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Reflexive Banach spaces without equivalent norms which are uniformly
convex or uniformly differentiable in every direction

by
D.N. KUTZAROVA and §. I, TROYANSKI (Sofia)

Abstract. An example is given of a reflexive Banach space which fails to have
either an equivalent norm that is uniformly convex in every direction or an equivalent
norm that is uniformly differentiable in every direction.

1. It is shown in [4] that every reflexive Banach space has an equiv-
alent norm that is locally uniformly convex and Fréchet differentiable.
This led (see [2]) to the question whether every reflexive Banach space
has an equivalent norm which is uniformly convex in every direction or
uniformly differentiable in every direction. We give a negative answer
to this question:

Tunorem 1.1, There i8 a reflewive Banach space Y suoch that:

(i) ¥ has no equivalent norm which is wniformly convew in every direction.

(ii) ¥ has no equivalent norm which is wniformly differentiable in
every direotion.

The autors are indebted to Prof. R. C. James for his valuable sug-
gestions which were taken into account in the last version of this paper.

2. Definitions and notations. The norm of a Banach space X is uni-
formly convew in every direction if |w,—v,|>0 whenever {u,} and {y,}
are sequences in X such that |e,l = .l =1, le, 49,12, and there
in a2 and {4,} with @, -y, = 4,2

The norm of a Banach space X is uniformly differentiable in every
direotion if, for every y e X with (ly|l =1,

limr! gup {llo 4+ vyl -+ o — eyl ~2: @ e X, o} = 1} = 0.
T}
Lot @, be o family of finite subsets of I' such that @, containg all

one-point subsety of I' and all subsets of members of @,. We denote by
Jys(Pp) the space of all real-valued functions @ on I' such that

) o] = sup{[‘z-;(é‘ |w(y)])z]1/2} < o0,
el yedy
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where the supremum is taken over all finite systems {4.;},; with each
Aje Prand A,NnA; =@ if i #].

Since each 4, in (1) can be contained in the support of @, we have
o +yl = (o242, if 2 and y have disjoint supports. Therefore
A1,(P) is the completion of the space of functions on I' with finite support.
Algo, if {e,},.r is the natural unconditional basis for A, (Pr) defined by
6,(B) = 6,5, then this basis is boundedly complete, meaning that the
series Y a,e, is convergent unconditionally ‘whenever

yell

sup{”%:a,ey”: A I 4l < oo}< co.

3. Reflexivity of A,,(Pp).

LrmMA 3.1. Let {¢,},ep be the notwral basis in Ay (Pr) with biorthogonal
Junotionals {6}},ep. If A € Pp, then

H%‘eyli =40, ”%":“ ~1.

The , proof is straightforward. )

LeMMA 3.2. Let @ have the property that, for every 4. e dp with |A| > 2,
there is a positive integer k(A) such that |B| < k(4) if Be P and B o 4.
Then Ay, (D) is reflewive.

Proof. Recall that uniform convexity of I, implies that if |lw -y 42|
is “nearly” 3 for »,y, and 2 in the unit ball of I,, then »,y, and 2 are
nearly equal. Thus there is a positive numher 4 such that, if «w,, w,,
and w, are in the unit ball of 4,,(Pr) and have disjoint supports in I,
and if {B;} is a finite system with each B;e @, B;nB; = @ if i #j,
and {j%[z;(w1+ wa+ ) (1]} > 3(1— 4), then

&J YE. j

23172
(2) ([ (st ont o]} > 512
iel “"yed; !

if {4,} is obtained from {B;} by deleting each B; that either contains no
point in the support of w, or containg one point in the support of w, and
no point in the support of w,.

Suppose 4,,(Pr) is not reflexive. Then there is (see [3]) a bounded
sequence {x;} and a positive number § such that

nzl.

Since each »; can have finite support, we can replace {#,} by a subsequence
{;} for which all followers of y,, are approximately equal on the union of
the supports of , and its predeccssors, for cach p. Sinee the basis {e,}
is boundedly complete, there is no loss of generality if we assume that
the sequence {;} which satisfies (3) also has the property that all followers

(3) dist (conv{w,, ..., ¥,}, conv{m: i >n}) >0 if
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of w, are zero on the union of the supports of @, and its predecessors,
for each p. Let

T(L—34) mylbi_lr’ninf{ﬂwll: ® & conv {z;: 4> n}},

and chooge M so that |w|| > v(1— 4) if w e conv{w,;: ¢ > M}. Since 7 > 0,
there i & sequence {w} that satisties (3), with 1w, e conv{w,;: M <i<p,},
wy € conv{w;: Py < ¢ < Py}, otic., and

lwidl <=  for each 4.

Lot 8, and 8y be the supports of w, and w,, and let K be an upper bound
for J/14,| for all finite systems {4,} with each 4,e P, A,nA; =0 if
¢ # §, and each A, containing at least two points of 8,US,. Chooge any
g>1 and let

a+2K

w = (L/2K) 2 w;.

P+l

Then w(y) < §r /K for cach y e I'. Bocanse of (2), there is a finite system
{4} with cach 4;e P,, 4,nA; =@ if i # j, each A, containing at least
two points of §;US,, and

) ») L%: (w0, 103+ 2) (]} > e 2.
This is falso since [w,| < 7, [lwy] < = and

S Y ] < EdwiK) = 3

del = yedy

imply the lett member of (4) is less than Bz/2.

4. Proof of Theorem 11. Let 4 =[] {1, 2, ..., i}. That is,
(e

A is the family of oll sequences y = {y'}{, of positive integers such that
1 <9< i+ 1. Wo denote by ¥, the family of all finite subsets of 4 which
have the property that, it 4 e ¥4, then there is a positive integer m such
that, it y, = {yf}5, and y; = {yj}, are ditferent members of 4, then
PP oy and pf = 75 for Ligm—1. (A family similar to ¥, is con-
sidered in [1].) Tn the sequel, wo shall uge the following.

Lomama 4.1, Let 4 =\ 4;. Then for some 4,,
lua}
sup{ld{: 4« 4,, A e¥,} = oo.
Proof. For 8 = {#)x,, we define m,(8) = &, Py(8) = {8}
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Suppose that for every I
(5) my = sup{|4|: A = 4y, A € ¥y} < oo,

We shall define inductively an increasing sequence of nonncga.twe
mﬁegers {n}%.,, and a sequence of finite systems {&' }f-nj—ﬁl with &
e{1,2,...,i-1}, such that

i
(g Aa) =0
Let ny, = 0. Suppose {%,}f_l, {69, with the above property have
been found. If p;) ({87%,) N U 4,) =

p nj { ai}iml

= @, we take n;,, = ny. I8 P72 ({87%))

o1 .
n(U 4,) #9, we put ny, =ma.x(%,,+l,mk_{,1). There 18 6pyq € dyyy
8=1

such that 6 = m;(8p,) I 1<i<my.
< Myqy —1. From (B) it follows thafo

g o (Pt -1 ({8 O A} < My <M

Put & = my(d.q) for mp+1 <4

Consequently there is a positive integer §"+1, 1< &1 < myyy +1,
sach that p./ H({é‘}?g;rl Nl =@. From the construction, it is clear
that n,—>c0. For & = {§}2,, we have de d,d¢ 4,1 =1,2,..., which

contradicts the assumption 4 = U 4.
L=l

Tt follows from Lemma 3.2, that both Ay, (¥,) and A5(¥,) are reflex-
ive.

Denote by Y the cartesian product of A,(¥,) and A, (¥,). It is
simple to show that ¥ has the properties of Theorem 1.1, using Lemma
3.1, Lemma 4.1, and the following

ProposITION 4.2(*) [6]. Let X be a Banaoh space with unconditional

basis {u,},ep. Then
() 4f the morm in X is uniformly convex in every direction, then for

o
every & > 0 there is a decomposition I' = \_) I'" suoh that
l=l

DA IO, A =15

(ii) 4f the norm in X is uniformly differentiable in every direction,

(1) In [6] it is shown that the conditions in Proposition 4.2 are not only necessary
but sufficient as well.
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o0
then for every &> 0 there is a decomposition I' = \ ) I''® such that
I=1

ﬂup(”Z;u,,H: AT |4 = Z)< ls.
PE.
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