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Abstract, The pairs of nonnegative weight functions{ U, V) for which the modified
€@
Hardy operator P,f(w) = &~ "ff(t)dt, n real, is of weak type (p, g) are characterized.
. F r '

o
Dual results for the operator @,f (%) = x~"[f(t)dt are given. These results complement

z
the classical (strong) Hardy inequalities and their generalizations considered by Artola,
‘Talenti, Tomagelli and Muckenhoupt. New weighted weak type inequalities for Hil-
bert transforms and maximal functions are derived as applications of these results.

1. Introduction. Let 1<p,g< oo and suppose U(x), V(x) are
nonnegative extended real valued functions on (0, «). We say that
(U, V) is a strong type (p, q) weight pair for the linear operator T if there
is a finite constant ¢ independent of f such that

o

(11) (] 1 @r U@ <o (] (f@P V@),
: 0

0

and we say that (U, V) is a-weak type (p, ¢} weight pair for T if there is
a finite constant ¢ independent of f such that for all y > 0

wy ([ v@af <o (] iorvea)®.
{@: 1 TS ()| >u} 0 i

The smallest éhoice of constants € in (1.1) and (1.2), called the strong
and weak norms of T, are denoted |T|,, ||T|l,, respectively. It is well
known that (1.1) implies (1.2); moreover, [|T|, << 1Z],-
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In this paper we shall be concerned with norm inequalities for oper-
ators T of the form P, or @, where for real 7,

o0

Q.f(@) =™ [ f(t)a.

@

(o) = o~ [ f)i,
o

These operators are important in analysis and have been widely studied.

Hardy [7], p. 244, first studied inequalities of the form (1.1) with
U@y =2, V(v) = a*?7!, p =¢>1, for the operator P, and its
dual Q,. His results, known ag Hardy's inequalities state that (#°~*, p*+#-1)
is a strong type (p, p) weight pair for P, if and only if ¢ < 0, and dually,
(@', 2**#~1) ig'a strong type (p, p) weight pair for @, if and only if « > 0.
Moreover, the norms are given by |Pyl, = —p/a and @], = p/a.

The problem of determining those pairs (U, V) for which P, and
O, are of strong type (p, p) was solved by Artola [3], Talenti [12] and
Tomagelli [13]. Recently a new proof of their results was given by Mu-
ckenhoupt [9]. Combining the idea of that proof with a technique used
by Flett [6] results in the following theorems which have also been proved
by Bradley [4]. } ‘ .

TaEOREM A, If 1< p < g <00, then (U, V) is a strong type (p, q)
weight pair for Py if and only if there is a constant B-such that for all » > 0

. © . . - .
L3) - (] v@ o) (f V(w)-e- )" < B.
B . " . o . .
Moreover, if B denotes the smallest constant in (1.3), then B < ||Py],
< qllq(q’)l/p‘B.
THEOREM B. If 1< p < g< oo, then (U, V) is a strong type (p, q)
weight pair for Qq if and only if there is a constant B such that Jor all r >0

(1.4) ( f U (a) da) "™ i V (o)M= 40)"" < B,

Moreover, if B denotes the smallest constant in (1.4), then B < [1Qolls
<¢"(g)y" B.

Here and throughout the paper, 1/p +1/p" =1, 0-c0 iy taken uas
0, and for p = 1 integrals of the form appearing in (1.3) and (1.4) have
the usual interpretation, for example, the second factor in (1.3) is taken
ag eﬁ&s?p [1/V (#)] when p = 1.

The corresponding weak type problems for P, and @, are treated
in this paper. As an application of our results we derive new weighted
weak type inequalities for the Hilbert transformation and the Hardy-
Littlewood maximal funection.
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Brom (1.1) we see that (U(w), V(#)) is a strong type (p, ¢) weight
pair for P, if and only if (s~ U (x), V(#)) is a strong type (p, ¢) weight
pair for P,. Thus Theorem A also contains the characterization of strong
type (p, ¢) weight pairs for P,,  arbitrary. The analogue holds for Q,.
The matter is not so simple for weak type however, for no such direct
reduction from (1.2) seems possible. Indeed, as we shall see, weak in-
equalities for P,, 7 << 0 are more easily derived and the conditions on the
weights have a different appearance than those for % > 0;a similar situation
prevails for @, with the roles # << 0 and % > 0 reversed.

We now state our main results for P, which will be proved in Sections
2, 3 and 4. o
. TuHROREM 1. Suppose L < p < g < oo and < 0. Then (U, V) is a weak
type (p, q) weight pair for P, if and only if e

oo

B(n) = supr™"([ U(w)da)" f V (@)D g

r>0

(1.5)

18 fimite; indeed, |P,ll, = B(n).
‘THEOREM 2. Suppose 1 <p< g<< 00, >0 and let

(1L6)  Bly;a) = sup| f (ro)°( U (@) Jo™) da)"™ fr V(@)™ daf
>0 [}

If B(n; a) is finite for some a > 0, then (U, V) ds a weak type (p, q) weight

pair for P,. Conversely, if (U, V) is a weak type (v, ¢) weight pair for P,,

then B(n; a) is finite for all a > 0. Furthermore, .
[a/(ng+a)T B (n; a) < Pl < [(ng+a) 1 (¢'}'" B(n; a).

COROLLARY 1. Suppose 1< p<g< oo, 7>0. The following are
equivalent: ‘

(a) (271, 2*1) is a weak type (, q) weight pair for P,.

(b) (@, a*™") is a strong type (p, g) weight pair for P,.

() a<p and a(p—g) =pg(n—1).

COROLLARY 2. If 1 < p < oo and W () is nonnegative and nonincreasing
on (0, co), then (W, W) is a weak type (p, p) weight pair for P;.

It is not difficult to spe that weak and sirong do not coincide for
P, (or @,) in general. For ¢xample, (z°%, 2*77) is a weak type (1,1) pa.i‘r
for P, if a < 1, but a strong type (1,1) pair for P, only if a < 1; the pair
(#/(ogl+w), 1+w) is a weak, though not strong, type (2,2) weight pair
for P,. Other examples can be given. On the other hand we have the follow-
ing result which is of particular interest when » = 1.

THEOREM 3. If 1 < p < oo, 5 > 0 and W (x) is nonnegative and measur-
able on (0, co), then (W (), a*~"W(x)) is « weak type (p, p) weight pair
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Jor P if and only if (W
for P

Since (Q,,f) (@) =

z), 2"V =W (2)) is a strong type (p, p) weight pair
(P_,g)(1/») where g(f) =t"2f(1/t) and hence also

U(2)do = [ rrapa

(@) (=) >0} P y)t) >0}

it follows that (U(@), V (s)) is & weak type (p, ) weight pair for @, with
norm ¢ if and only it (72U (1jw), a*®" DV (1jv)) is a weak type (p,q)
weight pair for P_, with norm €. Thus we have the following dual results
for @,.

THEOREM 4. Suppose L < p < g < oo and 1= 0. Then (U, V) is a weak
type (p, q) weight pair for @, if and only of

(L.7) B(n) =supr—"( f U(w)dm)”“(f V(m)*”(ﬂ-ﬂdm)”"'
>0 e .

8 finite; indeed, Q,ll, = B(n).
COROLLARY 8. If 1L < p < g < oo, 2= 0, then (a° %, s°**~Y) is a weak
type (2, 0) weight pair for Q, if and only if p—q = n = 0 < a.
COROLLARY 4. If 1 <'p < oo and W (@) is nonnegative and nondeoreasing
n (0, co), then (W (w), aPW (@)} is a weak type (p, p) weight pair for Qq.
THEOREM . . Suppose 1<p<g< o0, <0 and let

(1.8) B(y — Sllp U”. é/’)a Ule) /m"“)dm)”q (j‘a Viw)"'”w—l)dm}llp'.

0

If B(y; a) is finite Sor some a > 0, then (U, V) iz a weak type (p, q) weight
pair for Q,. Conversely, if (U, V) is a weak type (p, ¢) weight pair for Q,,
then B(n; a) 48 finite for all a > 0. Furthermore,

[a/(a—ng)T"B(n; a) < QM < [(ng — @) In1/4(¢') ' B(y; a).

THEOREM 6. If 1<p < o0, <0, and W(a) is nonnegative and
measurable on (0, oo), then (W () m”(“‘")W(m)) 18 a weak type (p, p) weight
pair for @, zf and only if (W(w), m"(l"‘)W(m ) s a strong type (p, p) weight
pair for Q.

ﬁ;he Hilbert transformation H and the Hardy-Littlewood maximal
function operator M are defined for locally integrable functions f by

1 Ffe
(Hf) () =P V.—ﬂ— SO dt

t—uw
-0
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and

1 v
(M) (@) = sup—— f (o)1

Tt is known [56], [8], [10] that (w(x), w(x)) is a weak type (p,p) weight
pair for either of these operators if and only if w satisties the 4, condition,
that is, there exists a constant K, such that for all —c<a <b < oo,

([ wioras)(f

a
Agafirst application of Theorems 1 and 2 we will prove,b in Section 6,
a mixed weak type inequality for H and M. For an operator T, a mixed
weak type (p, p) inequality is an inequality of the form

< (O [ 1f @)V (@)dw

(@) a0)* 7 < Ky (b~ a)?.

—

(1.9) f R(z)ds

. {z: QN TNEY>V}
where @ (), R(z) and V (x) are nonnegative functions and € is independent
of f. Inequalities of this type are important since they are of the form
needed to apply the interpolation with change of measures Theorem given
in [11]. It seems that this approach may be the only way to prove two
weight function norm inequalities of the form

[ 1(Zf) (@) P U (@) de< C [ If @)V @)dw

for the most general possible U( m) and V().
Since the strong type inequality corresponding to (1.9) is

[ 1) @)PQ @) Bo)do < @ [ f(@)” ¥ (w)da,

it would be natural to conjecture that if (1.9) were true for a triple (Q(x),

R () V(w)) of weight functions, then it Would also be true for (Q,(»),
R (w (2)) provided only that @;(®)*R, () = Q(#)"R(») and @,(«) is
reasonably gmooth. Theorem 7 shows tha.t even in a simple case this i
not true and suggests that general mixed weak type mequahty theorems
may be quite complicated.

TuroREM 7. Let w(z) satisfy the A, condition and suppose & is a real
number, & % 1. If T denotes either the Hilbert transformation H or the Hardy—
Littlewood mawimal function operator M, then there is a constant Oy such
that for all y >0
(1.10) lo|=%w (@) do < (Cafy) [ 1f(@)|w(@)do.

{z: =A@ E>1) ~w
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Theorem 7 fails for d = 1, for if f is the characteristic function of
[0,1] and w(x) =1, then [(Zf)(#)| = 1/xz for #>1 so that the integral
on the left of (1.10) diverges for every choice of y, y < 1.

As a second application of Theorem 2 we will prove, in Section 7,
the following theorem concerning the Hilbert transformation of an even
funection which is given for 2 > 0 by

BV "*f tmf(t

(Hf) (=)

THEOREM 8. Let w(x) be nonnegative and measurable on (0, oo). If for
some & > 0 there ewists a constant K, such that

b
( [ (ala+ap)+w(z)do) (es[ssup (1 jow (m))) < K2
a,b)

a

(1.11) - a“)/ab)

for all 0 < a < b < oo, then (w(z), w(®)) is a weak type (1,1) weight pair
for H,. Conversely, if (w(x), w(®)) i¢ a weak type (1,1) weight pair for H,,
then (1.11) holds for all & > 0.

H, was studied previously in [1]. Tt was asserted there (the case
p =1 of Theorem 2) that the condition

, o
(112) (f o (@) (es[siup(llw(m))) < E(b*—a?)
a a,b]

is necessary for (w(w), w(2)) to be a weak type (1, 1) weight pair for H,.
Uniortunately, this i3 not the case asisshown by the example w () =
which satisties (1.11) but not (1.12). That (1.12) is in fact a sufficient
condition as conjectured in [1] is already implies by the case d = 1/2
of Theorem 7 since (1.12) shows that w(jw|"?) satisties the 4, condition
while (H,f)(%) = »(Hg)(a*), where g(t) = t™f(1"?) if t > 0 and ¢(f) =0
otherwise. Of course, the assertions of [1] and [2] concerning the periodic
and discrete analogues of H,, in the case p =1, require the analogous
corrections,

The proofs of Theoremn 7 and 8 both require the following result,
algo of independent interest, for a local analogue of the Hilbert transform-
ation defined for « > 0 by

() (@) = f IO &

z/"

If d is any real number, let ( (Laf} (@) = o (Lf) (@

LemMA 1. Let w(w) be nown,egafwe and measmable on (0, 0) If 1< p

icm°
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< oo and & is real, then (2 "%w(x), w(z)) is a weak type (p, p) weight paw
for Lgq if and only if w satisfies the local A, condition, that is:
There emists a constant K, such that

dw) ( f w(z)”

forall a, b with0 < a<b< 2a

If 1 <p < oo, then (1.13) is also a necessary and sufficient condition
in order that (w (), 'w(cc)) be a strong type (p, p) weight pair for L.

Lemma 1 will be proved in Section 5.

b
(1.13) ( f w(@) Wﬂ-l)dw)””1 < K, (b—a)?

2. Proof of Theorem 1. We begin with the necessity part. Let r > 0
and put

hir) = (f V(m)—-ll(pﬂ)dm)l/p: ’

0
5,00 =770 { [ Tlayaa ([ 7oy aef”
r 0

I h{r) = 0, then B,.(n) = 0 by convention. If h(r) = oo, V(x)"'* ig
not in I*' on (0, 7). Then there is a nonnegative g(») in I” on (0, r) with
g (@) V()" nonintegrable on (0,7). T f(z) = g(2)V(z)™** on (0,r)
and f(#) = 0 elsewhere, then P,f(s) = oo for x> r so that the weak

type inequality (1.2) forces [ U(s)de = 0. Thus B,(n) = 0 in this case

T
also. Suppose then that 0 < h(r) < oo, If p =1, let ¢ >0 and select
a set B of positive measure |E|, B < (0, ), such that V(z) < e+essmf V(t)

for all & € B. It f is the characteristic function of ¥ and « >7, then Pﬂf
> |E|r"". Hence the weak type inequality (1.2) implies

f U(x)de < (uP,,uww f 14 m)dw)

<P, IIwT"“(e—f—essm:fV( ),

[0,7]

and gince & > 0 was arbitrary, we obtain

(f U(x)dw

If p > 1, (2.1) may be derived similarly by taking f(x)
(0,7) and f(z) = 0 elsewhere. Thus, in any case, we have B,(n) <
which yields B(n) < |P,ll, as required.

(2.1) I f V(o) 0 2 < |, .
0

= V(x)~#=D on
IF:%
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For the sufficiency part, it suffices to eonsider f (2) = 0. In this case
P.f (m is nondecreasing so that {#: P,f(#) > y} = (r, o), where » satisfies

a f f(x)da = y. Hence, the detinition of B(n) and Holder’s inequality

ylelds
r
U()do < (B('q)r”)q(f V(w)ﬂl(p—l)dm)—q/zﬂ
0

{m: Pyfla)y>v}

= (Bn) 1) f f (w)d@)“( fr (@)= da|

B(n) [y (f (@) V () da)"”

which shows ||P,|l, < B(n) as required, The proof of Theorem 1 is complete.

3. Proof of Theorem 2. Suppose first that (U, V) is a weak type
weight pair for P,. An argument similar to that which lead to (2.1) in
the proof of Theorem 1 shows that in the present case we have ingtead

( f" U(m)dw) ( f V(w)"”‘”‘”dw)“’”'g PJEy™ (<)
r B [}

Multiplying this by 4™, a > 0, integrating the result over y & (r, o)
and applying Fubini’s theorem on the left side yields B(n; a) < [(ng-+
+a) /a]"“l}Pﬂnw as required. This proves the necessity part.

For the sufficiency part, fix a > 0 such that B(yn;a) << oo and to
simplify the nota.tion let B = B(y; a),

fm (L) (t)/t"m)dz and  h(z) =(f V(t)”"“’"i)dt)”';',
1 . : ) 0

(with the usual interpretation if p = 1). If @, = sup{»: h(®») < oo}, then

B < oo shows that U(s) = 0 a.e. for # = »,. We tirst prove the desired

weak type inequality for nonmegative step functions f(z) with compact

support in (0, co). For such f, P f(x) is nonnegative, continuous and if
= {w: P,f(») >y}, then

By)n(

.

U (a’ka by)
where

0<o, <... <h<agu<..<b<o,, k=1,..,0-1 .

icm°
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We begin by deriving an estimate to be used later. For z e [ay, b,],
2 ”‘ff(t di, hence if p>1 and 0<h(f)V(t) < o ae. on [0, z],
then Edlder 8 inequality yields

2 Yo ( f FRPV(t) dz)‘“"’”‘“ ( f FUPh() v (t)ae) ( f h(t)?'h V(t)""(’"‘)dt)q"".
0 L] 0

If the range of integration is enlarged in the first integral and the integration
carried out in the third we obtain

by, z
31 @<y ([ FOrVOa) T ([ ferh V) at) (@) h)r);
0 0

moreover, it is easily seen that this inequality also holds for p = 1, with
(¢")¥"' taken to be 1 in this case. The following observations show that (3.1)
holds without the assumption that 0 < A(f) V(i) < oo a.e. On the subset
E of [0,#] where V() = oo, f(#) = 0 a.e. and the set E may therefore
be dropped from the region of integration before Hélder’s inequality is
applied. By the definition of @, V(f) > 0 and h(f) < co a.e. on [0, x]
and the set where h () = 0 is a subset of E.

We now proceed to estimate | U(x)dw. Integrating by parts, using

E(y)
the definition of B and integrating by parts again yields

f U(2)de = —a™*H( m)[ k-t (g + a) f o™l 7 () deo

Gk

< "wﬂq“H(m)IZ,’g'f'("?!l’}‘a)Bq f 2 h ()
ﬂk )
= [—&™+“H (@) + BY(ng + a) ng) &™h ()~} +
b
+BY(ng+a)fn) [ &"h(z)"* dh(z).
ay

Upon summing over %, it follows that [ U(x)de is bounded by the sum
E(@)
of

(8.2) D) [— o™ H(z) + BY(ng+a) na)a™ h(2) Lk
kel
and
n by
(3.3) BY(ng+a)fn) D [ a™h(2)"0 dh(a).

k=1 ay

2 — Studla Mathematica 72. 1


GUEST


18 K. F. Andersen, B. Muckenhoupt

The sum (3.2) is estimated as follows. Since H(#) is nonincreasing,

n ~1
2 —~w"q+aH(a))|bk — a”‘”“H + 2 [aﬂ?ﬁi"ﬂ(%ﬂ) — bnq+aH(bk)]
k=1
n—1
— B (b,) < AU H (an) + ) (01— VI H (000),
' k=1

where we have discarded the last (negative) term, and from the inequality

a8t — bt < (g + @) Ing) 4 1 (@i — YF),

we then obtain

) —amte H (o) < B a1 (a)” “+( nq+a) /nq) 2 [, — b1 h(ay0) 7Y
k=1
Hence, (3.2) is bounded by

n—1

B[ —(a/ng) a3 h(ay) " +{(ng-+a) Ing) | 3, VLA ()™~

k=1
— (@)™ T+ B (B,) ).

Deleting the first (negative) term, dominating 3} by (3.1) and using
the inequality

h(b,)"? —h(ak,l_l)_Qth(bk)l q( (b)) (“k+1) 1)
ghows that (3.2) is bounded by

n—1 bp
G0 I3 (] 070 (00 —hlag ) +

k=1 0 )

b,

4g? U'n fty® V(t)di) h(bn)_l}’

0

where for convenience we have set
bﬂ
(3.8) I= Bq((nq+a)n)/(q')a/p'y—-q (f fyP V(t)dt)‘“f”’/”.
) 0

Returning to (3.3), this may be estimated by dominating ™ by (3.1)
and then integrating by parts to obtain the bound
x

(36) I {Zn‘(—h(mr‘ IE (U104

k=l 0

(t)dtll + f F(@y? V(@ dw)}

icm°®
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[ U(z)dw is bounded by

E(y)
n-1l agiy ' n by
HY( [ ferrovma) bla)+ Y [ forvma+
k=1 b k=1ay,

a

1 : by ’
H [ 10 R V(@) hla) ™+ (@ =D ([ FOP ROV ()a

0

) 167}

and sinee h(#) is nondecreasing this is clearly bounded by

If FOPV@E)at = B“((nq—!—a/n) yalet ~qU' FPV( dt)alp
This completes the proof for nonnegative, compactly supported step func-
tions f(x

Suppose now only that fif VPV (z)de < . Let @, = sup{z: h(v)

= 0} and for each positive mteger nlet V,,(#) be defined by
V() if
Valo) = {[ V(z) Ve=D (2 fn(l+a®)] @Y it

Then V,, (#) 1V () as n—>oco a.nd for each ¢ > 0, V¥, (2) is bounded on every
finite subinterval of [2,+&, co); moreover,

o< @,
%> @y,

L

sup(f (rfo)* (U (2) /m)””clw)”q(fV

>0 4

y D dg) ' < (14mj2n) B

Since standard arguments show that step functions are dense in
L¥(V,; [+ &, oo)) it follows from what we proved above that

Ul(z)dx

{:(Pro)z)>v}

< [(L+r/20)% BY ((ng-+ a)In) (€)% 3™ [ ir@pr., (@)do),

zyte
where g(t) = |f(2)] for t = @, +¢ and g(t) = 0 elsewhere. The desired in-
equality now follows from the monotone convergence theorem upon taking
the limit as -0+ and #--oo. This completes the proof of Theorem 2.

4. Proof of Theorem 3. Theorem 3 follows immediately from Theorem
A, Theorem 2 and the following lemma.

LeMMA 2. Suppose L < p < oo, 6> 0 and W(v) is nonnegative and
measurable on (0, oo). If
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(41) (f (r/m)“(W(w)/m””}dw) {f [mp(l—ﬂ)'W(‘,:n)]—ll(lJ-*l)dw)ﬂ~1<0
r ]

for all ¥ >0, then

o«

(4.2) ( f (W(m)/w'"‘)dw) ( f [mﬂ“"ww(w)]*”w*”dm)p”l

<2°0[1—[1+47'77?)

for all r>0 where A = (2%(In2) PO)/F~,
To prove the Lemma, let # > 0 and put

ok-+1p
b= [ [@W (@)] V) da.
ke
Holder’s inequality then yields
2k +1p ok 41,
@3) [ @ (W (@) ") do> 27" [ (W (@)jo"™)de
kr 2kp
’ 2k -+ 2k+1p
—-a(f dm/m)ﬂ(f [mp(l-ﬂ)W(w)]-ll(p—l)dw)“f'
ok oky

= 27%(In2)Pb}"?.
Replacing r by 2%r in (4.1) leads to

ok+1y 2k
@a) ([ @rr(W@em)ds)(f "W (@) <0
2k 0
and upon uging (4.3) and the definition of b; this yields
k-1
(4.5) (2= n2)?07) 3 )" <0,
J=—c0
Raising (4.5) to the 1/(p —1) power and writing b, = 2 b;— 2 by
gives e
k.—
Z b < [2°(In2) —pa]‘/<:"~1>( 2 b— 3 b
J=—o00 Jm—co Je=—o00

and hence also

(4.6)

Z by < (AJ(L+A4)) 2 b,

J—oo Jam—oo

e _®

icm
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where we have put 4 = [2%(In2)"2(¢]V®»~Y, By induction it follows that
for nonnegative infegers &

2”1

F=—00

~1

(A/@+4)* Z b,.

oo

(4.7

Now multiplying (4.4) by the p —1 power of (4.7) and deleting the common
factor shows that

ok+1,

(a7 @) (frare-w o ovanf s

2ky

G(A/(1+A))k(P—l).

If @ is replaced by. 2¥+1y in the first integral and the resulting inequality
summed over all nonnegative integers & we obtain (4.2). The proof of
Lemma 2 is complete.

5. Proof of Lemma 1. The necessity of (1.13) is proved in the same
way that the 4, condition is proved to be necessary for H, see [5] or [8].

For the sufficiency, observe first that (1.13) and Holder’s inequality
leads to

}aw(m)dw < fu w(o)do < K, a? (}“ w(z) HE-Y dm)l_p
Vig a
Via
<E, -a?| f w (@)™ da|' =

Via
z’f w(z)de

a

< K, (Y2 —1)-

and by iterating this process it follows that

Vaa
fw(m dr < 0, f

b
whenever 2¢ < b< 8a¢. A similar inequality holds for [w(z)™*® "y

go that in fact

(8.1)  (1.13) holds (with a new constant K,) whenever 0 < a < b < 8a.

Now, for each integer »n define w, () for —oo < # < co by the requirement
that w, be periodic of period 7-2" and

w(x) if
(@) = {w @+ —w) it

e (211—-1, 211.4—2]’
e (2", 15-2"71],
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Simple calculations now show that w, satisties the A4, condition with
a constant K, independent of n. Let m = min (274, 2“"“)‘1)

) on+2
By) ={o: | [ (Fose—o)d| >y}
an—1
and
a2
Buy) =fo @, 21 o1 [ (fO/(t=0)dtl >y}
: [Py )

The results of Hunt, Muckenhoupt and Wheeden [8] then show that

< max (2700, 27000 [ w, (@) do
Eym)

(5.2) @~ (z) do
Ey,(¥)
9n 42
<027y [ |f(@)|Pw,(»)dw
n—1
znj.—ﬂ
[ 1f@Pw@)ds

on—1

= Gp,dy ¢

and moreover, if 1 < p < ‘o'o, (5.2) may be }'opla,ced by the corresponding
strong type inequality. If 2.e (2", 2""'], Holder’s inequality shows

@2 2%
| [ (tom—a)al < (@ [ 1fea)
on—1 an—1
<2-(’~—‘>p_(.} w(t)—”w—m)”‘l f2 IF @) 1Pw(t)dt
an—1 an—1
s0 that (5.1) yields
2n+l /2
(5.3) w)i f ft—a dtl dw
2" 2n+1 a1 on
<27 ( [ w@da)( [ w@mea) T [ f@)Pwe
o1 an—1 on—1
211.4
<0, [ forwa
211:—-1
and similarly,
gn+l gn+2 on+2
(5.4) [ w [ f(f(t)/t—w) i< 0, [ IfOFwa.
At Cgnl
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But then, since
2n+2 z/2 g2
(If) (@ —~( J-1-] )f(t [t-o)d, ae @, 2]
an—1

the desired results follow upon summing (5.2), (5.3) and (5.4) over all
integers n. This proves Lemma 1.

6. Proof of Theorem 7. We give the details only for the case T = H,
the case T' = M being similar and in fact shghtly simpler.
It suffices to prove ‘

(6.1) : o

w(z)de < Oy™! f 1f () |20 () dov
{2>0: 22i(Hf)(2) >y}

for the contribution over #<0 may be handled similary. For con-

venience, write V(#).= min(w (o), w(—)). Sinee for x>0

dt

(E)@) < 1A @)+ — [ (015 -ohder S (o) 2,

Lemma 1 shows that (6.1) will follow if we show that

(6.2) (v %w(z), V(s)) is a weak type (1,1) weight pair for P,_,
and . ) _
(6.3) (2 “w(x),®V(2)) is a strong (hence also weak) type (1,1)

weight pair for Q_;.

.

Since w satisties the 4, condition, if ¢ > 0, we have

: ‘
(6.4) %«f w (@) do <~:~ fw z)de < 2K essinfw (@) = 2K essint V (x)
8 =

-t [0,

and therefore if » > 0 and e = max(2—d, d), (6.4) yields

o0

00 i oo
[ (w(@)jaa*)do = [ atjp+e w(w)dngK(e?osi?fV(m)) [ ape

r

essint V ()

2K
T (@=)r T

s0 that (6.2) follows from Theorem 1 if 4 > 1 and from Theorem 2 if d < 1.
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Finally, Fubini’s Theorem and (6.4) show that

3 oo o . i
fw(m)|ff(t)dz]dm<f it [ wio)do
0 F [ 0

< 2wa [F)IEV () dt
0

which yields (6.3). This completes the proof of Theorem 7.

7. Proof of Theorem 8. We prove the sufficiency of (1.11) first. El-
ementary estimates show that

I(HLF) (@)l < [(EF) (@) + o (P4 1) (@) +(Q-19) ()

where ¢(t) = [f(t)]/t* Since (1.11) shows that w satiéfie‘s the local 4, condi-
tion, Lemma 1 then shows that it suffices to prove

(7.1)

and

(w(z), w(x)) is a weak type (L,1) weight pair for P,

(1.2) (w(x), 2*w(x)) is a weak type (1,1) weight pair for @_,.

Since (7.2) is equivalent to (7.1) with w(w) replaced by o™ *w(1/w) and
gince #~2w (1 jo) satisfies (1.11) if (any only if) w(») does, it further suffices
to prove (7.1). Now (1.11) with b > 2a leads to

2a

b
—‘:— f w) de < K,((b*— a*)/b”)essinf(ww(w)la) < K,(1/a) f w(x)dw,
b2 {a,2a) p
that is,
20 2a
@p) [ w(o)ds < K, (1fa) [ w(@)do
b a

whenever b > a. Hence, if 6 >0and 0 <a<r

oo 0o gh+ly
f(r/w)"(w(m)/w)dw=2f (r /) (w (%) |0) dov
y =0 ok,
(22*"") 1/a)f w (o) dw
=0

and since w satisfies the local 4, condition we obtain

[ (r1wy(w(@)fo)do < K,,,,t?sszi?iw(w)

icm°®

Weighted weak type Hardy inequalities 25

for every 0 < a < r %0 that
o

f"/w w (@) o) do < K, yessinfw ()

r 0,1

which yields (7.1) by an application of Theorom 2. This proves the suf-
ficiency of (1.11).

Suppose now that (w(w), w(®)) is a weak type (1,1) weight pair for
H, and let 0 <a<b< co be given. If b < 2a, the necessity proot of
[8]is easily adapted to show that

(fw

which is equivalent to (1.11) in this case. Now fix > 0. The estimate

)esssup( (@) < K (b—a)

{a,b]

[(Hf) ()] 1/m)ff (Hdt, »>2r
holds for all nonnegative f(#) supported in (0,#] so that the weak type
inequalitiy for H, leads, just as in the proof of Theorem 2, to

(7.3) (f (2r/w)‘(w(w)/m)dm) (es[ss?p(llw(m)))< B, (s6>0).
ar 0,7 :

Similarly,

[(H,1) ()| = oz f f(t)dt/t“ 0<e<r)

for all nonnegative f(t) supported on [2r, oo] leads to

»

(f (m/r)”mw(w)dw) (esasup(l/w“w(m)))gB, (e.>‘0).

0 {ar, 0]

(7.4)

Multiplying (7.8) and (7.4) together and using Holder’s inequality in two
obviong ways yields

7.6 : 1/w(@))) < Byr®
(7.8) (;,f (wfr)"aow (@ )(GS[?)B:]IP( Jw(@))) < Bur
and

7.6 r 1 /a2 < Byt
(7.6) (;f (rf2)"(w () o) dw) {e?rsig.p( 20 (2))) < B,
Taking » == b in (7.5) and r = « in (7.6) leads to
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b

(1.7) (f (0/b)+*w (o) da) (esss;lp(llw(m))) < B,b
a [a,b]

and

a’/m H—‘ \<Bsa'—l

b
(7.8) (f «

and therefore

dw) (es[i 's;]lp(l Jotw (2 )))

b

+t
(7.9) ( f (b}t dm)(es[i’s;]lp(llww(w)))<B,(b/a)
and
b
(7.10) ([ (afo) (o) da) (esss;]lp(llmw( 2))) < B.(b/a).

Adding (7.9) and (7.10) then yields (1.11) since b/a < (4/3) (b*—a?)/ab
when b > 2a. This completes the proof of necessity, and with it, the proof
of Theorem 8.
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A generalization of Wiener’s criteria for
the continuity of a Borel measure

by
JEAN-MARC BELLEY* and PEDRO MORALES (Sherbrooke)

Abstract, An identity is derived for the discrete part of a bounded complex-
valued finitely additive set function defined on the Borel sets of an Abelian locally
compact Hausdorff topological group. This allows us to establish a generalization
of Wiener’s necossary and sufficient condition for the continuity of a complex.valued
bounded regular measure [16].

1. Introduction. Let T = {# ¢ C: |2| = 1}. Then T with the multipli-
cation operation and the topology induced by the usual topology on C
is a compact Abelian topological group. Let #(T) be the o-algebra of
Borel sebs in 7. Let M (T) = {u: #(T)—C| pis a bounded regular measu-
re}. The Fourier coefficients of a measure u € M (T) are f(n) = 1'[ 27" du(2)

for all n & Z. Recall that a measure u € M(T) is continuous if w({e}) =0
for any point z in 7. A classical result of Wiener ([16]; [17], Theorem 9.6,
p. 108; [8], Corollary, p. 42) states:

1.1, TuworeM. Let u e M(T). Then

N
g (gD ‘iﬁi‘;zml § s ()12

In partioular, u is continuous if and only if

Z)M )|

In this paper, it is shown that this theorem follows from a general
rosult for hounded complex-valued finitely additive set functions defined
on the Borel sets #(G) of an arbitrary locally compact Abelian Hausdorff

i, ‘2’1?7"3}1
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