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Abstract. We use the mterpolatlon method {4, introduced in [3] to mterpolate
between weighted L?-spaces. As an application we get an improvement .of, the inter-
polation theorem of Stein-Weiss. We also use the nischinary to get a proof of a weak
version of Ovchinnikov’s interpolation theorem. Finally we prove that the méthéd
(4, coincides with Ovchinnikov’s method g;(4) for dual couples A.

0. Introduction. The purpose of this paper is to continue the study
of the interpolation spaces (A)e introduced in [3], D 45, thh 'we hence-
forth call the “+ method”.

' In- [3]the 4 method was used in connecmon thh Orliez s_paces
Now we utilize them to interpolate bétween LP(iw,) and I? (wy), 0.< P< o0
(weighted L”-spaces). Our results should be compared with what ‘can be
done with other interpolation spaces (cf. [1]): If we use the complex
method, we have to take p > 1. (The complex méthod corresponds to the
case o(f) = 1".) On the other hand, using the real method, we can allow
» << 1 but then we have to take different interpolation functors-for each p.
In a way thus the - method is a substltute for the complex method.

All this is done in.Section 2,

In Section 3 we apply the results in conncctlon with the remarkable
paper by V. I. Ovchinnikov [4]. Ovchinnikov introduces three new

interpolation methods: ¢, (4), ¢, (4) and ¢,(4) and he-also proves an

intcresting interpolation theorem for operators from weighted L™-spacés
into weighted L'-spaces. A major tool in [4] is Grothendieck’s inequality.
Here we use the in some respects more elementary tools of [3], notably
vergions of Khintehine’s and Carlson’s inequalities. Ag x result. we have
to impose the restriction ¢ e 27~ (see [2], p. 293, and [3], p. 37). In this
auxiliary hypothesis we can give a rather simple proof of Ovchinnikoy?s
theorem. We also establish inclusion relations between the spaces g,(4)
and @, (4) and our -+ method.

Finally, I would. like to thank Professor Jaak Peetre for his valmble
adwce and steady interest in my work.
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1. Preliminaries. In this section we shall give some fundamental
definitions and the basic interpolation result for the 4 method.

DErmviTIoN 1.1. Let g be a positive measure on a set M and let w
be a positive u-measurable function on M. A u-meagurable function f
i said to delong to IP(M, u, w), where 0 < p < oo, if the (quasi)-norm

(1) W oy = { [ 1foPdu” < oo,
M
It p = oo, then (1) is replaced by
1 ooy = sUP [f(2)|w(@) < 00 prae.
zeM

We shall now define the + method and give an interpolation result.
However, first we recall the definition of # in [3), p. 3T.

DEFINITION 1.2. A positive function ¢ on R, is said to be pssudo-
concave it

o(Ar) < mux(1, 4)e(w)

tor every positive A and 2. In that case we write: ¢ € 2.

DEfINITION 1.3. Lét 4, and 4, be two quasi-Banach spaces which
are continuously embedded in a Hausdorff topological vector space .f .
Let p €. Theh a e 4y, it there is a sequence {0,}2,, with a, € 4,04,
and such that

00
(2) a4 = Ea, (convergence in A,-+4,),
(3) for every finite subset ¥ ¢ Z we have

20 3
Dl+2)

el

<0 (i=0,1)
4

with O independent of ¥ and the sign combination. As a (quasi)-norm
we use

all, 7, == infQ.
lallcay, = int
Remark 1.1. In [3], p. 45, we have the restriction
2%a, |
2wy
o e(2)

with |£,| < 1. But using [5], pp. 327, 328, we get that (4) is a consequence
of (3).

(4) 1

<0 (1=0,1)
44
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Before we take over a basic fact from [3], p. 46, we need a notation
for the operator norm. We write :

\Taly
T =
b

where T' i3 a continuous linear operator from X into Y.

PEOPOSITION 1.1. Lot 4 = (A,, 4,) and B = (B,, B,) be any two
quasi-Banach couples. If T is a continuous linear operator from A into B,
then T i8 a continuous operator from (4>, into {(B),. For the operaior norms
involved we have

0, < BEITlg 5,

DEFINITION 1.4. We denote by I,(0) the space of sequences T S
such that the norm

oo

oo = 3 oo, < oo.

Y
We also denote by 1,,(o) the space of sequences such that
Hzdh o = 51‘1P sl 0y < o0

In the next definition we give two frequently used notations.
DErINITION 1.5. Let ¢ € #. Then we write

(5) P(2,y) = 2o(y/v)

and

6 * = —1 =1 =_w__.
(6) ? (@, 9) =1p=,y™") e(@]y)

Finally we give two of Ovchinnikov’s methods. (See [4], p. 288.)

DerFINITION 1.6. Let 4 =(4,,4,) be a couple of Banach spaces
which are continuously embedded in a Hausdorff topological vector
space &of . Then a e ¢ (d) if there exists a continuous operator T' and
weights w, and w, such that

T: (lao (o) Los ("1)) (44, 4,)

a 1 1 }“"
=V wo,r ! wl.r _oe-

and ¢ = Ta, where

As a norm we use
lallyz = inf 1:1_9;11"1' b ts0gs44

where the inf is taken over w,, w, and 7.
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DerFNITION 1.7. Let 4 = (4,,

4,) be as in Defininition.1.6. Then
a e gy(4) it :

llellp, @y == WP 1Tl (g, 0p) < 5

where T' is a continuous oper;,ptnr_such that

T (A-o: 4,) - (11(0'0); lx(“'1))
and : ‘ .

IIT”Ai—gl](a{) <1 (¢ =0, 1) .
The sup is taken over gy, o, and T.

"2, Interpolatlon between welghled L"-spaces. We Stm:t w1‘rh the
case P =P, =

THEOREM 2.1. We have -

Lp(‘P (wq, w ) @ (LR {wg), L ( ’wl)>¢

where 0 < p < 0, o P and

(M 7 o) = ofmax(L, 1) as -0 or ool
o* is given by (6).
Proof. Let a e L¥(p*( wo,wl)) Put

e,={aé <;e[2”‘2"[}"

and S ~
alz) if wee,
0 'otherwise o

" a,(2) = [

First we prove that a = 2 @, with' convergence in LP(wg) - L” (w,).
Put

By = er B = UGY'
<0 .

-1
Moreover, put
s faey it moe Hg
Gool®) =1 -
0 otherwise,

icm°
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and gy = & —ag,.

. Z

|

-+

ZP(wg)

Then aqy & LP(wy) and ay, € I”(w,). Furthermore,

< - ¥

LP(wg) -+ LP(wy) = 2%
<N

Gy — ‘@,
N;O 0<rKNy
» 1/p

- (S (e o]
y<Ny

L omin [(Zla@)] NP\

+(Z(2‘ @) f(—*%@(2~) (@) au)

< ((2™) +27%2+ 0 (27) 4l £(gr g, oy

v>Ny
The convergence ag N; — —oo and N, —» + oo now follows from (7).
‘We shall now verify (3 ) in Definition 1.3:

Sl - SIS (=20

vel
=2 f (Mwo(m)) p < NlalZ 20y ) -
2 ) 9(2].) @Hwy,wy

L2 (wy)

wo(w))

Analogously,

Z + 2”01‘, » < 22||gII®,
2 ?(2_”) <2 Ildflm(p'(wo.w,))‘

LP(wy)
Consequently, ' ‘

|l“||<LP(wD),LP(w,)> 2”0'”1:1’
The proof is complete. '
For the proof of the opposite inclusion we need a trivial lemma.

Levma 2.1. If la| < @(laol, lay)), then

*(wy wl))

“““Lp(q»‘(wo,wl)) < b m‘l:x ”a'o'”LT?(w,-)'
S i=0,1

Proof. We have
(]aI‘P*(wm wl))1:< (‘P(lao|7 @y ) p* (200, 'wl))p, K

1 1 ?
= ( (Molwo w0, AL wl) @ (WO)wl))

< I}lﬂsx(l%lw )p\ ([ao|'wo)p+ (layjw)®.
Thus

ol ontag ) < 200 Wl -
1=0,1
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Before we give the next result we define the subset #*~ of 2. (Cf.{2],
p- 293, and [3], p. 37.)
DEFINITION 2.1. A function p in & is said to belong to 2+~ if

o(lz)
@)

THEOREM 2.2. If 0 € 2+~ and 0 << p < o0, then the following inclusion
holds:

=o(max(1,?)) a8 {0 or co.

L"(¢‘('w,,,w1)) o (I (w,), LE ().
Proof. Let a & (I*(w,), L* (1)), with

lellers gy, 2oy, = 1

‘We choose a sequence {a,}”, in L (w,)NI*(w,) such that

(8) @ = Za, (convergence in 1P (w,) -+ L*(w,))

and
2"7
“ 2 9(2
If we use Fubini's theorem, we obtain
2%a, ()
( 24 & e (2"

where ¥ stands for “expectation”. Then Khintchine’s inequality (see [7],
p- 213) implies that

<2 (i=0,1).

»
<
LP(wyg)

)wf‘dp <2,

2\ p/2
| wtau<o =00,

y
% o)
Combining Lemma 2.1 and Carlson’s inequality [3], pp. 88-39, we get
” Za,’ <C.

veF

(wgiep))
But in (8) also pointwise convergence is true u-a.e. Thus Fatou's
lemma finally gives that

lallzo(em op, wp) < €
The proof is complete.

‘We shall now study the limiting case P =
do not need the restriction p e #+-,

oo. Notice that here we

icm
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TEEOREM 2.3. If ¢ = 2 and ¢ fulfile condition (7), then we have that
L”(‘P' (w,, wx)) = (L (w,), L (w1)>,
with equivalent norms.

For the proof we need a modified version of Lemma 2.1.
Lemma 2.1, If |a| < p(layl, lay)), then

"a"L”(v'(wn:" ns E‘:}"afub“(w)'
Proof of Theorem 2.3. The inclusion
I2(p* (w0, 101)) = <L (10g), L= (30,)y,
can be proved in the same way as Theorem 2.1.
For the reverse inclusion let a & {L*(wy), L™ (w,)), with
lallzopog), 2200 yy, =1

Choose a sequence {a,} in L®(w,)NL®(w,) such that i

(9) G=Z'°a~,

(convergence in L™ (w,) + L™ (1,))

and
iy
mngizg@1M@<2 (6 =0,1).
Then
2"la.(w)l
szmm )<

For ¢ € # we can write Carlson’s inequality in the following way (see [3],

P- 39)
| Zel<or(Zeer 2 )

rel

According to Lemma 2.1" we get
(10) | S
vl

In (9) also pointwise convergence is true u-a.e. Therefore, passing to the
limit in (10), we get

L (9" (wg,wy)) <0

lolz0(gwt ) < Cs-
The proof is complete.
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As a corollary of Theoreims 2: :1-2.3 and Proposition 1.1 we get a gener-
alization of Stein-Weiss’ interpolation theorem. (See [1], p- 115 and [6],
pp. 163, 164.) ‘ ‘

COROLLARY 2.1. Let g e 2+~ and let T be a conlinuous operator such
that

T: (LP(M, By We), LP( My p; 'wl)) - (LG(N; v, 0o)y L(N, 1’;I"'i))

where 0 < p, ¢< oo. Then*
T: Lp(Ms 122) 'P;"(;“’o: 'w1)) *La(Ni v, @*(00y "1)) -
For the operator morms the following inequality holds:

WL z00at i, 59w, 100) > Z o)) O’f“i‘,’ﬁ WT NPt mgrr a0 .00

Remark 2.2. The real interpolation functor depends on p. The
complex method needs the restrictions 1 < p, ¢ and o(t) = #*. However,
the inequality between the operator norms will be sharper with the complex
method than with the - method.

We shall now interpolate between L (w,) and L"(w,). We shall
also specialize to o(t) =1, 0< 6 < 1.

THEOREM 2.4, With o(f) = 1%, 0 << 0 <1, 0< P, Py < 00 the following

IP (w) = {LPo(wq), L (w,)),
holds, where
i 1—0+”‘q"'1 “w"":w}v_ow(l,'
P . Do P T

Proof. Let a e I?(w). Put

— {01 la(@)PFodl? (@) wiP (@) € (27, 2T}
where
11 1
r Pp Po ’
Furthermore, put
(@) a(z) if ves,
a,(x) = ’
0 otherwise.

As in the proof of Theorem 2.1 we can prove that

.
a=Ya,
00

(convergence in L 0(w,) +L*1(wy)).

icm
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‘We shall now check (3) in Definition- 1.3:

Z-i e(2) | L20ug) 2.{(2 + azfsw)

velR i e ‘lveF

o ()| o
- Zf( o nle)] Zf(
where the last equahty follows f_rom the relation
. (t.r-ﬂp/r)po =P,

Po
W, (m)) du

a
ot ”Zﬁ,,) w? (@) dis = lalEsg

Analogously,

2a, ||Px
D)
vel’ 9( )
Thus we have proved that

LP (w) = (L™ ( Wo): L”‘(wl)>.
The converse inclusion can be proved in the same way as in Theorem 2.2.
The following result is a limiting case of Theorem 2.4.

. THEOREM 2.8. With o(f) =1°, 0<<0<1, 0< Py, p,<< oo, the fol-
lowing -

< 271)aBoge -
LP(wy)

IP(w) = (TP(w0,), I (w35,

holds, where

-—1—=1~6, w = wi%w.
V4 Do
Moreover, ‘
(11) L (w) = <L (wo)y L™1(w1),
where )
1 6
N
g _'p;[ b 0 1*
Proof. With

o = {2: (la(@)lwy (@)~ e [277, 27T)
the inclusion
LI (w) = <I™(w,), L™ (wi)),
follows as in the proof of Theorem 2.4. The rest of the proof is essentially
a repeat of corresponding parts of the proof of Theorem 2.2. We use Carlson’s

inequality in the form

(1-0)/2 » )
3, ( ( la,| )2) ( V2 val)
‘,,EF ; e(2) “d 0(2%)

(Cf. [3], D 39.)
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The proof of (11) is analogous.

We shall now give an improved version of Stein—Weiss’ theorem.
(Of. [1], p- 120.)

COROLLARY 2.2. Assume that 0 << Do, D1y doy <<

T: (L"’(M, thy wo), TP (M, e, w:)) -> (qu(N; v, Go)y LN, v, 0'1))

ig a continuous linear operator. Then T' is & continuous operator from LP (w)
into L(0), where

oo and that

1 1—-6 0 1 1—6 0

— = —_—y =t

b4 by V21 q Q) U
w=w""w, o=0""d

For the operator norms the following inequality holds :

17 2200 20 < O E%§||T P40y -

Proof. We only have to combine Theorems 2.1-2.5 with Proposition
1.1 - : )

Remark 2.3. Notice that p, and p, as well as ¢, and ¢, may be
equal. We also observe that the restriction p < ¢ from the real method
a8 well ag the restriction 1 < p,, 94, q.,, ¢, from the complex method are
eliminated.

3. On Ovchinnikov’s theorem and conmections between (d>,, ¢,(d)
and ¢,(4). In this section we shall prove that (AY, = ¢;(d) for many
couples 4, For ¢ = #*~ we also give a simple proof for the inclugion
@(4) = 9,(4). However, we start with a proof of a weak version of
Ovchinnikov’s theorem. We need the restriction ¢ € #*~ but Ovchinnikov
needs only the assumption ¢ €. On the other hand, our proof does
not use Grothendieck’s inequality.

THEOREM 3.1. Assume that ¢ € #*~ and that
T: (lm(w(l)i lw(wx)) "*(11(0'0), ll(al))

18 a continuous linear operator. Then T is a continuous operator from
To(p(wo, wy)) into 1{p(0y, 0y)). For the operator norms we have

”TH'oo("’(“’n"”1))""1(‘7("0"’1)) < Ofn?lx Wit

Proof. Put ¢*(t) = 1/p(t™"). Clearly, ¢ € #*~ if and only if o*e#* ™.
According to Proposition 1.1 we get that T' is a continuous operator from
oo (Wo) 5 Lo (w1)Dge ImbO <Ty(0y), 11(01)>e- To complete the proof we just
have to combine this with Theorems 2.1-2.3.

Now we compare ¢;(4) and ¢, (4) with (Y, (
give a direct proof of the inclusion qa,(Z) < @,(4).)

(It is also possible to

icm
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THEOREM 3.2. We have
p(d) = <Ay, if
Ay, = p,(A) if pe?* .

Proof. We start with (12). Let a e ¢,(4). Then there are weights
w, and w; and a continuous operator

T: (lm(’wo); loo(wl)) - (4o, 4y)
such that & = Ta, where
=l )
1 wl)v Wy,» )

(12)
13)

0e?,

Clearly,
Nl o (omamg oy =1+
Thus
(14) a, € loo(‘P*('wo’ 'wx)) = (oo (o) Too(®w1)Dyy

where the last equality follows from Theorem 2.3. Then Proposition 1.1
and (14) imply that
a =Ta,c{4d),
and that
GmaxllTI[l

”“|]<A> colw)>d;

Taking the inf over w,, w;, and 7, we geb

lllzy, < Cllallyea-
It remains to prove (13). Let a e (A}, and let S be a continuous
linear operator from (4,, 4;) into (I,(oy), L(oy)) with
”S”Ar‘ll(%) <1 (¢ =0,1).
Then Proposition 1.1 implies that

s 15, tyoy, 1;1?15"5 Naystyop < 1
If we take account of Theorem 2.2, we get

ltllg, 1y = SUD 18@llzygeay o)

The proof is complete.
Now we turn to the converse of (12).
TrmorEM 3.3. Assume that A; = X; (duals) (i = 0, 1) where X,NX,

s dense in both X, and X,. Moreover, assume that o fulfils condition (7).
Then

< Olallzp, -

Ay, = pi(4).

4 — Studia Math. 72.3
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Proof. Let a e (4>, with lall g, = 1. We choose a sequence {a,}
in Agn4, = (X,+X,) (see [1], p. 32) such that

a = 2 a, (convergence in Ay--A4,)

Sl
Zd \ 7 0(2)

Let 1 = {4} el (w,), where w,, == (2"). Furthermore, let @, € X, and
let {, ) denote duality between A, and X,. With a suitable choice of

gigns we get
a) = D&Aa), a0y

D) [Ghay, @] = g( + (A, 2
D (:tzvew) Raz_))

vel
vell

and

<2 (i=0, 1)
4.

<

L [@ollx, < U4l 00 "2 * ol x, -
0

’.[‘husl 12 A, is weak* convergent as m — co. Denote the limit by
vl <n
8 = Y4,a,. Then sed, and

1<8, @03 | < 1Al 2lolx,
Consequently,

(15) lIsllay < 2 WA llistrogy -

If 2el,(w,) we can define a continuous, linear operator T from I (w,)
into 4, via

Ti=s = ) ia,.

We can make an analogous definition of 7' on I, (w,) where wy, = 27"p(2").
Bince X, N X, is dense in both X, and X, the two defi;uitio'ns of T will
be consistent on I, (wy) Nl (w,). T is extended to oo (W) + 1o (0,) in the
standard way. With the weights w, and w, given above we have a, ~ {1}
We split a, 25 4, = e+ 0, where & = {s,} with

1 it
g, ==

0 if

»< 0,
»=20.

Ta, = 2 &,a, -+ Z o,a, .

Then

icm°
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Since ¢ fulfils condition (7), ) a, converges (strongly) in 4, and } q,
converges in 4,. Thus »<0 =0

Ta, =a
and
Nollgyzy < max| Tl oy, < 2
f=0,1

where the last inequality follows from (15). The proof is complete.

We intend to give a slightly modified version of Theorem 3.3. We do
not know if this new setting is more general than Theorem 3.3.

Before we state the theorem we shall introduce vector-valued Banach
limits.

We denote by 7,(4) all bounded sequences 8 = {s,} with s, in the
Banach space A. A continuouns linear operator I is called a vector-valued
Banach limit on A if

L:1,(4) A
and
L(s) =lims, if the sequence ¢ is convergent.
n—+00

THEOREM 3.3'. Assume that L is a continuous operator from 1(A,) -+
+1.(4y) into Ay-+A,. Moreover, assume that the restriction of L to T,(A;)
8 @ vector-valued Banach limit on A, (i = 0, 1). Furthermore, assume that o
Julfils condition (7).

Then

<Z>‘e = q’z(Z)-

Proof. Let ae{dy, with lall.z,, =1. We choose a sequence {a,}
a8 in the previous proof. We also choose the same weights w, and w,
as before. Then we can define a continuous linear operator T’ from I (w,)

into 4, via
71 - 5[ 3 1))
ri<n

where 1 el (w,). Notice that s = {s,} where

8, = 2 A,

rl<n

is bounded in 4,. Analogously we define 7 on 1l (w,) via

m - 3 1a))

wi<n
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where A el,(w,). The two definitions are consistent on T (we) N1, (w,).
In fact, if 1 el,(we)Nlx(w,) then

3 ra)
»|<n

is bounded in A,+4,. As in the previous proof, a, = {1} and we also
split it in the same way:

a, =&+0.

We get

Ta, = Te+To = L({ Z s,a,}) +L({ Z a,,a,}) = 2:@,‘1" g’aﬁ,

rl<n r|<n

-1
where the last equality follows from the convergence of 3 a, in 4, and

the convergence of 3 a, in 4, (see condition (7)). The r(;st of the proof
0

follows exactly as in the proof of Theorem 3.3.

Remark 3.1. It 4 = (4,, 4,) = (X,, X;) with X,nX, dense in
hoth X, and X, then we can find a vector-valued Banach limit .I, which
fulfils the assumptions in Theorem 3.3'. In fact, let f be a usual sealar-
valued Banach limit. Then we first define two vector-valued Banach limits
L; on A; via

{Li(8)y @5 = F({<8ny @)i}),

where s = {s,} is & bounded sequence in 4, and » € X; and {, >, denotes
duality between 4; and X, (¢ = 0,1). However, X,n X, is dense in both
X, and X,. Thus L, and L, coincide if s, e A,N4,.
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