.

F=1 laj=m;

For the terms F¥'Y Ekx>1, we write Fi'f(s)
+ F4%DF () where

= & f @)+

(—1Y* M — % —1)!
M!

G () = Z f (@ —y)*h@—y) X
lal=%k JeS

{ €, Q
1Bl=1 [JI<m |Ql=k+1

o[ Z) [T 2509 [ Ressty—0-01; o0, D025,

JeJ
(=L M -k —1)

!
Fi#tf(z) = 3 2 2 Z f(cc—y)“h(.x;—-y)x
A AP
sv('i;ﬂ)[]m,.w%w, 9) [ Ruly =105 o)y, Do) dtay.
‘We have
—1) Y M —F —1)!
R T e e S S N [ I

lal=k JeS Q
|8l=1 |J|<m|Q|=Fk+1
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& — .
< () [ T 2ats ) [ Bty =0 [ [ PtV 9,

Jed pel’

% g (t) dtdy

wheren = a+ B+ 3 o(p,) and [y| =k 41— ZJ(mp —lo(p)])+ ZJ'mfp= E+1—
sed’ ped’ pet’
—(k+1)+ > my, :Emp. Thus #"h(x) is homogeneous of degree —n — >'m;.
ped’ e’ JaJ

Tt follows that each term in (6.5) is the composition of a commutator of
order |J| and a commutator of order |J’|. By induction on the outer inte-
grals, the result in the “odd” case on the inner integrals, and the bound-
edness of the Riesz transform, we may conclude that for 1<k < M ~1,

m

Isupl@ (Yl < O [( 3] 1840} 1F o1 lgiog 2o

J=1 la]=my

We now write FAEHDf = Felet+if y pilerli g pudkiDasf and iterate.
The process terminates when k = M —1, because in this case FPMf = Gf
Tt now follows that in order to obtain the desired estimate for #.f we
need only estimate the error terms Fi*+3f for 0 < k<< m—1.

7. The error terms. To finish the proof we need only show that the
terms involving ¢’ satisfy the appropriate I? estimates. Before estimating
these error terms we note that ¢’ is supported on the interval [}, £].
Consequently, the region of integration in y in all terms with ¢'(l® —y|/e)
is the anmulus e < |z—y| < $¢. In this region we have the estimates
@ —y|le <1 and |H(z—y)! < 4e"H((@ —y)/(je —y]))| for H homogeneous
of degree N.

The first error term we estimate is

Eifo) = [ma—n)o (ETE) L T [ 2050w -

]
Je=1

= [ ho—no (L) B2 [ Ry -0 [ [ 24,0919, 900
Fmm1
- f{e)+ Bf@).

For the first term,

(@) < s [ | 2to—w (22 [ [ 205002500 as.
jm=1

icm°®
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Applying Lemma 1 with ®(s) = @'(s) and N(z) = Q(x) we geb the
estimate

leupl 2 () g < O [T 3 1,1 1ol lpson+£csy -
>0

=1 lal=m;

(7.1)

To evaluate I:f we note that
m
Bf(w) = [ N@—t) [ [ Pn, (v 2, g (1) 2,
Fe=1

where

¥ = [Ra-o¢ (L)L rwa.

&
Letting 4 = ue and applying results in § 5 of [4] we have

&
}.’I}]M'H'"H 4

e MG (),

lN.(w)|<| ol = e,

el < &

where G(w) is homogeneous of degree zero and ¢z < ClRlz10g+2cz) -
Splitting I2f into an integral over lo—1| < e and o —~1t| > & we can
apply lemma 1 to each piece and get an I estimate of the type (7.1) for
the maximal operator associated with I3f.
To estimate the remaining error terms we need only show that the
maximal operator associated with the general term Fiet3f gatisfies an
estimate of the type (7.1). Splitting up the integration in £, we can write

1z B = 3 S N [eurne—ne (S0

€
lol=k Jef @

Wi<m 11>k
) [Jemtson] [ + [ ) R0 vowaja
jeJ ly~tl<se  ly—tl>58
= If(a) + I (@)-

To evaluate IV¥f we look at the single term corresponding to a fixed
a, J and Q. We estimate its associated maximal function and sum over
the index sets given in equation (7.2).

Tt we take the absolute value of a single term, it is clearly bounded
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by
n-Hm(J)l f‘ =y’

x{ !
fUp ——
En—HQI
>0 Wt

)”P ¥ @, y)| x

jed

ez
ly —1

€

t -k

| ] Pogetion @m0, t)g(t)‘dt} dy

ped’
where |m(J)] = 3 my.
T

The inner operator satisfies Lemma 1 with @(s) = s~ ™%y, (s)
and N (y) = R,(y/ly|). The L" norni of the inner operator is thus bounded

by
o J( 3 Wiy where =+ 2 )

jeJ’  lal=my JeJ”’

The outer integral satisfies Lemma 1 with ®(s) = ¢'(s) and N (x)
= (). Since the inner operator is in L7, the maximal operator for cach
a,dJ, Q fixed satisfies an estimate of the type (7.1).

To estimate I2%f we look at a term with o fixed and we sum over J
and Q. We are left to evaluate terms of the type

(7.3)

> [ o-vrno—n Ly (S T £, 0350, 0) x
JeSf £ JeJ

Q
Ji<m |QI1>k

x [ Ey—9QLT; 0w, gt dtay

w—lizse {22 Z Z}f L) dtdy.

Jes 1QI<k

We estimate these sums separately. For the second sum we first
consider a term where |@| = %. Using the notation 2"V = [Ta*® | writing

pad’
out @ as a product and taking absolute values, we have,

‘fw R (g —y) Y % — f'/l (Im ?/l)H 3 2, 3)

Jed

X{ f Baly —1) ” mp-lf’(z’))l WS ¥s t)g(t)dt}dy‘

ly—t| =58 ped’
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=yl
</ n+lm(~7)1fl (z—y)y ( ) Py (b5 @, 9)
jeJ

Riy—9- H Pr 1o Oy ¥5 D9 (0]

x{sup
>0 y—i>se

The inner operator is in I"(1/r =1/p+ Z (1/r;)), because the de-

rivatives of the Riesz kernel satisty (i) of our theorem The maximal opera,-
tor associated with the outer integral satisfies Lemma 1 with @(s) = ¢'(8)
and N(z) = Q(x). Summing over |a] =k and appropriate @’s and J’s
we get an L? estimate of the type (7.1).

TFor the terms where |Q]< % —1 and J fixed, we see after taking
absolute values that a typical term is bounded by

¢ n+|m(-7)1f| (x— ?/)‘P( yl)nl’,,,](bl

JjeJ
K= )l—y‘t
ly—tl]| e

% [ [ Pyt 2 v, D19 (0 ‘dt}dy

ped”’

—n—k

1
x {S‘JP AT
e>0 ly—il>se

The inner operator satisfies Lemma 1 Wlth D(s) = 87" Py ) (8) and
N(y) = RJy/lyl) since [B(s)s"*¥'"lds < oo for |@|< k—1. The outer
integral satisfies Lemma 1 with &(s) = ¢'(8) and N (¢) = 2(x). Thus the
maximal operators associated with terms where |Q| < k satisfy L¢ esti-
mates of the type (7.1).

To estimate the term coming from the first sum in (7.3) we recall
that

D[ Puybss 2, 9)Q1T 5 0(T))(y, 1) —[]P (52, 1).
JeJ Q jeJ j=1
So we must estimate the integral

(1) [@=yra—yy (L0

€

R (y—1) H (b’ @, t)g(t)dtdy .
—tls=58 j=1
Using the facts that

[ (o= | (...)dH—{ f - f}(...)dt

ly~t|>58 |z—¢]>58 {y—ti>5e |e—E|>58

and |y —t| > Be > Blz —y|, we see that the absolute value of the ferm in
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(7.4) is bounded by

I T e

'Ra(:l/_'t)'

fo~ti>5e

€

.ﬁij(bi;m,t)g(t)dtdy’.g_f

Je=1

(@—y)h{z—y)¢' (—-——-—lw:yl) le—yl ;—yl X

X
2o [y—£[5108

To evaluate the first term we use the cancellation properties of h
which allow us to replace R,(y —1) by

(y —o)®

By(y—t)— Buyol@—1) "2 = Py (Res y—t, 0 —1).

8] < M —k+1
Since |z —t| > Be> 5|z —y|, we can use the estimate

Iw_ M~k
|PM—k+l‘(Ra; y'_t7 m""t)l < O_I;::;/—IIMW‘

So the first term in (7.5) is bounded by

%f}g(m»y)w’(lw:yl){‘;&? f (]w—e—tl)—M?n-lx

lz~t|>5e

EP,,,](H i @, t.) g(t),dt}

=1

X

dy <0 f 1Q(@)]d x

|zl=1

( Im;—tl )-M—n-—l j[_?’pw(bj; -’I/','f»)g(t)!dt}.

The second integral satisfies Lemma 1 so the first term in
and L% estimate of the type ( 7.1).
Finally, we 1se the fact that for 28 < |z —1 < 10
<10z and |z —y| < s we
have |R,(y—1)| < e/e""*. This implies that the second term in (7.5)
is bounded by .

o/

X {sup 1
>0 £n+l|l

fe—¥|>58

(7.5) satisfies

"

| [Pt 2,9

Je=1

le—y| als 1
& Y '1:%) 8”+M

9(m-@/)¢'(

o

28 |2—1] <108

Eity—1): [ [ 2 0'50, t)g(t)}dt}]dw.

e ©
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The first integral is bounded by a constant times the Z' norm of Q on
the sphere. The second integral satisfies Lemma 1 with @(s) = xp, 10/(5)
and N (z) = 1. 8o the maximal operator associated with the second term
in (7.5) satisfies an L? estimate of the type (7.1).

This completes the proof of part (ii) of our theorem.
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