

The isomorphic problem of envelopes

bу

STEFAN HEINRICH (Berlin and Warszawa)

Abstract. It is shown that there is a separable Banach space X which has no separable isomorphic envelope, i.e. there is no separable space Y such that whenever Z is separable and finitely representable in X, Z embeds isomorphically into Y. This strengthens Stern's solution to the (isometric) problem of envelopes posed by Lindenstrauss and Pełczyński.

1. Introduction. The notion of an envelope of a Banach space was introduced by Lindenstrauss and Pełczyński in [6]: A Banach space Y is an envelope of a Banach space X if Y is finitely representable in X and each space Z, which is finitely representable in X and whose density character does not exceed that of Y, embeds isometrically into Y. Let us recall that, given $\lambda \ge 1$, a space Y is said to be finitely λ -representable in X if for each $\varepsilon > 0$ and each finite-dimensional subspace $F \subset Y$ there exists a subspace $E \subset X$ satisfying $d(E, F) < \lambda + \varepsilon$, where d denotes the Banach-Mazur distance. Y is called to be finitely representable in X if it is finitely 1-representable. The density character of a space X is the least cardinal ε such that X possesses a dense subset of power ε .

Lindenstrauss and Pełczyński [6] proved that L_p is an envelope of l_p $(1 \le p < \infty)$ and posed the problem whether every separable Banach space has a separable envelope. This problem was solved by Stern [10] who showed that there exists an equivalent norm on l_2 arbitrarily close to the original one so that the resulting space X has no separable envelope.

Clearly, the notion of an envelope is an isometric one, but it has a natural isomorphic counterpart: Let us say that a Banach space Y is an isomorphic envelope of a space X if Y is finitely representable in X and each space Z which is finitely representable in X and whose density character does not exceed that of Y embeds isomorphically into Y.

Note that formally one could still replace the phrase "finitely representable" by "finitely λ -representable for some λ ", but this would not lead to essential changes. Indeed, a Banach space Y which is finitely λ -representable in X is λ -isomorphic to a space which is finitely (1-)representable in X.

Roughly speaking, a separable envelope of X is an isometrically universal member within the class of all separable "local subspaces" of X, while a separable isomorphic envelope is an isomorphically universal member of the same class.

With the definition above, the isomorphic problem of envelopes arises: Does every separable Banach space have a separable isomorphic envelope? It follows from the results of [6] that each separable \mathcal{L}_p -space $(1 \leqslant p \leqslant \infty)$ has a separable isomorphic envelope. So do all separable subspaces of \mathcal{L}_p -spaces for $2 \leqslant p < \infty$ since each such space X is either isomorphic to l_2 or contains an isomorphic copy of l_p (cf. [4], [6]). In the latter case l_p is finitely representable in X ([5]) and L_p will be an isomorphic envelope of X.

The space constructed by Stern [10] has an isomorphic envelope, because it is isomorphic to a Hilbert space. Moreover, his method is based essentially on the metric geometry of l_2 and does not carry over to the isomorphic context.

The aim of this paper is to show that there exists a separable Banach space without separable isomorphic envelope. The space we present has a simple representation: It is an l_r -sum of l_p -spaces. This way we also get an alternative counter-example to the isometric problem. Our proof involves ultrapowers of Banach spaces, which enable us to describe the structure of a possible envelope (this was also used in [10]), and the local incomparability of L_p -spaces for different p > 2, established in [9].

We now introduce some notation. Given p, $1 \le p \le \infty$, a set I and a family of Banach spaces $(X_i)_{i \in I}$, we denote by $(\sum_{i \in I} X_i)_p$ the space of all families $(x_i)_{i \in I}$ with $x_i \in X_i$ and $\|(x_i)\| = (\sum_{i \in I} \|x_i\|^p)^{1/p} < \infty$ ($\|(x_i)\| = \sup_{i \in I} \|x_i\| < \infty$ if $p = \infty$). If I = N and $X_i \equiv X$, we use the notation $l_p(X)$. Furthermore, given a Banach space X and a σ -additive measure μ on a measure space (Ω, Σ) , we denote by $L_p(\mu, X)$ the space of X-valued μ -measurable pth power integrable functions. We write $L_p(X)$ if μ is the Lebesgue measure on [0, 1].

Next recall the definition of an ultraproduct, introduced in [2]: Let U be an ultrafilter on a set I, and let $(X_i)_{i\in I}$ be a family of Banach spaces. Denote by N_U the closed subspace of $(\sum_{i\in I} X_i)_{\infty}$ which consists of all families (x_i) satisfying $\lim_U \|x_i\| = 0$. Then the ultraproduct $(X_i)_U$ is defined to be the quotient space $(\sum_{i\in I} X_i)_{\infty}/N_U$, equipped with the usual quotient norm. If $(x_i)_U$ denotes the equivalence class determined by (x_i) , then the norm can be computed as $\|(x_i)_U\| = \lim_U \|x_i\|$. If all of the spaces X_i are identical with some X, we speak of an ultrapower, $(X)_U$. Given operators $T_i\colon X_i\to Y_i$ with $\sup_I \|T_i\|<\infty$, we can define their ultraproduct

 $(T_i)_U$: $(X_i)_U o (Y_i)_U$ in a canonical way by setting $(T_i)_U(x_i)_U = (T_ix_i)_U$. Finally, we say that an ultrafilter U on a set I is countably incomplete if there exists a sequence of sets $D_n \in U$ with $\bigcap_{n=1}^{\infty} D_n = \emptyset$. For the basic facts concerning ultraproducts of Banach spaces we refer to [2], [11] and the survey [3].

Acknowledgment. The author thanks Prof. C. Ward Henson for a stimulating discussion on the isomorphic problem of envelopes.

2. The counter-example. We first state the main result, which will be proved through a series of lemmas. Q denotes the set of rational numbers.

THEOREM. Let $2 < a < b < r < \infty$ and let $X = (\sum_{q \in [a,b] \cap Q} l_q)_r$. Then X has no separable isomorphic envelope.

Throughout this section a, b, r and X will be fixed as defined in the Theorem. The first two lemmas concern the local structure of those subspaces of X which correspond to subsets of the interval [a, b]. More precisely, we shall investigate the question whether or not l_p is finitely representable in these spaces. In this connection we shall frequently use a result of Krivine [5], stating that if, for some λ , l_p is finitely λ -representable in a Banach space Z, then l_p is finitely representable in Z. The first lemma is just a reduction result which will simplify the proof of Lemma 2.

LEMMA 1. Let $A \subset [a, b]$ be a closed set and let $p \in [a, b]$. Assume that l_p is finitely representable in $(\sum_{q \in A} l_q)_r$. Then there exists an $s \in A$ such that l_p is finitely representable in $l_r(l_s)$.

Proof. If l_p is finitely representable in a direct sum of two Banach spaces, then l_p is finitely representable in at least one of the summands. Indeed, it is a standard fact, that if a direct sum of two Banach spaces contains an isomorph of l_p , then so does one of the summands. By means of ultrapowers, this fact is easily localized (cf. [3], Ch. 6 for this kind of argument), and an application of Krivine's result yields the desired statement.

Using this, one can find a sequence (A_n) of closed subsets of A such that, for all n, $A_n \supseteq A_{n+1}$, diam $(A_n) < 1/n$, and l_p is finitely representable in $(\sum_{q \in A_n} l_q)_r$. Define $s \in A$ to be the unique common point of the sets A_n , i.e. $\{s\} = \bigcap_{q \in A_n} A_q$.

Fix $m \in N$ and $\varepsilon > 0$. By a result of Pełczyński and Rosenthal [9], there exists a $\delta > 0$ (depending on m and ε only) such that the following holds: If $|q-s| < \delta$, then every m-dimensional subspace of l_q is $(1+\varepsilon)$ -isomorphic to a subspace of l_s . Now choose n so that $1/n < \delta$ and let E

be an m-dimensional subspace of $(\sum\limits_{q\in \mathcal{A}_n}l_q)_r$ with $d(E,l_p^m)<1+\varepsilon$. There exist m-dimensional subspaces $E_q\subset l_q$ such that $E\subset (\sum\limits_{q\in \mathcal{A}_n}E_q)_r$. Each of the spaces E_q is $(1+\varepsilon)$ -isomorphic to some subspace of l_s , thus $(\sum\limits_{q\in \mathcal{A}_n}E_q)_r$, and in particular E, are $(1+\varepsilon)$ -isomorphic to a subspace of $l_r(l_s)$. Consequently, $l_r(l_s)$ contains a $(1+\varepsilon)^2$ -isomorph of l_p^m . Since ε and m were arbitrary, this concludes the proof.

LEMMA 2. Let $A \subset [a, b]$ be a closed set and let $p \in [a, b] \setminus A$. Then l_p is not finitely representable in $(\sum_i l_q)_r$.

Proof. In view of Lemma 1 it suffices to show that for $p, q \in [a, b]$, $p \neq q$, l_p is not finitely representable in $l_r(l_q)$. For technical reasons, we shall actually prove that l_p is not finitely representable in $L_r(L_q)$.

We assume the contrary, i.e. for each n there exists a subspace E_n $\subset L_r(L_n)$ with $\dim E_n = n$ and

(1)
$$d(E_n, l_n^n) < 1 + 1/n.$$

The elements of E_n are vector-valued functions, so let us consider the set of "norm-functions" $S_n \subset L_r$:

$$S_n = \{ f \in L_r \colon \text{There exists an } x \in E_n, \ x = x(t) \\ \text{with } ||x(t)|| = f(t) \text{ a.e.} \}.$$

We shall apply the method of weighted L_2 -norms, developed by Petczyński and Rosenthal in [9], to these sets S_n . Let Φ be the set of all measurable functions φ on [0, 1] satisfying $\varphi(t) > 0$ for all $t \in [0, 1]$ and $\int \varphi(t) dt = 1$. First we show that, taken on S_n , the ratio of the L_r -norm to weighted L_2 -norms tends to infinity with $n \to \infty$, more precisely

(2)
$$\lim_{n\to\infty} \inf_{\varphi\in\emptyset} \sup_{f\in S_m\setminus\{0\}} \|f\|_{L_r} \cdot \|f\cdot\varphi^{(r-2)/2r}\|_{L_2}^{-1} = \infty.$$

Assume that this is not the case. Then there exist a constant C and, for each n, a function $\varphi_n \in \Phi$ so that for all $f \in S_n$,

$$||f||_{L_r} \leqslant C ||f \cdot \varphi_n^{(r-2)/2r}||_{L_2}.$$

Let μ_n be the probability measure on [0,1] defined by $d\mu_n = \varphi_n dt$. We get for $f \in S_n$,

$$\begin{split} G^{-1} \| f \|_{L_{\mathbf{r}}} & \leqslant \| f \cdot \varphi_n^{(r-2)/2r} \|_{L_2} = \| f \cdot \varphi_n^{-1/r} \|_{L_2(\mu_n)} \\ & \leqslant \| f \cdot \varphi_n^{-1/r} \|_{L_2(\mu_n)} \leqslant \| f \cdot \varphi_n^{-1/r} \|_{L_r(\mu_n)} = \| f \|_{L_r}. \end{split}$$

Thus

(3)
$$C^{-1} \|f\|_{L_n} \leqslant \|f \cdot \varphi_n^{-1/r}\|_{L_n(\mu_n)} \leqslant \|f\|_{L_n} \quad (f \in S_n).$$

We now define an operator T_n : $E_n \to L_q(\mu_n, L_q)$ by setting $(T_n x)(t) = \varphi_n^{-1/r}(t) x(t)$, for $x \in E_n$, $t \in [0, 1]$. Then (3) shows that

$$C^{-1}||x|| \leq ||T_n x|| \leq ||x|| \quad (x \in E_n).$$

Since $L_q(\mu_n, L_q)$ is isometric to L_q , the last inequality together with (1) implies that l_p is finitely C-representable in L_q . But this is known to be impossible [9]. We have got a contradiction which proves (2).

Now we proceed with the application of the argument from [9]. The proof of Proposition 3.1 of [9] combined with (2) yields the following: For each $\delta > 0$ and $m \in N$ we can find an $n_0 \in N$ such that whenever $n > n_0$, there exist functions $f_1, \ldots, f_m \in S_n$ of norm one and measurable sets $A_1, \ldots, A_m \subset [0, 1]$ satisfying

$$(4) \qquad \int\limits_{A_{j}} f_{j}^{r} dt > 1 - \delta, \quad \int\limits_{A_{j}} f_{i}^{r} dt < \delta \quad (i < j, j = 1, ..., m).$$

Define $B_j = A_j \setminus \bigcup_{i>j} A_i$, choose $x_1, \ldots, x_m \in E_n$ so that $||x_j(t)|| = f_j(t)$ (a.e.) and put $y_j = \chi_{B_j} x_j$. The y_j 's are disjointly supported vector-valued functions in $L_r(L_q)$, consequently, they span a subspace isometric to l_r^m . On the other hand, it follows from (4) that

$$||x_j - y_j||_{L_r(L_Q)} = ||f_j - \chi_{B_j} f_j||_{L_r} < (m\delta)^{1/r}.$$

If now δ is chosen small enough $(\delta < (4m)^{-2r}$ will suffice), span $(x_j)_{j=1}^m$ is (1+1/m)-isomorphic to span $(y_j)_{j=1}^m$, hence to l_r^m . Recalling (1) again, we derive that l_r is finitely representable in l_p , contradicting e.g. the fact [8] that l_p and all spaces which are finitely representable in it are of cotype p while l_r is not (2 , by assumption). This accomplishes the proof of Lemma 2.

Let U be a non-trivial ultrafilter on N. In the next lemma, which is the crucial part of the proof of the Theorem, we shall study isomorphic embeddings of l_p into $(X)_U$. We certainly cannot expect a full description of these embeddings, but we will get some information about the position of l_p -isomorphs with respect to some natural decomposition of $(X)_U$. For this, let us first introduce some more notation. Given a set $A \subset [a, b]$, we denote by P_A the canonical projection of X onto the subspace corresponding to the sum $(\sum_{a \in A} l_a)_r$. The ultrapower of P_A will be denoted by Q_A , thus $Q_A = (P_A)_U$. Furthermore, if (A_n) is a sequence of subsets of [a, b], we define $Q_{(A_n)}$ to be the ultraproduct $(P_{A_n})_U$ of the sequence of projections (P_{A_n}) . It is easy to check that Q_A and $Q_{(A_n)}$ are projections, acting in $X_{(U)}$.

LEMMA 3. Let $p \in (a, b)$, let U be a non-trivial ultrafilter on N, and let Z be a subspace of $(X)_U$ isomorphic to l_p . Then there exists an element

 $z \in Z$ and a sequence of open intervals (I_n) with $I_n \subset [a, b]$, $p \in I_n$ and $\lim_{n \to \infty} \operatorname{diam}(I_n) = 0$, such that $Q_{(I_n)}z \neq 0$.

Proof. We shall show that the following statement (*) holds:

(*) There exists a $z \in Z$ and an $\varepsilon > 0$ such that for each open interval $I \subset [a, b]$ with $p \in I$, $||Q_I z|| > \varepsilon$.

Once (*) is verified, the proof of the lemma is completed without difficulty. Indeed, take a sequence of open intervals $J_k \subset [a,b]$ with $p \in J_k$ and diam $(J_k) < 1/k$ for all k. Let (x_n) be a sequence representing $z \in (X)_U$, i.e. $z = (x_n)_U$. By (*), $||(P_{J_k}x_n)_U|| > \varepsilon$. This means that for each k there exists a set $D_k \subseteq N$, $D_k \in U$ so that

$$||P_{J_k}x_n|| > \varepsilon \qquad (n \in D_k).$$

We may assume without loss of generality that the sequence (D_k) is decreasing. Since U, as a non-trivial ultrafilter on N, is countably incomplete, we may further assume that $\bigcap_{k=1}^{\infty} D_k = \emptyset$. Now we define $I_n = (a, b)$ if $n \in N \setminus D_1$ and $I_n = J_k$ if $n \in D_k \setminus D_{k+1}$. Then (5) implies $\|P_{I_n} x_n\| > \varepsilon$ $(n \in D_1)$, and we conclude

$$\|Q_{(I_n)}z\| = \|(P_{I_n}x_n)_U\| = \lim_U \|P_{I_n}x_n\| \geqslant \varepsilon.$$

Finally, it follows that $\liminf_{u \to u} \operatorname{diam}(I_n) = 0$, because $\operatorname{diam}(I_n) < 1/k$ for all $n \in D_k$.

We now turn to the proof of statement (*). Assume that (*) does not hold, i.e. for each $z \in Z$ and each $\varepsilon > 0$ we can find an open interval $I \subset [a, b]$ with $p \in I$ and $||Q_Iz|| \le \varepsilon$. Let T be an isomorphism from l_p onto Z, let (z_n) be the image under T of the unit vector basis of l_p , and put $\varepsilon = (8||T|| ||T^{-1}||)^{-1}$. We shall construct by induction a decreasing sequence of relatively open in [a, b] intervals (I_j) with $p \in I_j$ for all j, and a normalized block-basis (u_j) of (z_n) such that for all j,

$$||Q_{[a,b]\setminus I_i}u_j|| \leqslant \varepsilon \cdot 2^{-j}$$

and

$$||Q_{I_{i+1}}u_i|| \leqslant \varepsilon \cdot 2^{-j}.$$

Put $u_1 = z_1/\|z_1\|$ and $I_1 = [a, b]$. Suppose now $(I_j)_{j=1}^k$ and $(u_j)_{j=1}^k$ have been found. By our assumption above, there exists an open interval $I_{k+1} \subset I_k$ with $p \in I_{k+1}$ and $\|Q_{I_{k+1}}u_k\| \le \varepsilon \cdot 2^{-k}$. Choose m so that $u_1, \ldots, u_k \in \operatorname{span}\{z_n\colon 1 \le n \le m\}$. Suppose that we could not find a u_{k+1} , or equivalently, that for all $u \in \operatorname{span}\{z_n\colon n > m\}$

(8)
$$||Q_{[a,b] \setminus I_{k+1}} u|| > \varepsilon \cdot 2^{-(k+1)} ||u||.$$

Then the restriction of $Q_{[a,b] \searrow I_{k+1}}$ to the closure of span $\{z_n \colon n > m\}$ is an isomorphism, which means that l_p embeds isomorphically into $\operatorname{Im} Q_{[a,b] \searrow I_{k+1}}$. It is readily checked that

$$\operatorname{Im} Q_{[a,b] \setminus I_{k+1}} = (\operatorname{Im} P_{[a,b] \setminus I_{k+1}})_{U}.$$

Therefore l_p is finitely λ -representable for some λ (and hence finitely representable) in

$$\operatorname{Im} P_{[a,b] \setminus I_{k+1}} = \Big(\sum_{q \in ([a,b] \setminus I_{k+1}) \cap \mathbf{Q}} l_q \Big)_r,$$

contradicting Lemma 2. This shows that (8) cannot hold and we can find u_{k+1} as required. This completes the induction.

Next we define $v_j = Q_{I_i \setminus I_{i+1}} u_j$. According to (6) and (7), we have

(9)
$$||u_i - v_i|| \leqslant \varepsilon \cdot 2^{(j-1)}.$$

As a block-basis of (z_n) , the sequence (u_j) is equivalent to the unit vector basis of l_p . Moreover, its basis constant does not exceed $||T|| ||T^{-1}||$. By (9), the choice of ε , and a well-known perturbation result ([7], 1.a.9), (v_j) is equivalent to (u_i) , consequently to the unit vector basis of l_p .

On the other hand, the projections $Q_{\mathcal{A}}$ form an " l_r -decomposition" of $(X)_U$. Precisely, if A_1, \ldots, A_m are mutually disjoint subsets of [a, b] and $x_1 = (x_{1,i})_U, \ldots, x_m = (x_{m,i})_U$ are elements of $(X)_U$, then

$$\begin{split} \Big\| \sum_{k=1}^{m} Q_{\mathcal{A}_{k}} x_{k} \Big\| &= \lim_{U} \Big\| \sum_{k=1}^{m} P_{\mathcal{A}_{k}} x_{k,i} \Big\| \\ &= \lim_{U} \Big(\sum_{k=1}^{m} \| P_{\mathcal{A}_{k}} x_{k,i} \|^{r} \Big)^{1/r} = \Big(\sum_{k=1}^{m} \| Q_{\mathcal{A}_{k}} x_{k} \|^{r} \Big)^{1/r}. \end{split}$$

A look at the definition of (v_j) shows now that it must be equivalent to the unit vector basis of l_r , which is a contradiction. This completes the proof of (*) and thus of the lemma.

Proof of the Theorem. Assume that Y is a separable isomorphic envelope of X. Let U be a non-trivial ultrafilter on N. By definition, Y is finitely representable in X, therefore it is isometric to a subspace of $(X)_U$ (cf. [3], Th. 6.3). In the sequel we thus assume $Y \subset (X)_U$. It is easily seen that for each $p \in (a, b)$, l_p is finitely representable in X. Hence Y contains a subspace isomorphic to l_p . An application of Lemma 3 shows that there exists an element $z_p \in Y$ and a sequence of open intervals $(I_{n,p})$ with $p \in I_{n,p}$, $I_{n,p} \subset [a, b]$, $\lim_{U} \operatorname{diam}(I_{n,p}) = 0$ and $Q_{(I_{n,p})}z_p \neq 0$. We denote for simplicity $Q_{(I_{n,p})} = Q_p$.

Let (y_n) be a sequence which is dense in Y. Then we can find for each $p \in (a, b)$ an $n \in \mathbb{N}$ such that $Q_p y_n \neq 0$. Since the set (a, b) is unco-

untable, there must be an $n \in N$ and an uncountable subset $A \subset (a, b)$ such that $Q_p y_n \neq 0$ for all $p \in A$. Moreover, using the same argument again, we may also assume the existence of an $\epsilon > 0$ such that

Let us now have a closer look at the projections Q_p . For $p_1, \ldots, p_m \in (a, b)$ with $p_i \neq p_j$ $(i \neq j)$ and for $x = (x_n)_U \in (X)_U$ we have

$$\Big\| \sum_{i=1}^m Q_{\nu_i} x \Big\| = \Big\| \sum_{i=1}^m Q_{(I_{n,p_i})} x \Big\| = \lim_U \Big\| \sum_{i=1}^m P_{I_{n,p_i}} x_n \Big\|.$$

Since the sequences (I_{n,p_i}) converge to p_i with respect to U, we can find a set $D \in U$ such that for all $n \in D$ the intervals $I_{n,p_1}, \ldots, I_{n,p_m}$ are mutually disjoint. Hence

$$\begin{split} \lim_{U} \Big\| \sum_{i=1}^{m} P_{I_{n,p_{i}}} x_{n} \Big\| &= \lim_{U} \Big(\sum_{i=1}^{m} \| P_{I_{n,p_{i}}} x_{n} \|^{r} \Big)^{1/r} \\ &= \Big(\sum_{i=1}^{m} \| (P_{I_{n,p_{i}}} x_{n})_{U} \|^{r} \Big)^{1/r} = \Big(\sum_{i=1}^{m} \| Q_{p_{i}} x \|^{r} \Big)^{1/r}. \end{split}$$

It follows similarly that $\left\|\sum_{i=1}^{m} Q_{p_i}\right\| = 1$.

Returning to (10), we get now

$$\Big\| \sum_{i=1}^m Q_{p_i} y_n \Big\| \leqslant \|y_n\| \qquad (p_i \in A \,,\, p_i \neq p_j \,\text{ for } \, i \, \neq j)$$

and, on the other hand,

$$\Big\| \sum_{i=1}^m Q_{p_i} y_n \Big\| = \Big(\sum_{i=1}^m \|Q_{p_i} y_n\|^r \Big)^{1/r} \geqslant m^{1/r} \, \varepsilon \,,$$

which is a contradiction, because m was arbitrary. This shows that X cannot have a separable isomorphic envelope.

3. Remarks. In contrast to the main result of the previous section, it should be pointed out that for $1 \leq q, r < \infty$ the space $l_r(l_q)$ has a separable isomorphic envelope, namely $L_r(L_q)$. This can be shown by using uniformity results from [9].

There are some general positive results for higher cardinals which are, however, connected with additional set-theoretic assumptions: An easy modification of the proof of the Theorem (use ultrafilters on bigger sets) yields that each isomorphic envelope of X is actually of density character $\geq 2^{\infty}$. This together with the result of Stern ([10], Th. 2) shows that the following three statements are equivalent (in ZFC):

- (1) The Continuum Hypothesis.
- (2) Each Banach space of density character $\leq \omega_1$ has an isomorphic envelope of density character $\leq \omega_1$.
- (3) Each Banach space of density character $\leq \omega_1$ has an (isometric) envelope of density character $\leq \omega_1$.

Stern proved $(1) \Leftrightarrow (3)$. The implication $(1) \Rightarrow (3)$ was derived from a model-theoretic result of Keisler (cf. [10], Th. 5 and [1], Ch. 6). In exactly the same manner it can be deduced from [1] (combine Prop. 5.1.6 (vi) and Th. 5.1.16) that if we assume the Generalized Continuum Hypothesis, then each non-separable Banach space X has an envelope Y of the same density character as X.

References

- [1] C. C. Chang, H. J. Keisler, Model theory, North-Holland, Amsterdam 1973.
- [2] D. Dacunha-Castelle, J. L. Krivine, Applications des ultraproduits à l'étude des espaces et algébres de Banach, Studia Math. 41 (1972), 315-334.
- [3] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72-104.
- [4] M. I. Kadec, A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L_n, Studia Math. 21 (1962), 161-176.
- [5] J. L. Krivine, Sous espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. 104 (1976), 1-29.
- [6] J. Lindenstrauss, A. Pełczyński, Absolutely summing operators in L_p spaces and their applications, Studia Math. 29 (1968), 275-326.
- [7] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, I, Sequence spaces, Springer, Berlin-Heidelberg-New York 1977.
- [8] B. Maurey, G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
- [9] A. Pełczyński, H. P. Rosenthal, Localization techniques in L_p spaces, Studia Math. 52 (1975), 263-289.
- [10] J. Stern, The problem of envelopes for Banach spaces, Israel J. Math. 24 (1976), 1-15.
- [11] Ultraproducts and local properties of Banach spaces, Trans. Amer. Math. Soc. 240 (1978), 231-252.

INSTITUT FÜR MATHEMATIK AKADEMIE DER WISSENSCHAFTEN DER DDR DDR – 108 BERLIN, MOHRENSTRAGE 39 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES SNIADECKICH 8, 00-950 WARSZAWA, POLAND

Received Mai 7, 1980

(1618)