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b

(1.7) (f (0/b)+*w (o) da) (esss;lp(llw(m))) < B,b
a [a,b]

and

a’/m H—‘ \<Bsa'—l

b
(7.8) (f «

and therefore

dw) (es[i 's;]lp(l Jotw (2 )))

b

+t
(7.9) ( f (b}t dm)(es[i’s;]lp(llww(w)))<B,(b/a)
and
b
(7.10) ([ (afo) (o) da) (esss;]lp(llmw( 2))) < B.(b/a).

Adding (7.9) and (7.10) then yields (1.11) since b/a < (4/3) (b*—a?)/ab
when b > 2a. This completes the proof of necessity, and with it, the proof
of Theorem 8.

References
[1] K.TF. Andersen, Weighted norm inequalities for Hilbert fransforms and conju-
gate functions of even and odd funciions, Proc. Amer. Math. Soc. 56 (1976), 99--107.
— Imegualities with weights for discrete Hilbert transforms, Canad. Math. Bull.
20 (1977), 9-186.
M. Artola, untitled and unpublished manuseript.
J 8. Bradley, Hardy inequalities with mized norms, Canad. Math. Bull.

1(1978), 405-408.

R. Coifman and C. Fefferman, Weighted norm ineq
funetions and singular integrals, Studia Math. 51 (1974), 241-250.
T. M. Flett, 4 nole on some inequalities, Glasgow Math. Assoc. Proc.
7-15.
G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalitics, Cambridge 1934.
R. A. Hunt, B. Muckenhoupt, and R. Wheeden, Weighled norm inequalities
for the conjugate function and Hilbert transform, Trans. Ainer. Math. Soc. 176
(1978), 227--251.
B. Muckenhoupt, Hardy's inequality with weights, Studia Math.
31-38.
— Weighted norm inequalities for the Hardy mamimal funclion, Trans. Amer.
Math. Soe. 165 (1972), 207-226.
E. M. Stein and &. Weiss, Interpolation of operators with change of measwres,
ibid. 87 (1958), 159-172.
G Talenti, Osservazioni sopra una classa di disuguaglianze, Rend. Sem. Mat. Fis.
Milano 39 (1969), 171-186.
G. Tomaselli, 4 class of inequalities, Bull. Un. Mat, Ital. 21 (1969), 622-631.

[3]
[4]

(5]

Tids

Jor mawimal
161 4 (1958),
(71
[8]
9]

[10]

44 (1972),

[11]
(2]

[18]

Received September 6, 1978 (1464)

icm®

STUDIA MATHEMATICA, T. LXXII. (1982)

A generalization of Wiener’s criteria for
the continuity of a Borel measure

by
JEAN-MARC BELLEY* and PEDRO MORALES (Sherbrooke)

Abstract, An identity is derived for the discrete part of a bounded complex-
valued finitely additive set function defined on the Borel sets of an Abelian locally
compact Hausdorff topological group. This allows us to establish a generalization
of Wiener’s necossary and sufficient condition for the continuity of a complex.valued
bounded regular measure [16].

1. Introduction. Let T = {# ¢ C: |2| = 1}. Then T with the multipli-
cation operation and the topology induced by the usual topology on C
is a compact Abelian topological group. Let #(T) be the o-algebra of
Borel sebs in 7. Let M (T) = {u: #(T)—C| pis a bounded regular measu-
re}. The Fourier coefficients of a measure u € M (T) are f(n) = 1'[ 27" du(2)

for all n & Z. Recall that a measure u € M(T) is continuous if w({e}) =0
for any point z in 7. A classical result of Wiener ([16]; [17], Theorem 9.6,
p. 108; [8], Corollary, p. 42) states:

1.1, TuworeM. Let u e M(T). Then

N
g (gD ‘iﬁi‘;zml § s ()12

In partioular, u is continuous if and only if

Z)M )|

In this paper, it is shown that this theorem follows from a general
rosult for hounded complex-valued finitely additive set functions defined
on the Borel sets #(G) of an arbitrary locally compact Abelian Hausdorff

i, ‘2’1?7"3}1

* Supported by NRC and F.C.A.C. grants.
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topological group @. This result also generalizes that of W.F. Eberlein
([3], Theorem 1, p. 310) in the case of Radon measures on #(&).

2. Preliminaries. In this section we introduce a slight generalization
of a theorem of Sinclair ([14], p. 363) which is an essential tool for obtaining
our main result. Let « be an algebra of subsets of a set X. A charge on
s is a complex-valued bounded finitely additive set function defined on .
For cvery bounded s/-measurable complex-valued function on X, we
can define the integral [fdu by the usual Moore-Smith method ([12],

£

pp. 183-191; [15], pp. 401-404) or, equivalently [9], by the Dunford-
Schwartz method ([2], pp. 101-125). A function f: X—C iz called «-
continuous if, for every ¢ > 0, there exists a finite partition {Ei}lgi@ of
XsuchthatE e.m'a.ndsup ]f 2)—fy) <eforall i=1,2,...,n. It is

clear that if X is a topologma,l space and if f: X—C is bounded and conti-
nuous, then f is #(X)-continuous.
Let X and Y be arbitrary sets and let f: X x ¥—-C. We say that
f satisties the double limit condition or f is & DLC fumetion if, whenever
{2}, {y;} are sequences in X and ¥, respectively, such that the iterated
limits
a = limlimf(w;, y;)

{00 joro0

and
B = limlimf(w,;, ¥;)
J-ro0 i—r00

exist, then a = f. This notion was introduced by Banach ([1], p. 222)
to give a criteria for the weak convergence to 0 of a sequence in a Banach
space, and used extensively by Grothendieck ([5], pp. 182-186) in his
search for more general weak convergence criteria. In the case where
X and Y are completely regular spaces and f a real-valued bounded sep-
arately continuous function on X x ¥, this notion was used by Ptak ([11],
p. 573) to obtain extension criteria for f.

Tt is said that of separates points on X, or & is an SP algebra on X if,
whenever #, y € B, ¢ s y, there are disjoint sets 4, B e o such that v € 4
and y € B. Tt is clear that if X is a Hausdorff topological space, then #(X)
ig an SP algebra on X.

The following result is a trivial generalization of Theorem 4.4 of
Sinclair ([14], p. 363):

2.1. THrROREM. Let o and % be SP algebras on the sels X and Y, res-
pectively. Let u and v be charges on of and B, respectively. If f+ X x ¥->C
is bounded and satisfies the additional conditions:

() f(-, y) is sf-continuous for all y € ¥,
(ii) f(w, -) is B-continuous for all » € X, and

(iii) f 4¢ & DLO function,
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then
1) ff('; Y)au is B-continuous,

f flz, )y is of-continuous, and

I}[}{fd‘u,dv =Xfr[fdvd,u.

3. Preparatory propositions. Henceforth ¢ will denote an Abelian
Hausdorff locally compaet group. When we need to give @ a topology
v different from the original, we will write @,. In particular, we shall
congsider the discrete topology (z4), the pointwise topology (z,) and the top-
ology of uniform convergence on compacta (7,,).

A character on G is & continuous homomorphism on @ to 7. The set
of all character on @is an Abelian group under addition and, with the z,, top-
ology, it is a locally compact topological group ([10], p. 187). The topo-
logical group so obtained is called the dual group of G, denoted G . The
value of an element e @  at the point 2z €@ will be denoted by (z,2>
and its complex conjugate by {z,2>. For all z € @ consider the function
1,2 @ =T given by w,(¢) =(2,?). Then u, is a character on G . The
Pontryagin duality theorem ([7], p. 378) states that the mapping z->u, is
a topological isomorphism of & onto G” . This result permits us to identify
@ with its own second character group G *. With @ can be associated its
Bolr compactification ([13], p. 30) G" = ((@"),,)" which is an Abelian
Hausdortf compact topological group whose topology is 7,,. It is well known
that ¢ can be embedded into @ as a dense subgroup ([13], Theorem 1.3.2,
p. 30). It is easy to show that the continunous function (2,6)—(z,%) can
be extended to a continuous function on G,de**. ‘We note that every
element of the Bohr compactification of an Abelian Hausdorff locally
compact topological group is a character on some discrete topological
group.

3.1. LemuA. The restriction to G of an element of G*™* belongs to G™*.

Proof. We note the two trivial facts: (a) If # e @* ¥, then the domain
of # contains the set G; (b) Let K be a topological subgroup of an Abelian
Hausdorff locally compact group H. It # e H ", then? |z € K. The lemma
now follows by taking K =@,, and H = (6*),,.

Remarks. (1) From fact (a) and the property G*™* = (¢*™*")"
follows that &, is a topological subgroup of @,

(2) From Remark (1), it follows that (G‘“),ﬂz is a topological subgroup
of G**,

(3) From the lemma it follows that the restriction to G** of an el-
ement of @*"*"* belongs to G*.
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3.2, LemMA. If {z;} and {3;} are sequences in G and G", respectively, then
there are subsequences {2;,} and {zjn} of {2} and {2;}, respeotively, suoh that
Hm 1m {2y, &> = Hm 1Hm {2y, Y

M~>00 N~>00 N~=>+00 IN~>00

Proof. Since 4 &(G"),, =G < "%, there exists a subsequence
{&n} of {3} conve1gmg to an element # EG* *, Hence, by Remark (1),
hm(zﬂzjn) =z, 8) (i =1,2,8,...). Also, since G, =G*"*"" there

exists a subsequence {2} of {z} converging to an element & eq* ",

Therefore lim 1im (2, 8,> = hm {2y, 2> and, by duality and the fact
M~r00 N—»00

that the topology on G*"*" ¥ is 7,, we have im {2y, 2> =<z,2). So
hmhm<z{m7 zjn> = <z z> e

M~r00 N0
On the other hand, since {¢;,} = 6*™*™*" by Remark (2), the conti-
nuity of (w, )—<w, w) on G* ¥ x @ yields im 2y, &0 = (2 Fpy
M=+

(n =1,2,8...). Since ze@*"*"*, by Remark (3), 2|(¢"),, e@ and by
the fact tha.t the topology on G* is 7,y We have hm(z, zm> = {z, 4.
This completes the proof. oo

3.3. PROPOSITION. The function f: G xG" —T given by f(z,7) = (=, )
satisfies the double limit condition.

Proof. This follows immediately from Lemma 3.2 and the continunity
of f.

Let m be the normalized Haar measure on the Borel subsets & (G *)
of G™* For a given z e @ and ¢ € T', denote by 2~'(t) the set (£ e ¢™*: (2, £)
=1).

3.4. PROPOSITION. Qiven # € @, there are but a finite number of points
teT for which 2~1(t) has positive Haar measure.

Proof. Let ¢ and # be two points on T' for which m{z~"(#)) > 0 and
m{z~'(t')) > 0. (Then 27'(¢) and 2z~(¢') are not empty.) Let us show that
2 (1) = & +2"1(¢') for some 2 €G"* _

Choose an arbitrary ¢, € 2! (¢) and an arbitrary &, e 71 ('). Let 8§ =&, —
—4,. If we choose a ' in 271(t), we have (z,% Y=z, % + (¢' —¢)) where

(2" —2) e g7 (#"), since

<z1§’_é> = <zsél“(£t”él')> = <zyé/><z:ét‘—ét>
= <#, £'><2,§‘,><z, 51> =t =1,

Thus 27} (t) © # +#"1(t'). Similarly we can show the inclugion 2 427 (¢)
< 27! (f). Since m is translation invariant,

mig" (1)) = mE +27 (¥)) = m{e7 (1))

The proposition now follows from m(G"*) = 1 and the disjointness
of the sets {¢7'(¢): teT}. '
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Let V denote the interior of ¥ and 7 its closure.

3.5. PROPOSITION. Given 2 € G and n = 1,2, 3..., there exists a parti-
tion R, ,, of @"* into Borel subsets for which

(i) m(V) = m(V) whenever V eR,,,

(ii) givem % €@, there ewists a V e R,, for which (a) 2 € V and (b)
[z, 2> —{2, 2> < 2n/n for all 2" e V.

Proof. Let I,, I, ..., I, be disjoint half open arcs of T of length
2n/n each. By the proposition, it follows that we can rotate these arcs
along T if necessary until they are such that none of the end points ¢ has
m{z72(t)) >0. Then let B,, = z‘I(Ii): i=1,2,...,n} Thus if V, =
2~ (I) i=1,2,...,mn then m(V; \V) = mz 1IN, )) and this vanishes
since ]i\I eonsmtb of two end points each with Haar measure of their
inverses under # equal to zero. This proves part (i).

Part (ii) follows by construction.

Let R = {4 c®(@ *): m(4) =m(4)}. By Proposition 3.5, R is
not empty.

3.6. PROPOSITION. R is a subalgebra of # (G ).

Proof. Let U be an element of R. Then U° e R since U= (U°)F and
U= ((U) imply m( U°) ) =m(T%) =1—m(T) = L—m(U) =m(T"
=1-m(U) =1—m(D) =m(U%) =m(T?) and so m{(T°)) = m(U°)
= m(Te). .

Choose U, V € R, Since UUV ¢ (TUTY), we have

m((TOV)N(TUVY) < m{(TUTIN(TUT))
<m{(TN\ D)U(PANP) < m(TNT) +m(FNT) =0

and so m{(TUTY) = m(UUV) = m(TUV),ie. UUV e R. Since @ * €K,
this completes the proof.

Let M = {4nG": A eR}.

3.7. PROPOSITION. M is an SP algebra on G~ . »

Proof. A compact Hausdorff space is normal. Hence, by Urysohn’s
lemma, there exists a continuous function f: @ *->[0, 1] such that f = 0
on the closed set {#} and f = 1 on {§}. By the Stone—Weierstrass theorem

n
([10], p. 9) f(#) can be uniformly approximamed by polynomials ch {2y 2)

where 2, @, k =1, 2, ..., n. If {2, &) = (2, §) for all zeG then @)
= f(¥), which is a contradlctlon Hence, for some 2o € G, {2y, T) # <z.,, .
Thus, there exist disjoint half open intervals I; and I; on the unit circle
containing <z,, &> and {2y, ¥, respectively, for which

G I;) = {2l (2o, 4) eIz}
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and
i (I;) = {8e@": (z,é) e L5}
are disjoint elements of M containing & and ¥, respectively.
3.8, PROPOSITION. For all # €@, the function {z,>: G T is M-con-
tinuous.
Proof. This follows immediately from Proposition 3.5 (")

' 8.9. ProposiTiON. If for some A BeR, AnG =BnG , then -

m(4AAB) = 0.
Proof. Since ANBc (ANA)u (A\B U(B\B), then m(4A\B)
m(A\A)+m(A\B +m(B\B = 0-+m(AN\B)-+0. But A\Elsoponand

@ is dense in @ * and so ANB = @ ; for otherwise (ANB)NG = (A\B)
NG" = @, contradicting 4 NG~ = Br\G Hence m(ANB) = 0. Similarly
m(B\A) = 0, and so m(4A AB) = 0. The proposition is proved.

Remark. It is clear from Proposition 3.9 that the set function
»(ANG") = m(4), where 4 € R, is well defined. The following proposition
is trivial.

3.10. ProPosITION. The set function v is a mon-negative charge on M.

Remark. Since the product of two M-continuous functions is M-
contmuous, from Proposition 3.8 it follows that the integral f {#y 8
{w, 2 ydv (2) exists for all 2, w e G-

3.11. PROPOSITION.

[ 8>, Byan(d)= {0 ¥oarw
@~ 1 if z=w.

Proof. Note that (z,4)¢w,2> = (#—w, 4 is a character. Let
7 be a positive integer. As in the proof of Proposition 3.5, consider disjoint
half open ares I;,,% =1,...,n of equal length for which (z—w) ()
=VineR,, ., <R and points %, e ¥;,nG . Then

f(z —w, &> dm ——llmZ(z——w B m(Vyn)

N—+00 foi)

= limZ G—w, & >¥ (Vi anG")

n—ro0 129
= [ <e—w,>0()
G»\
Since ([8], exercise 6, p. 193)

[ @—w,éyam () ={° @ 7w,
@ x 1 z=w,

the result follows.

e ©
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4. The main result. Let x4 be a charge on %#(G). We define the Fourier
transform # of p by

BE) = [ < 2>dul)
a
Then ji is & bounded complex-valued function on ¢ . Taking f(z, 5 ) =<z, 4 >
it is clear, by Propositions 3.3, 3.7 and 3.8, that the hypotheses of Theorem

9.1 are verified. Then part (1) of that theorem assures that g is M-conti-
nmous. We are now in a position to establish our principal result:
4.1, TuroreM. There ewist an algebra M of subsets of G~ and a non-
negative charge » on M satisfying the following properties:
(1) For all z € @, the function {z, > is M-continuous.
(2) For any charge p on B (G) we have
() the Fourier tramsform p of u is M-continuous, and
(b) for all 2z €@, u({e}) =ij2(z‘)<z,z“>dw(z‘).

Proof. It remains to prove (b). Let x be a charge on #(G) and leb
z€ G. Then

Ja@) e d>an@) = [( [ @, @>auw)<e, >0 E)
ar ¢~ @

= [ [ w,3><, >ap(w)dE).
G~ G

Let f(w,%) = (w,2>{z, &) = (g—w, ). Then, by Propositions 3.3 and
3.8, the hypotheses of Theorem 2.1 are verified. Then part (3) of that the-
orem allows us to write:

fy )<, 8> dw(@ f f<w 25z, 8> (E)du(w)
= u({z}) (Proposition 3.11).

4.2. OOROLLARY. For any charge g on % (@), we have
2 ({2 = f (@) 2an (2

In particular, p is continuous if and only if . I 1(8)2dv(3) =

Proof. Applying Theorem 2.1 twice, we obtain
f )pd () = f(f@: #>aulw )(f(z z)d,u(z))dv(
[ehed
= [ J1 f > @@ du)di) = 3y luEhr

By the standard methods used in [8], pp. 3442, it is clear that the
following corollary contains Theorem 1.1.

3 — Studia Mathematica 72. 1
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4.3, COoROLLARY. Let u be a charge on #(T). For allz e T,

— n
pl(e}) = lim 2N+1 2/4 (n)a.

Proof. By Theorem 4.1,

p({#}) = [ im)edr(n)

z
for all z in 7. Thus, it is sufficient to show that for any M-continuous
complex-valued function f on Z,

ff%)dv () = lim 2N+1Zf(%)

The result will then follow by taking f(n) = f(n)z". Since f can be uni-
formly approximated by M-measurable step funections, itis sufficient to
take f(n) = xgz(n) where yy is the characteristic function for F € M. Choose
F € Rsuch that FNZ = B. Let ¢ > 0. By the regularity of m, there exist
a compact set K and an open set Vin Z*suchthat K< Fc F < 7V,
m(lj’\K) < ¢ and m(V\F) <& By Urysohn’s lemma, there exist two
continuous real functions gz, ¢ on Z* such that gg | K = 1, gKI(Z*\i?) =(,
and gp|F =1, g5 |(Z*\V) = 0. Then gg < 7, < gp. Since the restriction
to Z of a continuous function on Z* is almost periodic, we can write ([7 1
p. 256)

N N
. 1 R 7
lim > <l
Nowo SN 1 % gx(n) < it o T 2N+1 24 2z(%)

<l <l
< timep o z o) < Jim - 2 grin

Thus

N N
. 1 . 1 ~y
limsup ——-— . (n) —liminf
ol ON 1 Z_N 7e(n)—lomind oy % 1z ()

1
<li ) _ ’
N 2N +1 L (97 (n) — gg (n))

But, the last term yields ([7], p. 266 and [10], pp. 169, 170)

= [{gr(n)—gg (n))dm(n)

P

icm
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= [ (gr(n)—gg(n)dm(n)
NE

< 2m(VNK) < 4e.

1
So iln:o 2N 1 2 2z(n) exists and is equal to ‘f xg(n)dv(n) since
I g D, ) [ i)
L
i — —
<|lim s L,(m(n) grim) | + | lim oo 2N - ngw)
< S
.._ffondv | ,lyl_’II}n2N+141_vJ( z(1)—gr(n ))14‘
+| [lortm—zpm)amm < [ (grm) ~gz(myamn)+
zZ* z* :
< [ lortn —gelm)amin) <2m(V\E) < 4o
2

From Corollary 4.2 follows immediately the following generalization

of a result of Helson ([6], Theorem 2, p. 481, see also [4]).

= 1.

[6]
71

(8]
{81

4.4. CorROLLARY. Let u be a charge on #(@). If |u| = 1, then D [u({e})*
7@
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Approximate isometries on bounded seis
with an application to measure theory*

by
JAMES W. FICKETT (Los Alamos, N. M.)

Abstract. Given a 8> 0, an § < R” of diameter 1, and a function g: S—>R?
which alters distances by no more than & (i.e. for all 3,5 e 8, |llg (8)—g(8)— lls—2"l||
< &) we show how to alter g to obtain a true isometry f: S—R” with ||f— gll,, < 27 542",
D. H. Hyers and 8. M. Ulam proved a similar result, but starting with an approxi-
mate isometry g from R” onto R,

‘We use our theorem and an idea of J. Mycielski’s to show that two Borel subsets
of the Hilbert cube [0, 1]° which are isometric under one of the metrics dy(m, y)
= (X a} (v~ y4)?)2 must have the same product measure, provided that the a; tend
to O fast enough so that a/*/a; ;-0 as i—co.

§0. Introduction. In [2] 8. M. Ulam and D. H. Hyers proved that
if g: R*—>R" ig surjective and preserves distances to within 6 > 0 (i.e. for
all w,yeR" |lo—y|—Ilg(@)—g@)|<d), then there is an isometry
f: R"+R" which differs from g (sup norm) by no more than 104.

Following TUlam and Hyers, several people have considered the
problem of finding an isometry near to an approximate isometry in very
general contexts (see [1] and references therein), but to our knowledge no
one has yet considered the problem when the approximate isometry is
not defined on a full Banach space.

" In §2 we give a construction which alters an approximate isometry
g defined on a bounded subset of R™ to give an isometry f; in Theorem
2.2 we show that the constructed f is near to g.

In §1 we develop the methods for proving this result.

In §3 we apply Theorem 2.2 to partly prove the following conjecture
of Ulam’s: If any two Borel subgets of the Hilbert cube [0,1]° are iso-
metric under one of the metrics

)

Aoz, y) = (Z ag(wi“yt)z)llz

* The contents of this paper first appeared in the author’s University of Colorado
Ph.D. Thesis in July of 1979..
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