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Approximate isometries on bounded seis
with an application to measure theory*

by
JAMES W. FICKETT (Los Alamos, N. M.)

Abstract. Given a 8> 0, an § < R” of diameter 1, and a function g: S—>R?
which alters distances by no more than & (i.e. for all 3,5 e 8, |llg (8)—g(8)— lls—2"l||
< &) we show how to alter g to obtain a true isometry f: S—R” with ||f— gll,, < 27 542",
D. H. Hyers and 8. M. Ulam proved a similar result, but starting with an approxi-
mate isometry g from R” onto R,

‘We use our theorem and an idea of J. Mycielski’s to show that two Borel subsets
of the Hilbert cube [0, 1]° which are isometric under one of the metrics dy(m, y)
= (X a} (v~ y4)?)2 must have the same product measure, provided that the a; tend
to O fast enough so that a/*/a; ;-0 as i—co.

§0. Introduction. In [2] 8. M. Ulam and D. H. Hyers proved that
if g: R*—>R" ig surjective and preserves distances to within 6 > 0 (i.e. for
all w,yeR" |lo—y|—Ilg(@)—g@)|<d), then there is an isometry
f: R"+R" which differs from g (sup norm) by no more than 104.

Following TUlam and Hyers, several people have considered the
problem of finding an isometry near to an approximate isometry in very
general contexts (see [1] and references therein), but to our knowledge no
one has yet considered the problem when the approximate isometry is
not defined on a full Banach space.

" In §2 we give a construction which alters an approximate isometry
g defined on a bounded subset of R™ to give an isometry f; in Theorem
2.2 we show that the constructed f is near to g.

In §1 we develop the methods for proving this result.

In §3 we apply Theorem 2.2 to partly prove the following conjecture
of Ulam’s: If any two Borel subgets of the Hilbert cube [0,1]° are iso-
metric under one of the metrics

)

Aoz, y) = (Z ag(wi“yt)z)llz

* The contents of this paper first appeared in the author’s University of Colorado
Ph.D. Thesis in July of 1979..
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(where @, > 0 and > a2 < oo), then the standard product probability
measure in [0,1]° gives these two sets equal measure. J. Myecielski proved
(in [81) the conjecture under the additional asswmption that the sets
are open. He also gave a condition on a which ensures the truth of the
conjecture for pairs of Borel sets isometric under d,. In Theorem 3.1
Mycielski’s ideas and Theorem 2.2 are applied to show that if the a; tend
to 0 very rapidly, namely @l ja;_,—0 a8 i—>co, then Borel sets isometrie
under d, have the same measure.

Tn §4 we pose two further problems on relationships between isometries,
approximate isometries, and measure.

I am indebted to J. Mycielgki for interesting me in these problems
and for eriticizing early versions of my results.

§1. Preliminary geometry. For ¥ < R™ we write H (E) for the smallest
flat containing &, i.e.

H(B) = {Po+ ... +2AyDnl

Doy roey P €H3 Ay oovy Ay € R and A+ ... + 4, =1}.

We write H(pgy ..., D) instead of H({po, ..., Pr})- Doy, P; € R™ are
said to be independent it H (py, ..., Dy) is k-dimensional. E. g. three points
are independent iff they are not collinear.

We write d(-,-) for the usual Buclidean distance function in R™.

It is casy to check that if p,,...,p, are independent in R™ and
doy <.y &y, = 0, then the equations d(w,p;) =d;, 0<i<m, have at
most one solution « € R™. Also easy to prove is the following:

1.1. PROPOSITION. If Do, ..., Py are independent in R™ and dy, ...

iy Oyg 2 0, then the set

8 ={xzeR™ d(z,p) =d,0< i< m—2}

18 a (possibly degenerate) circle with center in H(Po,y ..., Pyes)- If 8 i8 non-
degenerate, then H () is perpendicular to H (Pgy v.vy D) -

Lemma 1.2 is a special case of Lemma 1.3. The latter is the main tool
for the proof of Theorem 2.2.

1.2. Lemma, Let 8 and ¢ be a circle and point, respectively, in R.
Suppose that the perpendicular projection of ¢ on the plane of S lies outside
of or on 8. Let d (0, 1] be given, such that the sphere of radius d about ¢
intersects 8. Let ¢ € (0, 1] be given, and a point p on 8 with |d—d(p, ¢)| < &.

Then there is a point ¢ on 8 with d(e, q) = d ond d(p, g) < 2y/-.

Proof. Take the sphere about ¢ of radius d, and also the spherical
shell about ¢ of radil d4-e, and intersect them with the plane of S. The
sphere and spherical shell become a circle §' and an annulus about &',
respectively. 8 hasits center ¢’ outside of or on 8. Let ¢ be the nearer of the
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two points of SNS’ to p. The worst case is when p lies on the outer bound-
ary of the annulus and the segment gp is tangent to §’. For this case we

apply the pythagorean theorem to the triangle Acpg to get the desirved
result, =

1.3. LEMMA. Let Py, ..., Py, e independent poinis in R™. Define
H = H(pgy - s D) ond let p,, be any point of B™ no further from H tham
i8 Py—1- Define d; = d(p,,, 1;), 0 < i < m—2. Suppose that d, <1, 0 <1
< m—2, and that &,,_, and ¢ € (0, 1] are given with |d,,_, — &Py Pop—1)] < &

If there is a point q with d(g, p;) = d; for 0 < i< m~—1, then there
i3 suoh a q with d(p,,, 9) < 2y/e.

Proof. By 1.1 the set of » such that d(x,p;) =d,, 0 <i < m~—2, is
a circle 8, say of radius 7.

If » = 0, then p,, = ¢ and we are done. So suppose » > 0. Then H is
perpendicular to 8 and passes through the center of 8. Let K be a three
dimensional flat containing § and p,,_,. HN K is a line through the center
of 8, perpendicular to the plane of 8. p,,_,isatleast» from this line. Do
is on 8. The sphere of radius d,,_, about p,,_, intersects S.

So we may apply Lemma 1.2 with 8, p, ¢, d, and ¢ there equal to
8 Dy Py Gm—y, and g here, respectively, to get the desired result. m

§2. Comstruction of an isometry near to 4n approximate isometry.
Let (M, o) and (N, o) be metric spaces, and let § > 0. A function g: M—N
is called a d-isometry if for all »,ye M

|olg (@), g(9)} — (=, y)| < 5.

That is, a é-isometry is a function preserving distances to within 6.

In this section we first give a construction which alters a d-isometry
mapping a bounded subset of R™ into R™ to give an isometry. Then we
prove & theorem which shows that the constructed isometry is near to
the original approximate isometry. Some corollaries, comments, and
problems follow. .

2.1. ConsTrRUCTION. Let S be a bounded subset of R™ and g: S—R"
a d-isometry, for some 4> 0.

Step 1. We oxtend g to S, the closure of 8. For each x € S\§ define
g1() to be any member of the set

NyglyeB| d(x,y) <1/n},

and for s €8 let g,(s) = g(s). Then it is easy to verify that g, is again
a d-isometry. ‘ .
Step 2. Let k be the dimension of H(S) and pick s,,...,8, €8 to
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satisfy
(8, &

. (805 81)
d(s;, H (s, -

= diameter of §,
o 8o1)) = supd(s, H(spy 09
seS

[ 3]
»
AN
-,
A
=

si—l))f

Note that (1) forces &y, ..., 8, to be independent.
Step 3. Define inductively

F(80) = g1(80),s
f(s;) = a point as close as possible to gy(s;) satisfying

alf(s:), f())) = dlsy, 89),

(22)
0=Lj<igh.
And finally, for all s e §,

(2b)  f(s) = the unique point in H(f(s,

d(f(s), f

For § < R" we write diam§ for the diameter of §. For ¢ = 0 define
Ko (8) =K. (8) = 8, K,(6) =3(38)"® and for i>38, K,(6) =278 "

2.2. THEOREM. Let 8 be a bounded subset of R" and g: 8-+R" a §-iso-
metry, where 0 < 8, 3K, (8/diam 8) < 1. Then the isometry f: S—R™ gotien
by applying Gomtmctwn 2.1 fo g satisfies

supd(f(s), g(8)) <

8eS

., f(s})) satisfying
i) =d(s,8), 0<i<Fk.

Koy (6/diam8)-diam §.

Proof. By an easy homothety -argument one reduces the gencral
case to the case where diam§ = 1. Apply Construction 2.1 to g, and let
§1y S0y -+ 8, and f be as given there.

We provc, by induction on m, that if 1, ..
independent, satisfy

(3) d(ti;H(to’
and if h: {3, ...

.- ES’ with t, ..

m._.

t’i—l)) ° 1.-1))
,n}~>R” is defined inductively by

(tj’H(iu: .

k(%) is & point as close as possible to gy (t;) satistying ‘
ah(t), h(Y)) = dk, b)), 0<ji<i<m,

then - ‘
d(h(%), g:(%)) < K, (8),
This claim ‘is trivial for m = 0, 1. Let m >

claim for m-point sets, and let foy .+
Toy <e vy Upiny By B B,y o

0<i<m.

2, aggume the truth of the
Ty zmd h be as described. Then
vs gy b ea,ch satisfy an m-point version of (3).

icm°
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Define .
(), o< i< m~1,
a point as near ns possible to g (%)
sutistying (Jl(h1 )y By () = d(ty, &)

Ufor 0 £ism— z

RACE
% =M.

Note that it can casily bo proven (for exwmple by induction) that h,(t,,)
is in H(h(t), ..vy Blty)).

By the mduutmn hypothoesis

dlhy(t)y g1(8) € Kppr(8), 05 m.

Hence algo

["l(ht by 1) h,(lm)) = @y by l < 0420, 1 (0) <

Thus we may apply Lemma 1.3 with po, ..., Dy &y, & and B™ there
oqual 0 hy(lo)y «.os By(tn)s @ (b, s, SKm-— (8), and H{h(t), ..., h(t,)
to get o g & H(h( t,. eony B(ty)) With d{g, B(5)) = @(t,, ;) for 0 <4< m—2
and d{g, b)) - ’A('&K ))‘/2. Thus

gy (L), b m)) algs (tn), 4)
< d(gl(tm)} hl( m))‘l'd(hl(tm), Q)
& Koy (0) +2(8K,1 (8))2 < K0 (0),

which finighes the proof of our first claim.
Now lot ¢ € § be arbitrary. By (1) and (2) we may apply the preceeding
With m = k-1, by = 8g, cv0y B = 8y %, = 8, and b = f to conclude that

Af(8); 01(8)) < Kieya (8) < Ky (8),

2.3. COROLLARY. .Let H be o Hilbert space, with distance d induced
by the inmer product, and let S be a subset of H with compact closure. Then for
any s> 0 there is a 8 > 0 such that if g: S—H 1is a &-isometry, there is
an isometry f: 8->I with fsu?d(f(s), g8)<e

se8

8K, (9).

sel. m

Proof. Since § is compact, we may choose » finite number of points
3y eery 3y € 8 80 thut for any s e § thero is an ¢ with d(s, 8;) < ef4. Set

D == max @(8;, 8).
lezt,fsn
The & lio in & finite dimensional subspace of H isometric to some
B™ (m == it H is veal, m = 2n if H is complex). Chooge 6> 0 so tl}&“n
8y Kyt (8/D)D < a/4 and 8K,,(8/D)D <1, Then by Theorem 2.2 find
an isomotry fy: {1, ..., 8,}—>H with max d(f1 8;)1 9(8;)) € Kypya (8/D) D.

Let f, be an isometry of H mgreomg w1th froon {8y, ..., 8,} (foxr ex-
ample f, will be completely specified if we require it to be the identity on
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the orthogonal complement of the space spanned by 8y, ..., 8,). Define
f to be the restriction of f, to 8.

Let s be any element of S and pick 7, 1 < 4 < n, 8o that d(s, &) < &/4.
Then d(g(s), g(s;)) < ¢/4+8, s0

A{f(s), g(s)) < d{f(s), F(s2)) -+ d(f (s, 9(s)) + g (5), 9(5))
<efb+ Ky (8/D)D+efd+d<e m
2.4, COROLLARY. Let 8 < R" have diameler D < oo; g: S—R" be
a d-isometry for some & = 0 with 3K, (8/D) < 1. Then there evists an exten-
sion G of g, G: R"—R", which is o K, ,(3/D)D-isometry.
Proof. With 8 and ¢ as stated, apply Theorem 2.2 to get an isometry
f: 8—B" with &(f(s), §(s8)} < K41 (8/D)D for all s in §. Let F' be an iso-
metry from R” onto R"” which agrees with f on 8. Define
@ zel
G(a) = {gy((al;, N
An analogous result follows from 2.3.
2.5, Remarks and problems.
1. The condition that 8 be bounded is necessary for the validity
of the results of this section. In [2] examples are given, for any ¢ > 0,
of a d-isometry G: R—R® such that if f is any isometry R--R?, then
sup d(f(r), g(r)) = eo.

2. It is easy to find, for any positive § and M, compact, convex
subsets § and T of the plane and a é-isometry g: §—T' such that if f:
8—T is any isometry, then supd(f(s), g(s)) > M.

seS

3 (J. Myecielski). For sets § having a fixed finite number of pointy
there is a simple (though ineffective) proof of the following qualitative
version of Theorem 2.2: For every » e N and ¢ >0 there is a 4 > 0 such
that for each § = R of diameter 1 (and of the given cardinality) and cach
d-isometry g: S—R"™ there is an isometry f: S—R" with |(f(s)—g(s)]| <e
for all s € 8. This result can be cxtended to all S of diameter logs than
some fixed bound by the argument used in the proof of 2.3.

4. Tt is easy to see that a square root in the functions K, is necessary
for the validity of Theorem 2.2. Problem: Are there constants a, > 0
for n > 2 such that Theorem 2.2 remains valid when X,(d) is replaced
by a,V 6%

8. Problem. In Corollary 2.4 is the dependence of & on § necessary,
or could ¢ be made to depend only on the diameter of 87

§3. Application to a conjecture of Ulam on the invariance of measure
in the Hilbert cube. Let I be the closed unit interval [0, 1], I the Hilbert
cube, and p the standard product probability measure on I°.

e ©
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Given a sequence @ = (@, dy,....) of positive real numbers with
Nai < oo, let d, be the metric in I° defined by

byl ) =Y do—y ", o,yel”.

E, F<I” are said to be d,-isometric if there is a bijection between
E and F preserving the distance d,. u i d -tnvariant if d,-isometric Borel
sets have the same p-measure.

Thus Ulam’s conjecture is that for every d, as above u is d,-invariant.

3.1, Tunormm. If the a, tend to O rapidly enough so that

(4) @ ja,_ 10 as  nm-»oo,

then w 18 d,-invariant.

Proof. The proof uses Theorem 2.2 and a modification of the reduction
of Ulam’s conjecture given by Mycielski in Theorem 5 of [3].
Fix a, satisfying (4). Set

o
1/8 -
ro={3a)" and s, =27

Gl

(6 = 19Ky 41 (P [10), Where K, is the function appearing in Theorem 2.2).
Define the parallelepiped in R™

C, = [0, 01X [0, a,]% ... x[0,@,,].
Let
C, ={zcR" d(z,0,) < ¢}

(where d is again the ordinary Euclidean distance) and

n

(4, I8 m-dimengional Lebesgue measure). We claim that
(5) d,~0 a8 nm—roco.
Indeed, from (4) it follows casily that for sufficiently large

Uy < 27" Gy
and hence
‘ P < 2y
So
&, [ty—>0 a8  MH—>00
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also. Thus for » greater than some 7,

n—1
B (0 (o) < [] +26,1a)

=0
g

< (14285 a,0) [ | (1426, /a;) H (14 ay f0y)

g0 s==n0+l
ng

<(1 +25n/a11—-1) [n (1 +25n/a,-)] A +21"”’)”"'1
=0
which tends to 1 as # tends to oo, and so (5) holds.
Define m,: I°»0C, by

T, (B) = (BWoy Qayy «ivy Gy 1Bp_y)
and for any Borel set ¥ < (,,
:un(E) = An(E)/a’o' ren Gy

(50, = (1))
For B = I° and t> 0 define

BY = {wel® d,(z, B) <t}
and for B < O,
BY = {zed,| d=,B)<1).
Thus for F ¢ I
(6) (7 (B))D = i, (BO).
We will need that for compact § < I®
(7) Pl () > (B) a8
Let > 0 be given. Since u iy regular, pick ¢ > 0 so that
#(89) < u(8) +n/2.
Since g is a product measure pick N so that for n > N
ta{n (8O) < u(8O) +9/2 < p(8) + 7.
The condition (4) implies that ¢,—0, so pick M > N such that for n > M
&, < 1. Then forn > M
PA8) < tan{, (8C)) < o (89)) < a(8) -,
which proves (7).
Fix now a compact § < I® and a d isometry f: §—I®. Let ¢,:

7, (8)->8 be any function satisfying g,(») e n;'(») for all & € m,(8), and
define 7,: =,(8)—0, by

n—>00,

F, ==,0foq,.

icm
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Then

® By, (8)) € my(f(8)).

From

A(@, 9) < dof0 (@), 0, 0) <A@, 9)+70, 3,9 €7, (8)
and
da(%a(‘m); Qn(y)) — = d ( ( ’ f(qn y) )"
< AP, (@), Fo ) < d{f{g.@)), flga)))

= (1, (@), qn(y))

it follows that I, is an r,-isometry. So by Theorem 2.2 we can find an
isomotry f,: m, S)~>R“’ within ¢, of ', Thus in fact f,(=,(8)) < 0.
We huve

An(fn(”n(g))no.n) = Z’n(fn(“n(s))) '"7'11. (G;L\On) = An(nn(‘g))'" ‘Snz‘n (0,"),
80
Af[F (0 (SN]™) = An(0(8)) — 824 (C),
or
(9 B[ (0 (S]™) 2 17, (8)) — 8.
Hence, given s > 0 pick N so that for n > N
HlF(8)) + 8> p(ma(£(8)™)) by (7)
= [ FO) by (8)
= w([Fm®)™) by (8)
= f‘n(ﬂn(s))"an ) by (9) )
=y (S) En 67»' '

By (8) 8,0, 80 u{f(8)) = p(8). By symmetry u(f(8)) = u(8). Thus d,-
isometric compact sets have the same u-measure, and so, by regularxty
of p, uis d,invariant. w

3.2. Remarks.

1. Tt would clearly suffico to require instead of (4) the existence of
Ny << My < My < ... Such that 6 1»—>0 a§ 1> 00,

2. From 2.5.3 and the proof of 3.1 would again follow a weakened,
qualitative, result: There exists an o such that u is d,-invariant.

§4. Further problems. In the proof of 3.1 we necded to compare the
measure of the domain of an approximate isometry with the measure
of an open neighborhood of ity range, all inside a fixed parallelepiped.
Tssentially nothing seems to be known about relations between approxi-
mate isometrics and measure. In this section we propose two problems
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related to, but simpler than the problem above, which we feel are interesting
even without their relation to Ulam’s conjecture.

4.1. Appromimate isometries and measure. We move the problem of
§3 to a more amenable environment, hoping that a solution to the new
problem would help in the old situation.

CoNJECTURE. There is a constant ¢ > 1 such that if § is a subset
of some B", g: §—~R" is a &-isometry, and T = [v e R*| dlw, 9(8)) < o8},
then 2,(T) = 4,(8).

4.2. Neighborhoods in bricks. Let B be a brick (rectangular paral-
lelepiped) in R", § and T isometric subsets of B. It would seem that not
too much more of § than of 7' can be near the boundary of B. Precisely:

CoNJEcTURE. There is a ¢, > 0 depending only on % such that for
any 6 > 0

If{re Bl d(z, S)< &) < A,({zeB| dle, T)< ¢, 8}).

In fact we guess that the best value for ¢, is 1+y/n, corresponding to
8 a small corner of the brick B.

To see the connection between this conjecture and the problem de-
seribed at the beginning of the section, let 8’ be a subset of the brick Band
g: 8'—B an approximate isometry. Let f: §'—R" be an isometry within,
say, 6 of g. Set T = f(8')nB and § = f~(T). Then the above conjecture
implies that the (1+¢,)d neighborhood. of g(8') in B has measure at least
equal to the meagure of §'.
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A characterization of BMO and BMO,
_ by
CARL MUELLER (Berkeley, Cal.)

Abstract. The purpose of this paper is to use probabilistic characterizations
of BMO and BMO, fo solve two probloms. Our first result is a characterization of
BMO, in terms of Carleson measures when ¢ is regular. This result was conjectured
by Sarason [9], and is similar to Fefterman and Stein’s characterization of BMO [2].
Secondly, we give a probabilistic proof of a criterion for BMO due to Hayman and
Pommerenke [4].

1. Introduction. Probability has recently become an important
tool in complex analysis. Using Brownian motion, Burkholder, Gundy,
and Silverstein have characterized the HP spaces in terms of maximal
functions, thereby solving & longstanding problem of Hardy and Little-
wood.

OCurrently, the BMO functions are receiving attention. Fefferman
and Stein [2] have shown that BMO is the dual of H'. An important
gtep in their proof was the characterization of BMO in terms of Carleson
measures, The BMO, spaces were introduced by Spanne [10] as generaliz-
ations of BMO. Thege have also aroused interest (see Sarason [97).

The purpose of this paper is to use probabilistic eharacterizations
of BMO and BMO, to solve two problems. Our first result is a characteri-
zation of BMO, in terms of Carleson measures when. g is regular. This
result was conjectured by Sarason [9], and is similar to, Fefferman and
Stein’s characterization of BMO [2]. Secondly, we give a probabilistic
proof of a eriterion for BMO due to Hayman and Pommerenke [4].

Let D be the unit dise in the complex plane, and let I be a subare
of 8D, We will consider holomorphic functions f in H*, which are the Pois-
son integrals of their boundary values. Let

1
unmmfmwm

The space BMO consigts of all functions f for which the BMO norm
Il = sup I(If = I(£))
I56D
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