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The isomorphic problem of envelopes
by
STEFAN HEINRICH (Berlin and Warszawa)

Abstract. It is shown that there is a separable Banach space X which has no
separable isomorphic envelope, i.e. there is no separable space ¥ such that whenever
Z is separable and finitely representable in X, Z embeds isomorphically into Y. This
strengthens Stern’s solution to the (isometric) problem of envelopes posed by Lin-
denstrauss and Pelezynski.

1. Introduction. The notion of an envelope of a Banach space wag
introduced by Lindenstrauss and Pelezyrniski in [6]: A Banach space X
is an envelope of a Banach space X if Y is finitely representable in X
and each space Z, which is finitely representable in X and whose density
character does not exceed that of Y, embeds isometrically into Y. Let
us recall that, given 1> 1, a space Y is said to be finilely A-representable
in X if for each & > 0 and each finite-dimensional subspace #' < ¥ there
exigts a subspace F <« X satisfiyng d(®, F) < A-+e¢, where d denotes the
Banach—Mazur distance. ¥ is called to be finitely representable in X if
it is finitely 1-representable. The density character of a space X is the least
eardinal » such that X possesses a dense subset of power »x.

Lindenstrauss and Pelezynski [6] proved that L, is an envelope of
l, (L<p< oo) and posed the problem whether every separable Banach
space has a separable envelope. This problem was solved by Stern [10]
who showed that there exists an equivalent norm on I, arbitrarily close
to the original one so that the resulting space X has no geparable envelope.

Clearly, the notion of an envelope is an isometric one, but it has
a natural isomorphic counterpart: Let us say that a Banach space Y is
an isomorphic envelope of a space X if Y ig finitely representable in X
and ecach space Z which is finitely representable in X and whose density
character does not exceed that of ¥ embeds isomorphically into Y.

Note that formally one could still replace the phrase “finitely rep-
resentable” by “finitely A-representable for some A”, but this would not
lead to essential changes. Indeed, a Banach space Y which is finitely
A-representable in X is A-isomorphic to a space which iy finitely (1-)rep-
resentable in X.
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Roughly speaking, a separable envelope of X is an isometrically
universal member within the clags of all separable “local subspacos"’
of X, while a separable isomorphic envelope is an isomorphically uni-
versal member of the same class.

With the definition above, the isomorphic problem of ecnvelopes
arises: Does every separable Banach space have a separable isomorphic
envelope? It follows from the results of [6] that each separable #,-spaco
(1 <p < o) has a separable isomorphic envelope. So do all separable
subspaces of &,-spaces for 2 < p < oo gince each such space X is either
igomorphic to I, or containg an isomorphic copy of L, (ef. [4], [6]). In
the latter case 7, is finitely representable in X ([5]) and L, will be an
isomorphie envelope of X.

The space constructed by Stern [10] has an isomorphic envelope,
because it is isomorphiec to a Hilbert space. Moreover, his method is
based essentially on the metric geometry of I, and does not carry over
to the isomorphic context.

The aim of this paper is to show that there exists a separable Banach
space without separable isomorphic envelope. The space we present has
a simple representation: It is an l-sum of I,-spaces. This way we also
get an alternative counter-example to the isometric problem. Our proof
involves wltrapowers of Banach spaces, which enable us to deseribe the
gtrucimre of a possible envelope (this was also used in [10]), and the local
incomparability of L,-spaces for different p > 2, established in [9].

We now introduce some notation. Given p, 1< p < oo, a set I and
a family of Banach spaces (X,);.;, we denote by (ZX,.)p the space of
all families (2;);; with @; € X; and [(@)] = ( 3 [|aia:.f]1”)”1"< oo ([(a;)] =

iel
s11'1}1 el < oo if p = o0). If I = N and X, =X, we use the notation
1,(X). Furthermore, given a Banach space X and a o-additive measure "
on a measure space (2, X), we denote hy Ly,(u, X) the space of X-valued
p-measurable pth power integrable functions. We write I (X) it p is
the Lebesgue measure on [0, 1]. Y

Next recall the definition of an ultraproduct, introduced in [2]:
Let U be an ultrafilter on a set I, and let (X;),.; be a family of Banach
spaces. Denote by Ny the closed subspace of ( Y X,), which consists

s . - . el
of all families (2;) satisfying llé‘n ol = 0. Then the ultraproduct (X,)y is
defined to be the quotient space (%’ X)o/Ny, equipped with the usual

quotient norm. If («,);; denotes the equivalence class determined by (%),
then the norm can be computed asg l(#)yll = limjle,)l. If all of the spaces
U

X, are identical with some X, we speak of an wultrapower, (X)y. Given
operators T';: X;—~¥, with SlIlp 174l < oo, we can define their ultraproduct
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(T (X)p—(X)y in a canonical way by setting (T)y(#)y = (Ti®)y-
Finally, we say that an ultrafilter U on a set I is countably incomplete

if there exists a sequence of sets D, € U with (1) D, = @. For the basic

n=1
facts concerning ultraproducts of Banach spaces we refer to [2], [11]
and the survey [3].

Acknowledgment. The author thanks Prof. C. Ward Henson for
a stimulating discussion on the isomorphic problem of envelopes.

2. The counter-example. We first state the main result, which will
be proved through a series of lemmag. Q denotes the seb of rational num-
bers.

THEOREM. Lot 2 < a<b<r< oo and let X = 3 1),. Then X
has no separable isomorphic envelope. a¢labin®

Throughout this section a, b, » and X will be fixed as defined in the
Theorem. The first two lemmas concern the Ilocal structure of those
subspaces of X which correspond to subsets of the interval [a, b]. More
precisely, we shall investigate the question whether or not 1, is finitely
representable in these spaces. In this connection we shall frequently
use o result of Krivine [5], stating that if, for some 1,1, is finitely A-
representable in a Banach space Z, then 1, is finitely representable in Z.
The first lemma is just a reduction result which will simplify the proof
of Lemma 2.

ILEMMA 1. Let A < [a,b] be a closed set and let p €[a, b]. Assume

that 1, is finitely representable in (> l))-- Then there exists an s € A such
qed

that 1, is finitely representable in 1.(L,).

Proof. It 1, is finitely representable in a direct sum of two Banach
gpaces, then 1, is finitely representable in ab leagt one of the summands.
Indeed, it is a standard fact, that if a direct sum of two Banach spaces
contains an isomorph of ,, then so does one of the summands. By means
of ultrapowers, this fact is easily localized (cf. [3], Ch. 6 for this kind of
argument), and an application of Krivine’s result yields the desired
statement.

Using this, one can find a sequence (4,) of closed subsets of 4 such
that, for all n, 4, 2 4,.,, diam (4,) < 1/n, and I, is fmitely representable
in (3 1),. Define s € 4 to be the unigue common point of the sets 4,

ed,

i.e.a {s'i =) 4,

Fix m e N and & > 0. By a result of Pelezyrfski and Rosenthal [9],
there exists & 6 >0 (depending on m and & only) such that the following
holds: If |¢—s| < 6, then every m-dimensional subspace of I, is (1+¢)-
isomorphic to a subspace of I, Now choose n so that 1/n< 6 and let B
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be an m-dimensional subspace of ( 3 1,), with d(H, If") < 1+ ¢ There exist
ged,

m-dimengional subspaces B, = I, such that F < (ZE) . Bach of the

spaces H, is (1+-¢)-isomorphic to some subspace of ls, thus (Z‘ B,),, and

in particular B, are (1- &)-isomorphic to a subspace of 1,(1,). Consequently,
1.(L;) containg @ (1+ ¢)2-isomorph of I’ Since ¢ and m were arbitrary,
this concludes the proof.
Levma 2. Let A < [a, b] be a closed set and let p e [a, DINA. Then
1, is not finitely representadle in (3 1),.
qed

Proof. In view of Lemma 1 it suffices to show that for p, ¢ €[4, b],
P #4, l, is not finitely representable in I (). For technical reasons,
we shall actually prove that 1, is not finitely representable in I,(L,).

We agsume the contrary, i.e. for each n there exists a subspace I,
c L,(L,) with dim#, =» and

(1) a(B,, 1) < 1+1/n.

The elements of X, are vector-valued functions, so let us consider the
set of “norm-functions” 8§, = L,:
8, = {f € L.: There exists an x e H,, o = a(t)
with |lz(t)] = f(t) a.e.}.
We shall apply the method of weighted L,-norms, developed by Pel-
czyhski and Rosenthal in [9], to these sets S,. Let @ be the set of all
meagurable functions ¢ on [0, 1] satistying ¢(t) > 0 for all ¢ € [0, 1] and

f o) dt = 1. First we show that, taken on §,, the ratio of the L,norm
to welghted L,-norms tends to infinity with n-—+oco, more preciscly

(2) lim inf sup |If|z,-IIf: ¢(1’—-2)/27H-1 _

n->oco ged feS,,\{0}

Agsume that this is not the case. Then there exist a constant € and, for
each n, a function ¢, € @ so that for all fe&,,

IFliz, < OlIf 9=y,

Let u, be the probability measure on [0, 1] defined by du, = ¢,dt. We
get for fe8,,

O Iz, < W05 Nz, = 15 Nz
<Ilf %W”Lqmn) 09 iz = Iz, -
Thus

(3) O—IanL I ‘P;IITNLQ(,;,L) ”f”z,, (feh,)
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‘We now define an operator 7,: E,—~L (,un,Lq) by setting (T,)(t)
= g " (t)a(t), for zeE,, t<[0, 1] Then (3) shows that

el < I Thel < ol (2 e By).

Since Ly(p,, Ly) is isometric to IL,, the last inequality together with (1)
implies that I, is finitely (-representable in I,. But this is known to be
impossible [9]. We have got a contradiction which proves (2).

Now we proceed with the application of the argument from [9].
The proof of Proposition 3.1 of [9] combined with (2) yields the following:
For each 6 >0 and m € N we can find an n, € N such that whenever
% > g, there exist functions fy, ..., f,, € 8, of norm one and measurable
sets A4,,...,4,, < [0,1] satisfying

4) [frag>1—8, [fiit<é (i<j,j=1,...,m).
Aj 45

Define B; = A\ J 4;, choose @y, ..., &y,
>

and pub Y5 = x5, The y/s are disjointly supported vector-valued

functions in I, (Lq), congequently, they span a subspace igometric to

I'. On the other hand, it follows from (4) that

€ B, so that |io;(t)| = f;(?) (a.e.)

1|‘~vj—yj“1;,(Lq) = Hf,-—xB_,,fjHL, < (md)Hr,

I now ¢ is chosen small enough (8 < (4m)™ will suffice), span ()P, is
(L +1/m)-isomorphic to span (y;)7,, hence to I;*. Reecalling (1) again,
we derive that 1, is finitely representable in 7,, contradicting e.g. the fact
[8] that 7, and all spaces which are finitely representable in it are of
cotype p while I, is not (2 < p <r, by assumption). This accomplishes
the proof of Lemma 2.

Let U be a non-trivial ultrafilter on N. In the next lemma, which
is the crucial part of the proof of the Theorem, we shall study isomorphic
embeddings of 1, into (X)y;. We certainly cannot expect a full description
of these embeddings, but we will get some information about the position
of 1 -isomorphs with respeet to some natural decomposition of (X).
For this, let us first introduce some more notation. Given a set A < [a, b],
we denote by P the canonical projection of X onto the subspace corre-
sponding to the sum | 2 l) The ultrapower of P4 will be denoted by

qEAnQ
Q,, thus @, = (P4)y. Furthermore, if (4,) is a sequence of subsets of

[a,b], we define Q,, to be the ultraproduct (P, )y of the sequence
of projections (P, ). It is easy to check that @, and @, are projections,
acting in Xy, .

LeMuA 3. Let p e(a,b), let U be a non-trivial ulirafilter on N, and
let Z be a subspace of (X) isomorphic to 1,. Then there ewists an element
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zeZ and o sequence of open intervals (I,) with I, < [a,0], pel, and

limdiam (I,) = 0, such that Q2 # 0.
(57

Proof. We shall show that the following statement (%) holds:

() There exists a 2z € Z and an & > 0 such that for cach open interval
Ic[a,b] with pel, |@%) > e

Once (*) is verified, the proof of the lemma is completed without
difficulty. Indeed, take a sequence of open intervals J, < [a,b] with
p eJ, and diam(J,) < 1/k for all k. Let (w,) be a sequence representing
2 e (X)y, Le. 2 = (B,)p- BY (#);, (P, Bn)pll > & This means that for each
% there exists a set D, = N, D, e U so that

()

‘We may assume without loss of generality that the sequence (D) is
decreasing. Since U, as a non-trivial ultrafilter on N, is countably incom-

1Py ol > & (n eDy).

plete, we may further assume that (M) D, = @. Now we define I,, = (a, D)

k=1
it meN\D; and I, = J; if n e D\Dyy,. Then (3) implies |Py x,]| > ¢
(n € D;), and we conclude

1Qzp2l = i(Pr,@a)ull = 1ir1)_n”PI,,99n|| >e.

Finally, it follows that limdiam (I,) = 0, because diam(Z,) < 1/k for all
n e Dy, u

V’;‘e now turn to the proof of statement (). Assume that () does
10t hold, i.e. for each 2 € Z and each &> 0 we can find an open interval
Ic[a,b] with peI and ||@Q2l <s Let T be an isomorphism from I,
onto Z, let (2,) be the image under Z' of the unit vector basis of 1,,, and
put & = (SIT] IT7*)"". We shall construct by induction a decreasing
sequence of relatively open in [a, b] intervals (I;) with p €I; for all j,
and a normalized block-basis (u;) of (2,) such that for all j,

(6) “Q[z,b]\ljuj” <e2™
and
™) 925,00 < o277

Put 4, = 2,/e.]l and I, = [a, b]. Suppose now (I;)f., and ()}, have
been found. By our assumption above, there exists an open interval
Iy = I with p € I,y and @, % < &-27" Choose m s0 that uy,..., %
e span{z,: 1 < n < m}. Suppose that we could not find a u;,,, or equiv-
alently, that for all % espan{z,: n > m}

(8) 19 ta,p1 g 4y ¥l > €275 .
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Then the restriction of Qpnz,, to the closure of span{z,: n > m} is
an isomorphism, which means that I, embeds isomorphically into
ImQ,ql,,]\,Hl. It is readily checked that

ImQ[a,bJ\Ih+1 = (ImP [a,b3\1k+1)u-

Therefore 1, is finitely A-representable for some A (and hence finitely rep-
resentable) in

S 1)

ImP[a’,,]\l,k_H = 2 ,
ae(fa, b\ 4 1)~ @

contradicting Lemma 2. This shows that (8) cannot held and we can find
Uy, @8 required. This completes the induction.
Next we define v; = QJ,-\I,- 1% According to (6) and (7), we have

(9)

As a block-basis of (z,), the sequence (u;) is equivalent to the unit vector
basis of 1,. Moreover, its basis constant does not exeeed [|T|| |27 By (9),
the choice of &, and a well-known perturbation result ([7], 1.2.9), (v;) is
equivalent to (u;), consequently to the unit vector basis of 7,.

On the other hand, the projections @, form an “I -decomposition”
of (X)y. Precisely, if 4,,..., 4, are mutually disjoint subsets of [a, b]
and &y = (@) )7y oo ey @ = (B, ;)y are elements of (X),, then

| S0 = m] S

=lm (2 P Aka‘,kﬁ_”r)llr - (i [IQAkwkHr)l/r.
k=1

U k=1

Iy — o] < &-262.

A look at the definition of (v;) shows now that it must be equivalent to
the unit vector basis of 1., which is a contradiction. This completes the
proof of (x) and thus of the lemma.

Proof of the Theorem. Assume that Y is a separable isomorphie
envelope of X. Let U be a non-trivial ultrafilter on N. By definition, ¥
iy finitely representable in X, therefore it is isometric to a subspace of
(X)y (cf. [3], Th. 6.3). In the sequel we thus assume ¥ < (X)y. It is
easily seen that for each p € (a, b), 1, is finitely representable in X. Hence
Y contains a subspace isomorphic to I,. An application of Lemma 3
shows that there exists an element 2, € ¥ and a sequence of open intervals
(L) with p eI, , I, , < [a, b], liLlrndia.m (I} = 0 and Q(,n’p)zp # 0. We

denote for simplicity Q(IM) =Q,.
Let (y,) be a sequence which is dense in ¥. Then we can find for
cach p € (a, b) an n € N such that Q,y, # 0. Since the set (a, b) is unco-
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untable, there must be an » e N and an uncountable subset 4 = (a, d)
such that @y, 0 for all p e A. Moreover, wsing the same argument
again, we may also assume the existence of an & > 0 such thatb

Q.91 =6 (ped).

Let us now have a closer look at the projections @,. For py,...
vy P € (@, D) With p, #£p; (6 #§) and for @ = (5,)y € (X)y Wwe have

n m 7”1
“Z(’?Ptm ‘ = ” ZQ(In,m)m H = lizrfn ” Z PI"-Piw" H '
i= i=1 i=1

Since the sequences (I, ,) converge o p; with respect to U, we can find
a set D € U such that for all n € D the intervals I, , , ..., In,p,, are mutually
digjoint. Hence

liz [ g{’f[n,m @,

(10)

H

(2 WPy, ol

=1

(3 1z, 2@l = (2’ 19z}

=1 Gl

i

Tt follows similatly that || é%i“ = 1.

Returning to (10), we get now
m '
| 3 Q|| <lwall (i€ 4, pi by for i #3)
=1
and, on the other hand,

PXIARD)

which is a contradiction, because m was arbitrary. This shows that X
cannot have a separable isomorphic envelope.

1/r
1Q5,9l)" = mt e,

3. Remarks. In contrast to the main result of the previous scetion,
it should be pointed out that for 1 < ¢, » < oo the space I, (1,) has a separ-
able isomorphic envelope, namely L,(L,). This can be shown by using
uniformity results from [9].

Therc are some general positive results for higher eardinals which
a,re; however, connected with additional set-theoretic assumptions: An
easy modification of the proof of the Theorem (use ultrafilters on bigger
sets) yields that each isomorphic envelope of X iy actually of density
.character > 2°. This together with the result of Stern ([10], Th. 2) shows
that the following three statements are equivalent (in ZF0C):
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(1) The Continuum Hypothesis.

(2) Each Banach space of density character
envelope of density character < w,.

(3) Each Banach space of density character
envelope of density character < w,.

Stern proved (1)<«(3). The implication (1)=-(3) was derived from
2 model-theoretic result of Keisler (cf. [10], Th. 5 and [1], Ch. 6).
exactly the same manner it can be deduced from [1] (combine Prop.
5.1.6 (vi) and Th. 5.1.16) that if we assume the Generalized Continuum
Hypothesis, then each non-separable Banach space X has an envelope ¥
of the same density character as X.

< w, has an isomorphic

< w, has an (isometric)
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