

(7.7)
$$\left(\int_a^b (x/b)^{1+\epsilon} w(x) dx \right) \left(\operatorname{ess\,sup}_{[a,b]} (1/w(x)) \right) \leqslant B_{\bullet}b$$

and

$$(7.8) \qquad \left(\int_{a}^{b} (a/x)^{1+\epsilon} w(x) dx\right) \left(\operatorname{ess\,sup}_{[a,b]} (1/x^{2} w(x))\right) \leqslant B_{\epsilon} a^{-1}$$

and therefore

$$(7.9) \qquad \left(\int\limits_a^b (x/b)^{1+\epsilon}w(x)\,dx\right)\left(\mathop{\rm ess\,sup}_{[a,b]}\left(1/xw(x)\right)\right)\leqslant B_{\epsilon}(b/a)$$

and

$$(7.10) \qquad \left(\int_{a}^{b} (a/x)^{1+\epsilon} w(x) dx\right) \left(\underset{[a,b]}{\operatorname{ess sup}} (1/xw(x))\right) \leqslant B_{\epsilon}(b/a).$$

Adding (7.9) and (7.10) then yields (1.11) since $b/a \le (4/3)$ ($b^2 - a^2$)/ab when $b \ge 2a$. This completes the proof of necessity, and with it, the proof of Theorem 8.

References

- K. F. Andersen, Weighted norm inequalities for Hilbert transforms and conjugate functions of even and odd functions, Proc. Amer. Math. Soc. 56 (1976), 99-107.
- [2] Inequalities with weights for discrete Hilbert transforms, Canad. Math. Bull. 20 (1977), 9-16.
- [3] M. Artola, untitled and unpublished manuscript.
- [4] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408.
- [5] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51 (1974), 241-250.
- [6] T. M. Flett, A note on some inequalities, Glasgow Math. Assoc. Proc. 4 (1958), 7-15.
- [7] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge 1934.
- [8] R. A. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.
- [9] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38.
- [10] Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- [11] E. M. Stein and G. Weiss, Interpolation of operators with change of measures, ibid. 87 (1958), 159-172.
- [12] G. Talenti, Osservazioni sopra una classa di disuguaglianze, Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185.
- [13] G. Tomaselli, A class of inequalities, Bull. Un. Mat. Ital. 21 (1969), 622-631.

Received September 6, 1978

(1464)

A generalization of Wiener's criteria for the continuity of a Borel measure

by

JEAN-MARC BELLEY* and PEDRO MORALES (Sherbrooke)

Abstract. An identity is derived for the discrete part of a bounded complex-valued finitely additive set function defined on the Borel sets of an Abelian locally compact Hausdorff topological group. This allows us to establish a generalization of Wiener's necessary and sufficient condition for the continuity of a complex-valued bounded regular measure [16].

1. Introduction. Let $T=\{z\in C\colon |z|=1\}$. Then T with the multiplication operation and the topology induced by the usual topology on C is a compact Abelian topological group. Let $\mathscr{B}(T)$ be the σ -algebra of Borel sets in T. Let $M(T)=\{\mu\colon \mathscr{B}(T)\to C\mid \mu \text{ is a bounded regular measure}\}$. The Fourier coefficients of a measure $\mu\in M(T)$ are $\hat{\mu}(n)=\int_{T}^{\infty}z^{-n}d\mu(z)$ for all $n\in \mathbb{Z}$. Recall that a measure $\mu\in M(T)$ is continuous if $\mu(\{z\})=0$ for any point z in T. A classical result of Wiener ([16]; [17], Theorem 9.6, p. 108; [8], Corollary, p. 42) states:

1.1. THEOREM. Let $\mu \in M(T)$. Then

$$\sum_{z \in T} |\mu(\{z\})|^2 = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{-N}^{N} |\hat{\mu}(n)|^2.$$

In particular, μ is continuous if and only if

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{-N}^{N} |\hat{\mu}(n)|^2 = 0.$$

In this paper, it is shown that this theorem follows from a general result for bounded complex-valued finitely additive set functions defined on the Borel sets $\mathscr{B}(G)$ of an arbitrary locally compact Abelian Hausdorff

^{*} Supported by NRC and F.C.A.C. grants.

topological group G. This result also generalizes that of W. F. Eberlein ([3], Theorem 1, p. 310) in the case of Radon measures on $\mathcal{A}(G)$.

2. Preliminaries. In this section we introduce a slight generalization of a theorem of Sinclair ([14], p. 363) which is an essential tool for obtaining our main result. Let $\mathscr A$ be an algebra of subsets of a set X. A charge on $\mathscr A$ is a complex-valued bounded finitely additive set function defined on $\mathscr A$. For every bounded $\mathscr A$ -measurable complex-valued function on X, we can define the integral $\int_X f d\mu$ by the usual Moore-Smith method ([12], pp. 183-191; [15], pp. 401-404) or, equivalently [9], by the Dunford-Schwartz method ([2], pp. 101-125). A function $f: X \to C$ is called $\mathscr A$ -continuous if, for every $\varepsilon > 0$, there exists a finite partition $\{E_i\}_{1 \le i \le n}$ of X such that $E_i \in \mathscr A$ and $\sup_{x,y \in E_i} |f(x) - f(y)| < \varepsilon$ for all $i = 1, 2, \ldots, n$. It is clear that if X is a topological space and if $f: X \to C$ is bounded and continuous, then f is $\mathscr B(X)$ -continuous.

Let X and Y be arbitrary sets and let $f \colon X \times Y \to C$. We say that f satisfies the double limit condition or f is a DLC function if, whenever $\{x_i\}$, $\{y_j\}$ are sequences in X and Y, respectively, such that the iterated limits

$$a = \lim_{i \to \infty} \lim_{j \to \infty} f(x_i, y_j)$$

and

28

$$\beta = \lim_{i \to \infty} \lim_{i \to \infty} f(x_i, y_i)$$

exist, then $\alpha = \beta$. This notion was introduced by Banach ([1], p. 222) to give a criteria for the weak convergence to 0 of a sequence in a Banach space, and used extensively by Grothendieck ([5], pp. 182–186) in his search for more general weak convergence criteria. In the case where X and Y are completely regular spaces and f a real-valued bounded separately continuous function on $X \times Y$, this notion was used by Pták ([11], p. 573) to obtain extension criteria for f.

It is said that \mathscr{A} separates points on X, or \mathscr{A} is an SP algebra on X if, whenever $x, y \in E$, $x \neq y$, there are disjoint sets A, $B \in \mathscr{A}$ such that $x \in A$ and $y \in B$. It is clear that if X is a Hausdorff topological space, then $\mathscr{B}(X)$ is an SP algebra on X.

The following result is a trivial generalization of Theorem 4.4 of Sinclair ([14], p. 363):

- 2.1. THEOREM. Let $\mathscr A$ and $\mathscr B$ be SP algebras on the sets X and Y, respectively. Let μ and ν be charges on $\mathscr A$ and $\mathscr B$, respectively. If $f\colon X\times Y\to C$ is bounded and satisfies the additional conditions:
 - (i) $f(\cdot, y)$ is \mathscr{A} -continuous for all $y \in Y$,
 - (ii) $f(x, \cdot)$ is B-continuous for all $x \in X$, and
 - (iii) f is a DLC function,

then $(1) \int f(x,y) dy$ in (2)

- (1) $\int_X f(\cdot, y) d\mu$ is \mathscr{B} -continuous,
- (2) $\int_{V} f(x, \cdot) dv$ is \mathscr{A} -continuous, and
- $(3) \int_{Y} \int_{X} f d\mu \, d\nu = \int_{X} \int_{Y} f d\nu \, d\mu.$
- 3. Preparatory propositions. Henceforth G will denote an Abelian Hausdorff locally compact group. When we need to give G a topology τ different from the original, we will write G_{τ} . In particular, we shall consider the discrete topology (τ_d) , the pointwise topology (τ_p) and the topology of uniform convergence on compacta (τ_{up}) .

A character on G is a continuous homomorphism on G to T. The set of all character on G is an Abelian group under addition and, with the τ_{uc} topology, it is a locally compact topological group ([10], p. 137). The topological group so obtained is called the dual group of G, denoted $G^{\hat{}}$. The value of an element $\hat{z} \in G$ at the point $z \in G$ will be denoted by $\langle z, \hat{z} \rangle$ and its complex conjugate by $\langle z, \hat{z} \rangle$. For all $z \in G$ consider the function $u_z: G \to T$ given by $u_z(\hat{z}) = \langle z, \hat{z} \rangle$. Then u_z is a character on G. The Pontryagin duality theorem ([7], p. 378) states that the mapping $z \rightarrow u_z$ is a topological isomorphism of G onto $G^{\hat{}}$. This result permits us to identify G with its own second character group $G^{\hat{}}$. With G can be associated its Bohr compactification ([13], p. 30) $G^* = ((G^{\hat{}})_{\tau,s})^{\hat{}}$ which is an Abelian Hausdorff compact topological group whose topology is τ_n . It is well known that G can be embedded into G^* as a dense subgroup ([13], Theorem 1.3.2. p. 30). It is easy to show that the continuous function $(z,\hat{z}) \rightarrow \langle z,\hat{z} \rangle$ can be extended to a continuous function on $G_{r_d} \times G^{**}$. We note that every element of the Bohr compactification of an Abelian Hausdorff locally compact topological group is a character on some discrete topological group.

3.1. LEMMA. The restriction to G of an element of G*** belongs to G**.

Proof. We note the two trivial facts: (a) If $\hat{z} \in G^{*^*}$, then the domain of \hat{z} contains the set G; (b) Let K be a topological subgroup of an Abelian Hausdorff locally compact group H. If $\hat{z} \in H^{\hat{}}$, then $\hat{z} \mid_K \in K^{\hat{}}$. The lemma now follows by taking $K = G_{\tau_d}$ and $H = (G^*)_{\tau_d}$.

Remarks. (1) From fact (a) and the property $G^{*\hat{}} = (G^{*\hat{}})^{\hat{}}$ follows that G_{τ_d} is a topological subgroup of $G^{*\hat{}}$.

- (2) From Remark (1), it follows that $(G^{\hat{}})_{\tau_d}$ is a topological subgroup of $G^{*\hat{}}$
- (3) From the lemma it follows that the restriction to G^{*} of an element of G^{*} belongs to G^{*} .

3.2. Lemma. If $\{z_i\}$ and $\{\hat{z_j}\}$ are sequences in G and G, respectively, then there are subsequences $\{z_{im}\}$ and $\{\hat{z}_{jn}\}$ of $\{z_i\}$ and $\{\hat{z_j}\}$, respectively, such that $\lim_{m\to\infty} \lim_{n\to\infty} |z_{im}| < z_{im}, \hat{z_{jn}} > 0$.

Proof. Since $\hat{z}_j \in (G^{\hat{}})_{\tau_d} = G^{*\hat{}} \subseteq G^{*\hat{}}^*$, there exists a subsequence $\{\hat{z}_{jn}\}$ of $\{\hat{z}_j\}$ converging to an element $\hat{z} \in G^{*\hat{}}^*$. Hence, by Remark (1), $\lim_{n\to\infty}\langle z_i,\hat{z}_{jn}\rangle = \langle z_i,\hat{z}\rangle$ $(i=1,2,3,\ldots)$. Also, since $G_{\tau_d} \subseteq G^{*\hat{}}^*$, there exists a subsequence $\{z_{im}\}$ of $\{z_i\}$ converging to an element $z \in G^{*\hat{}}^*$. Therefore $\lim_{m\to\infty}\lim_{n\to\infty}\langle z_{im},\hat{z}_{jn}\rangle = \lim_{m\to\infty}\langle z_{im},\hat{z}\rangle$ and, by duality and the fact that the topology on $G^{*\hat{}}^*$ is τ_p , we have $\lim_{m\to\infty}\langle z_{im},\hat{z}\rangle = \langle z,\hat{z}\rangle$. So $\lim_{m\to\infty}\lim_{n\to\infty}\langle z_{im},\hat{z}_{jn}\rangle = \langle z,\hat{z}\rangle$.

On the other hand, since $\{\hat{z}_{jn}\}\subset G^{*^**^*}$ by Remark (2), the continuity of $(w,\hat{w})\to \langle w,\hat{w}\rangle$ on $G^{*^**^*}\times G^{*^**^*}$ yields $\lim_{m\to\infty}\langle z_{im},\hat{z}_{jn}\rangle=\langle z,\hat{z}_{jn}\rangle$ (n=1,2,3...). Since $z\in G^{*^**^*}$, by Remark (3), $z|(G^{\hat{}})_{\tau_d}\in G^*$ and by the fact that the topology on G^* is τ_p , we have $\lim_{n\to\infty}\langle z,\hat{z}_{jn}\rangle=\langle z,\hat{z}\rangle$. This completes the proof.

3.3. Proposition. The function $f: G \times G \ \to T$ given by $f(z, \hat{z}) = \langle z, \hat{z} \rangle$ satisfies the double limit condition.

Proof. This follows immediately from Lemma 3.2 and the continuity of f.

Let m be the normalized Haar measure on the Borel subsets $\mathscr{B}(G^{**})$ of G^{**} . For a given $z \in G$ and $t \in T$, denote by $z^{-1}(t)$ the set $\{\hat{z} \in G^{**} : \langle z, \hat{z} \rangle = t\}$.

3.4. Proposition. Given $z \in G$, there are but a finite number of points $t \in T$ for which $z^{-1}(t)$ has positive Haar measure.

Proof. Let t and t' be two points on T for which $m(z^{-1}(t)) > 0$ and $m(z^{-1}(t')) > 0$. (Then $z^{-1}(t)$ and $z^{-1}(t')$ are not empty.) Let us show that $z^{-1}(t) = \hat{z} + z^{-1}(t')$ for some $\hat{z} \in G^{**}$.

Choose an arbitrary $\hat{z}_t \in z^{-1}(t)$ and an arbitrary $\hat{z}_{t'} \in z^{-1}(t')$. Let $\hat{z} = \hat{z}_t - \hat{z}_{t'}$. If we choose a \hat{z}' in $z^{-1}(t)$, we have $\langle z, \hat{z}' \rangle = \langle z, \hat{z} + (\hat{z}' - \hat{z}) \rangle$ where $(\hat{z}' - \hat{z}) \in z^{-1}(t')$, since

$$\langle z, \hat{z}' - \hat{z} \rangle = \langle z, \hat{z}' - (\hat{z}_t - \hat{z}_{t'}) \rangle = \langle z, \hat{z}' \rangle \langle z, \hat{z}_{t'} - \hat{z}_{t} \rangle$$

$$= \langle z, \hat{z}' \rangle \langle z, \hat{z}_{t'} \rangle \langle \overline{z}, \hat{z}_{t'} \rangle = tt'\overline{t} = t'.$$

Thus $z^{-1}(t) \subseteq \hat{z} + z^{-1}(t')$. Similarly we can show the inclusion $\hat{z} + z^{-1}(t') \subseteq z^{-1}(t)$. Since m is translation invariant,

$$m(z^{-1}(t')) = m(\hat{z} + z^{-1}(t')) = m(z^{-1}(t)).$$

The proposition now follows from $m(G^{^**}) = 1$ and the disjointness of the sets $\{z^{-1}(t): t \in T\}$.

Let \mathring{V} denote the interior of V and \overline{V} its closure.

3.5. PROPOSITION. Given $z \in G$ and n = 1, 2, 3..., there exists a partition $R_{z,n}$ of G^{**} into Borel subsets for which

(i)
$$m(\mathring{V}) = m(\overline{V})$$
 whenever $V \in R_{z,n}$,

(ii) given $\hat{z} \in G^{**}$, there exists a $V \in R_{z,n}$ for which (a) $\hat{z} \in V$ and (b) $|\langle z, \hat{z} \rangle - \langle z, \hat{z}' \rangle| < 2\pi/n$ for all $\hat{z}' \in V$.

Proof. Let $I_1,\,I_2,\,\ldots,\,I_n$ be disjoint half open arcs of T of length $2\pi/n$ each. By the proposition, it follows that we can rotate these arcs along T if necessary until they are such that none of the end points t has $m(z^{-1}(t))>0$. Then let $R_{z,n}=\{z^{-1}(I_t):\ i=1,2,\ldots,n\}$. Thus if $V_i=z^{-1}(I_i),\ i=1,2,\ldots,n$, then $m(\overline{V}_i\mathring{\nabla}_i)=m(z^{-1}(\overline{I}_i\mathring{\nabla} I_i))$ and this vanishes since $\overline{I}_i\mathring{\nabla} I_i$ consists of two end points each with Haar measure of their inverses under z equal to zero. This proves part (i).

Part (ii) follows by construction.

Let $R = \{A \in \mathcal{B}(G^{**}): m(A) = m(\overline{A})\}$. By Proposition 3.5, R is not empty.

3.6. Proposition. R is a subalgebra of \mathscr{B} (G^{*}).

Proof. Let U be an element of R. Then $U^c \in R$ since $\mathring{U} = (\overline{U^c})^c$ and $\overline{U} = ((U^c)^\circ)^c$ imply $m((U^c)^\circ) = m(\overline{U^c}) = 1 - m(\overline{U}) = 1 - m(U) = m(U^c) = 1 - m(U) = 1 - m(\mathring{U}) = m(\mathring{U^c}) = m(\overline{U^c})$ and so $m((U^c)^\circ) = m(U^c) = m(\overline{U^c})$.

Choose $U, V \in R$, Since $\mathring{U} \cup \mathring{V} \subseteq (U \cup V)$, we have

$$m((\overline{U \cup V}) \setminus (U \cup V)^{\circ}) \leq m((\overline{U} \cup \overline{V}) \setminus (\mathring{U} \cup \mathring{V}))$$

$$\leqslant m((\overline{U} \setminus \mathring{U}) \cup (\overline{V} \setminus \mathring{V})) \leqslant m(\overline{U} \setminus \mathring{U}) + m(\overline{V} \setminus \mathring{V}) = 0$$

and so $m((U \cup V)^{\circ}) = m(U \cup V) = m(\overline{U \cup V})$, i.e. $U \cup V \in R$. Since $G^{**} \in R$, this completes the proof.

Let $M = \{A \cap G : A \in R\}.$

3.7. Proposition. M is an SP algebra on $G^{\hat{}}$.

Proof. A compact Hausdorff space is normal. Hence, by Urysohn's lemma, there exists a continuous function $f\colon G^{\hat{}} \to [0,1]$ such that f=0 on the closed set $\{\hat{x}\}$ and f=1 on $\{\hat{y}\}$. By the Stone–Weierstrass theorem ([10], p. 9) $f(\hat{z})$ can be uniformly approximated by polynomials $\sum_{k=1}^n c_k \langle z_k, \hat{z} \rangle$ where $z_k \in G$, $k=1,2,\ldots,n$. If $\langle z,\hat{x} \rangle = \langle z,\hat{y} \rangle$ for all $z \in G$, then $f(\hat{x}) = f(\hat{y})$, which is a contradiction. Hence, for some $z_0 \in G$, $\langle z_0, \hat{x} \rangle \neq \langle z_0, \hat{y} \rangle$. Thus, there exist disjoint half open intervals $I_{\hat{x}}$ and $I_{\hat{y}}$ on the unit circle containing $\langle z_0, \hat{x} \rangle$ and $\langle z_0, \hat{y} \rangle$, respectively, for which

$$z_0^{-1}(I_0) = \{\hat{z} \in G^{\hat{}} : \langle z_0, \hat{z} \rangle \in I_{\hat{x}} \}$$

and

$$z_0^{-1}(I_{\hat{oldsymbol{y}}}) = \{\hat{z} \in G \, \hat{} : \langle z_0, \hat{z} \,
angle \in I_{\hat{oldsymbol{y}}} \}$$

are disjoint elements of M containing \hat{x} and \hat{y} , respectively.

3.8. Proposition. For all $z \in G$, the function $\langle z, \cdot \rangle$: $G \to T$ is M-continuous.

Proof. This follows immediately from Proposition 3.5 (ii).

3.9. PROPOSITION. If for some A, $B \in \mathbb{R}$, $A \cap G^{\hat{}} = B \cap G^{\hat{}}$, then $m(A \triangle B) = 0$.

Proof. Since $A \setminus B \subseteq (A \setminus \mathring{A}) \cup (\mathring{A} \setminus \overline{B}) \cup (\overline{B} \setminus B)$, then $m(A \setminus B) \leq m(A \setminus \mathring{A}) + m(\mathring{A} \setminus \overline{B}) + m(\overline{B} \setminus B) = 0 + m(\mathring{A} \setminus \overline{B}) + 0$. But $\mathring{A} \setminus \overline{B}$ is open and G is dense in G and so $\mathring{A} \setminus \overline{B} = \emptyset$; for otherwise $(A \setminus B) \cap G$ $= (\mathring{A} \setminus \overline{B}) \cap G$ $= \emptyset$, contradicting $A \cap G$ $= B \cap G$. Hence $m(A \setminus B) = 0$. Similarly $m(B \setminus A) = 0$, and so $m(A \triangle B) = 0$. The proposition is proved.

Remark. It is clear from Proposition 3.9 that the set function $r(A \cap G^{\hat{}}) = m(A)$, where $A \in R$, is well defined. The following proposition is trivial.

3.10. Proposition. The set function v is a non-negative charge on M.

Remark. Since the product of two M-continuous functions is M-continuous, from Proposition 3.8 it follows that the integral $\int_{G} \langle z, \hat{z} \rangle dv (\hat{z}) \exp(\hat{z}) \exp(\hat{z}) dv$ (\hat{z}) exists for all $z, w \in G$.

3.11. Proposition.

$$\int_{G_{\hat{x}}} \langle z, \hat{z} \rangle \langle \overline{w, \hat{z}} \rangle dv(\hat{z}) = \begin{cases} 0 & \text{if } z \neq w, \\ 1 & \text{if } z = w. \end{cases}$$

Proof. Note that $\langle z,\hat{z}\rangle\langle\overline{w},\hat{z}\rangle = \langle z-w,\hat{z}\rangle$ is a character. Let n be a positive integer. As in the proof of Proposition 3.5, consider disjoint half open arcs $I_{i,n}$, $i=1,\ldots,n$ of equal length for which $(z-w)^{-1}(I_{i,n})=V_{i,n}\in R_{n,z-w}\subset R$ and points $\hat{z}_{i,n}\in V_{i,n}\cap G$. Then

$$\begin{split} \int\limits_{G^{\hat{r}}*} \langle z-w\,,\hat{z}\rangle dm &= \lim_{n\to\infty} \sum_{i=1}^n \langle z-w\,,\hat{z}_{i,n}\rangle m(V_{i,n}) \\ &= \lim_{n\to\infty} \sum_{i=1}^n \langle z-w\,,\hat{z}_{i,n}\rangle \nu(V_{i,n}\cap G^{\hat{r}}) \\ &= \int\limits_{G^{\hat{r}}} \langle z-w\,,\hat{z}\rangle d\nu(\hat{z})\,. \end{split}$$

Since ([8], exercise 6, p. 193)

$$\int_{G^{\hat{x}}} \langle z-w, \hat{z} \rangle dm(\hat{z}) = \begin{cases} 0 & z \neq w, \\ 1 & z = w, \end{cases}$$

the result follows.

4. The main result. Let μ be a charge on $\mathscr{B}(G)$. We define the Fourier transform $\hat{\mu}$ of μ by

$$\hat{\mu}(\hat{z}) = \int_{G} \langle \overline{z}, \hat{z} \rangle d\mu(z).$$

Then $\hat{\mu}$ is a bounded complex-valued function on G. Taking $f(z, \hat{z}) = \langle z, \hat{z} \rangle$ it is clear, by Propositions 3.3, 3.7 and 3.8, that the hypotheses of Theorem 2.1 are verified. Then part (1) of that theorem assures that $\hat{\mu}$ is M-continuous. We are now in a position to establish our principal result:

- 4.1. THEOREM. There exist an algebra M of subsets of G^{*} and a non-negative charge v on M satisfying the following properties:
 - (1) For all $z \in G$, the function $\langle z, \cdot \rangle$ is M-continuous.
 - (2) For any charge μ on $\mathscr{B}(G)$ we have
 - (a) the Fourier transform $\hat{\mu}$ of μ is M-continuous, and
 - (b) for all $z \in G$, $\mu(\lbrace z \rbrace) = \int \hat{\mu}(\hat{z}) \langle z, \hat{z} \rangle d\nu(\hat{z})$.

Proof. It remains to prove (b). Let μ be a charge on $\mathscr{B}(G)$ and let $z \in G$. Then

$$\int\limits_{G^{\wedge}}\hat{\mu}(\hat{z})\langle z,\hat{z}\rangle dv(\hat{z}) = \int\limits_{G^{\wedge}}\Big(\int\limits_{G}\langle\overline{w,\hat{z}}\rangle d\mu(w)\Big)\langle z,\hat{z}\rangle dv(\hat{z})$$

$$= \int\limits_{G^{\wedge}}\int\limits_{G}\langle\overline{w,\hat{z}}\rangle\langle z,\hat{z}\rangle d\mu(w) dv(\hat{z}).$$

Let $f(w,\hat{z}) = \langle \overline{w}, \overline{\hat{z}} \rangle \langle z, \hat{z} \rangle = \langle z-w, \hat{z} \rangle$. Then, by Propositions 3.3 and 3.8, the hypotheses of Theorem 2.1 are verified. Then part (3) of that theorem allows us to write:

$$\int_{G^{\hat{r}}} \hat{\mu}(\hat{z}) \langle z, \hat{z} \rangle d\nu(\hat{z}) = \int_{G} \int_{G^{\hat{r}}} \langle \overline{w, \hat{z}} \rangle \langle z, \hat{z} \rangle d\nu(\hat{z}) d\mu(w)
= \mu(\{z\}) \qquad (Proposition 3.11).$$

4.2. Corollary. For any charge μ on $\mathcal{B}(G)$, we have

$$\sum_{z\in G} |\mu(\{z\})|^2 = \int\limits_{G} |\hat{\mu}(\hat{z}|)|^2 d\nu(\hat{z}|).$$

In particular, μ is continuous if and only if $\int_{\hat{G}_n} |\hat{\mu}(\hat{z})|^2 dv(\hat{z}) = 0$.

Proof. Applying Theorem 2.1 twice, we obtain

$$\begin{split} \int\limits_{G \,\widehat{\wedge}} |\widehat{\mu}(\widehat{z}\,)|^2 dv(\widehat{z}\,) &= \int\limits_{G \,\widehat{\wedge}} \Big(\int\limits_{G} \langle w, \widehat{z} \rangle d\mu(w) \Big) \Big(\int\limits_{G} \langle \overline{z}, \widehat{z} \rangle d\mu(z) \Big) dv(\widehat{z}\,) \\ &= \int\limits_{G} \int\limits_{G} \Big(\int\limits_{G \,\widehat{\wedge}} \langle w, \widehat{z} \rangle \langle \overline{z}, \widehat{z} \rangle dv(\widehat{z}\,) \Big) d\mu(w) \, d\widehat{\mu}(z) = \sum_{z \in G} |\mu(\{z\})|^2. \end{split}$$

By the standard methods used in [8], pp. 34-42, it is clear that the following corollary contains Theorem 1.1.

4.3. COROLLARY. Let μ be a charge on $\mathcal{B}(T)$. For all $z \in T$,

$$\mu(\{z\}) = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{-N}^{N} \hat{\mu}(n) z^{n}.$$

Proof. By Theorem 4.1,

$$\mu(\{z\}) = \int\limits_{\mathbf{Z}} \hat{\mu}(n) z^n d\nu(n)$$

for all z in T. Thus, it is sufficient to show that for any M-continuous complex-valued function f on Z,

$$\int_{\mathbf{Z}} f(n) d\nu(n) = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{-N}^{N} f(n).$$

The result will then follow by taking $f(n) = \hat{\mu}(n)z^n$. Since f can be uniformly approximated by M-measurable step functions, it is sufficient to take $f(n) = \chi_E(n)$ where χ_E is the characteristic function for $E \in M$. Choose $F \in R$ such that $F \cap Z = E$. Let $\varepsilon > 0$. By the regularity of m, there exist a compact set K and an open set V in \mathbb{Z}^* such that $K \subset \mathring{F} \subset \overline{F} \subset V$, $m(\mathring{F} \setminus K) < \varepsilon$ and $m(V \setminus \overline{F}) < \varepsilon$. By Urysohn's lemma, there exist two continuous real functions g_K , g_V on \mathbb{Z}^* such that $g_K | K = 1$, $g_K | (\mathbb{Z}^* \setminus \mathring{F}) = 0$, and $g_V | \overline{F} = 1$, $g_V | (\mathbb{Z}^* \setminus V) = 0$. Then $g_K \leqslant \chi_E \leqslant g_V$. Since the restriction to \mathbb{Z} of a continuous function on \mathbb{Z}^* is almost periodic, we can write ([7], p. 256)

$$\lim_{N\to\infty} \frac{1}{2N+1} \sum_{-N}^{N} g_{E}(n) \leqslant \liminf_{N\to\infty} \frac{1}{2N+1} \sum_{-N}^{N} \chi_{E}(n)$$

$$\leqslant \limsup_{N\to\infty} \frac{1}{2N+1} \sum_{-N}^{N} \chi_{E}(n) \leqslant \lim_{N\to\infty} \frac{1}{2N+1} \sum_{-N}^{N} g_{V}(n).$$

Thus

$$\begin{split} \limsup_{N \to \infty} \; \frac{1}{2N+1} \sum_{-N}^{N} \chi_E(n) - \liminf_{N \to \infty} \frac{1}{2N+1} \sum_{-N}^{N} \chi_E(n) \\ \leqslant \lim_{N \to \infty} \frac{1}{2N+1} \sum_{-N}^{N} \left(g_V(n) - g_K(n) \right). \end{split}$$

But, the last term yields ([7], p. 256 and [10], pp. 169, 170)

$$= \int_{\mathcal{L}^{\bullet}} \left(g_{\mathcal{V}}(n) - g_{\mathcal{K}}(n) \right) dm(n)$$

So
$$\lim_{N\to\infty} \frac{1}{2N+1} \sum_{-N}^{N} \chi_E(n)$$
 exists and is equal to $\int_{\mathbf{z}} \chi_E(n) d\nu(n)$ since

 $\leq 2m(V \setminus K) < 4\varepsilon$.

$$\left|\lim_{N\to\infty} \frac{1}{2N+1} \sum_{-N}^{N} \chi_{E}(n) - \int_{\mathbf{Z}} \chi_{E}(n) d\nu(n) \right|$$

$$\leq \left|\lim_{N\to\infty} \frac{1}{2N+1} \sum_{-N}^{N} (\chi_{F}(n) - g_{V}(n)) \right| + \left|\lim_{N\to\infty} \frac{1}{2N+1} \sum_{-N}^{N} g_{V}(n) - \int_{\mathbf{Z}} \chi_{E}(n) d\nu(n) \right| \leq \left|\lim_{N\to\infty} \frac{1}{2N+1} \sum_{-N}^{N} (g_{K}(n) - g_{V}(n)) \right| + \left|\int_{\mathbf{Z}^{*}} (g_{V}(n) - \chi_{F}(n)) dm(n) \right| \leq \int_{\mathbf{Z}^{*}} (g_{V}(n) - g_{K}(n)) dm(n) +$$

$$\leq \int_{\mathbf{Z}^{*}} (g_{V}(n) - g_{K}(n)) dm(n) \leq 2m(V \setminus K) \leq 4\varepsilon.$$

From Corollary 4.2 follows immediately the following generalization of a result of Helson ([6], Theorem 2, p. 481, see also [4]).

4.4. COROLLARY. Let μ be a charge on $\mathscr{B}(G)$. If $|\hat{\mu}| = 1$, then $\sum_{z \in G} |\mu(\{z\})|^2 = 1$.

References

- S. Banach, Théorie des operations linéaires, Chelsea Publishing Company, New York 1932.
- [2] N. Dunford and T. J. Schwartz, Linear operators, Part I, Interscience, New York 1958.
- [3] W. F. Eberlein, A note on Fourier-Stieltjes transforms, Proc. Amer. Math. Soc. 6 (1955), 310-312.
- [4] I. Glicksberg, A remark on a theorem of Beurling and Helson, ibid. 10 (1959), 587.
- [5] A. Grothendieck, Critères de compacité dans les espaces fonctionnels generaux, Amer. J. Math. 74 (1952), 168-186.
- [6] H. Helson, Isomorphisms of abelian group algebras, Ark. Math. 2 (1953), 475–487.
- [7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, I, Springer-Verlag, New York 1963.
- [8] Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley and Sons, Inc., New York 1968.
- [9] S. Leader, On universally integrable functions, Proc. Amer. Math. Soc. 6 (1955), 232-234.

- [10] L. H. Loomis, An Introduction to Abstract Harmonic Analysis, D. Van Nostrand Company, Inc., New York 1953.
- [11] V. Pták, An extension theorem for separately continuous functions and its application to functional anylysis, Czechoslovak Math. J. 14 (1964), 562-581.
- [12] P. C. Rosenbloom, Quelques classes de problèmes extrémaux, Bull. Soc. Math. France, 80 (1952), 183-215.
- [13] W. Rudin, Fourier Analysis on Groups, Interscience, New York 1967.
- [14] G. E. Sinclair, A finitely additive generalization of the Fichtenholz-Lichtenstein theorem, Trans. Amer. Math. Soc. 193 (1974), 359-374.
- [15] A. Taylor, Introduction to Functional Analysis, John Wiley and Sons, Inc., New York 1958.
- [16] N. Wiener, The quadratic variation of a function and its Fourier coefficients, Massachusetts J. Math. 3 (1924), 72-94.
- [17] A. Zygmund, Trigonometric Series, I, 2nd ed., Cambridge Univ. Press, 1959.

UNIVERSITÉ DE SHERBROOKE SHERBROOKE, CANADA

36

Received May 17, 1978 (1433) Revised version March 15, 1979

STUDIA MATHEMATICA, T. LXXII. (1982)

Approximate isometries on bounded sets with an application to measure theory*

b

JAMES W. FICKETT (Los Alamos, N. M.)

Abstract. Given a $\delta>0$, an $S\subseteq \mathbf{R}^n$ of diameter 1, and a function $g\colon S\to \mathbf{R}^n$ which alters distances by no more than δ (i.e. for all $s,s'\in S, |||g(s)-g(s')||-||s-s'||| < \delta$) we show how to alter g to obtain a true isometry $f\colon S\to \mathbf{R}^n$ with $||f-g||_{\infty}<27\delta^{1/2^n}$. D. H. Hyers and S. M. Ulam proved a similar result, but starting with an approximate isometry g from \mathbf{R}^n onto \mathbf{R}^n .

We use our theorem and an idea of J. Mycielski's to show that two Borel subsets of the Hilbert cube $[0,1]^\omega$ which are isometric under one of the metrics $d_a(x,y) = (\sum a_i^2 (x_i - y_i)^2)^{1/2}$ must have the same product measure, provided that the a_i tend to 0 fast enough so that $a_i^{1/2} (a_{i-1} \to 0 \text{ as } i \to \infty)$.

§ 0. Introduction. In [2] S. M. Ulam and D. H. Hyers proved that if $g: \mathbf{R}^n \to \mathbf{R}^n$ is surjective and preserves distances to within $\delta > 0$ (i.e. for all $x, y \in \mathbf{R}^n$, $|||x-y|| - ||g(x) - g(y)||| \leq \delta$), then there is an isometry $f: \mathbf{R}^n \to \mathbf{R}^n$ which differs from g (sup norm) by no more than 10δ .

Following Ulam and Hyers, several people have considered the problem of finding an isometry near to an approximate isometry in very general contexts (see [1] and references therein), but to our knowledge no one has yet considered the problem when the approximate isometry is not defined on a full Banach space.

In §2 we give a construction which alters an approximate isometry g defined on a bounded subset of \mathbf{R}^n to give an isometry f; in Theorem 2.2 we show that the constructed f is near to g.

In \$1 we develop the methods for proving this result.

In $\S 3$ we apply Theorem 2.2 to partly prove the following conjecture of Ulam's: If any two Borel subsets of the Hilbert cube $[0,1]^{\circ}$ are isometric under one of the metrics

$$d_a(x, y) = \Big(\sum_{i=0}^{\infty} a_i^2 (x_i - y_i)^2\Big)^{1/2}$$

^{*} The contents of this paper first appeared in the author's University of Colorado Ph.D. Thesis in July of 1979.