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Since y = v @ (o —A/2)+(u—»/2) ®4, we see that y is a probability
measure. It is a matter of simple calculations on characteristic functions
to check that the characteristic function of y is of the form y(a) =
exp(—y(a))- (b, a) and that y fulfils condition (2) and does not fulfil
condition (1). Thus, for each character a € (V @T)* the image measure a(y)
is Gaussian on 7' and y is not a Gaussian distribution on. V@®T. Since the
last group is isomorphic to a subgroup of X, it follows that X does not
fulfil condition (i). This ends the proof of the implication (i)=- (ii).

Remark. A locally compact abelian group X fulfils condition (i) if its
dual group has a maximal, independent gystem of infinitely divisible
elements, or the component of 0 in X is isomorphic to 7'
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Fractional integration on Hardy spaces
by
STEVEN G. KRANTZ* (University Park, Penn.)

Abstract. The clagsical fractional integration theorems for Riesz potentials on
bra spaces are extended to the real variable Hardy classes, 0< p < 1. It is further
shown that the Riesz potentials can be replaced by a large class of convolution oper-
ators. Finally, one obtains results for certain operators which are not of convolution
type by using a theory of local Hardy spaces.

§ 0. Introduction. Let K,: R*\{0}+~R be given by

K. () = vo,l0*™"

where y,, = (="?2°I'(«/2))/I'((n—a)/2). Tt is an old theorem of Hardy

and Littlewood (for » = 1) and of Sobolov (for n» > 1) that the operator
L(f) = f+« K,

is a bounded linear map from L?(R") to Z4(R™), L <p < nfa, L/g =1[p—
—aln (see [10]).

For 0 < a +p <mn, one can compute (see [11]) that I,. ;= I,0I,
= IzoI,. This motivates the definition

I<a<n,

I, = Iyelye .. oIy (k times)

when a < kn, and one checks that the definition is unambiguous.

Now let H?(R™ denote the generalized Hardy classes defined and
developed in [11], [10], [3]. These will be considered in detail below.
In [11] the following resulf is proved:

(0.1) I,: H?(R™—H(R")

boundedly, provided (n—1)/n < p < nf(n+a),a>0,and 1/¢ = 1/p—a/n.
Also

(0.2) I.: H?(R™)->L%(R"

boundedly, provided n/(n-+a) <p <nja, a>0, and 1/g =1/p—a/n.
It is known that in case p = n/a, the appropriate target space is BMO
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(the functions of bounded mean oscillation). For p > #nfa, I, maps L?
to the Lipschitz class 42, (R") (see [10] and references therein).

Moving in another direction, let us note that the question of re-
placing K, by a more general sort of kernel has been investigated. In case
1< p<mnla, [4] gives essentially the weakest possible conditions on
K (2, y) which guarantee that

fo [f) K (@, y)dy

is bounded from L® to L9, ¢ > p. Comparably weak conditions for p = n/a
do not seem to be known.

In this note we wigh to extend the above results to the case when the
domain of I, is taken to be H*(R™), 0 < p < 1. We show further that I,
can be replaced by a large class of convolution kernels. Finally, one can
replace I, by certain kernels which are nof convolution kernels provided
one is willing to relax the definition of H? space in the faghion of
Goldberg [6].

The proofs are fairly easy, given the current advanced state of the
theory. We make use of the atomic decomposition of H?(R") and of the
maximal function characterization of H? (R").

Although we only formulate and prove results on R", they are truo
in some generality. An example of particular interest is the wunit bary
in C". We will comment on this in Section 3.

‘We wish to thank S. Ross Barker for a useful convergation.

§1. Definitions and background information. In what follows, the
letters €, C;, ete. will be used to denote various congtants whose values
may be ditferent in different contexts. Let

R’T-l ={(#,y) = (@1, ..., 2,,9): y >0}

be the usual upper half space. Let HP(R") be the space of functions

harmonic on R whose nontangential maximal function w* (z) = sup|u(t, 4)|
le—tl<y

is in LP(R™), 0 <p< co. Lot |ulg = lu*p. HO<p<l, let N(p)

= [n(1—p)/p], the integer part of =n(L—p)/p. Define a p-atom to be

a funetion a: R"—>C go that & is supported on a cube @ < R with sides

parallel to the axes and so that

(L.1) la(@)| < Q177

where (@} is the volume of @;

(12)  [a(@)a*dz = 0 for all multi-indices « of order |a| < N (p).
Tt is known (see [3]) that if w € H?(R") then lim () = f exists
10

in the sense of tempered distributions and that f uni_q’uely determines .
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It will be convenient to also denote this space of boundary distributions
on R" by H?(R").

We wish to recall the following important results about H? (R"):
(1.3) Let 1< p < co. Then fe L?(R") if and only if f e H”(R"), in the
sense that

Ol e < Ifllze < 0 “f*”Lm-

(1.4) Let @ e, the Schwartz testing class, with [pdw = 1. Let f be
a tempered distribution on R™. Define

wt (@) = sup lpexf (@)l

where ¢,(2) = ¢ "p(x/e). Then fe HP(R") if and only if «* e L? (R™),
0 <p < oo,and

Calutllpe < If e < Oallut o,

(1.5) A tempered distribution f is in H?(R"), 0 < p<1, if and only
if there is a sequence {a;} of p-atoms and a sequence {1,} of non-negative
real numbers so that
0
f= Z A a

=1
in the sense of distributions and

o0

Collf o < ) 4 < Callf iom.

i=1
Here €y, 0, depend only on % and p.

(1.6) Remark. The reader should refer to [3] for proofs of (1.3) and (1.4)
and for the history of these ideas. For (1.5), see [7] and references therein.

While the foregoing ideas are rather familior, those following may
be less s0. They are due to Goldberg [6]. If » is harmonie on R, we say
that w is in the local Hardy class h® provided that

(L.7) Uoo(#) = sUD |u(t, )|

le—ti<y<i
satistios ujo, € LP(R"), 0 < p < co. Let ped satisty fpdo 5 0. Then
Goldberg has proved that « e h? if and only if

(1.8) ik () = sup |uxg,(w)]

0l
satisfies ujg, € LP(R"). Finally, if we modify our definition of p-atom so
that atoms supported on cubes of measure greater than 1 (where the
cube is chosen as small as possible) satisty no moment conditions, then
elements of #? satisfy an atomic decomposition just as in (1.5).
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(1.9) Remark. It is a straightforward excercise that if fe L (R")
then

(@) = fifo(®) = If(#)] a6, «eR"
Therefore, for 1 < p < oo, we have that
Ifibellzo < 1 Fllze < O1l M S o < Oallf e < Oallfibellor
where I is the Hardy—Littlewood maximal operator. So
H*(R") o WP (R") = I”(R"), 1<p< o0.

§ 2. Formulation and proof of the theorems. In what follows, K (s, t)
will be a complex valued function on R"x R" which is smooth off the
diagonal 4 = {s = t}. Let Z* denote the non-negative integers. We let
DiK(a,t) = (0[0s)"K(s,$)|,—, whenever ae(Z7), a,teR"; likewiso
DiK (s, b) = (8/04)° K (s, #)pap-

(2.1) TEEOREM. Letn, Ny & Z* be non-zero, let 0 < a < n, and let K: R*x
X R"—>C be in OV (R" x R*\A). Suppose that, for all u > 0, we have

(2.1.1a) [ IE@G,0a@<0u,  all s,weRY
e~ wi{<u
(2.1.1hb) J IE(s,tlds < Ou®, all t,weR"
ls—wi<p
@12) [ |K(s,t+0)— D DI s, 8o |dn < Ofs — 4|~ N=Tte N
ls—hfllzilvl BN

all s,te R all 0< N < Ny;

@13) [ [E(s,i+0)—K(s—0, 8)|dv < Opo*", ol s,teR".

ls—#|>2v}
lvl<u
Let nj(n+Np) <p <1 and Ljg = 1/p—afn. Then the operator
T: fs [K (@, 0f(t)d, f & p-atom,

ewtends to be @ bounded linear operator from HP (R™ to h%(R™).

(2.2) TeEmorEM. Let all notation be as in Theorem 2.1 and suppose in
addition that T is o convolution operator (that is, K (s,1) = k(s—1) for
some k € ONo(R™\{0})). Then T maps H? (R") to HY(R™) boundedly.

(2.3) COROLLARY. Let o> 0 (a may be equal to or greater than n). Then
the operator I, maps H? (R™) to HY(RY) boundedly, 0 < p < nja, L/qg = 1/p —
—afn. In case p =nlo, I, maps H?(R™) to BMO(R"™) boundedly. For
P >mnfa, I, maps H? (R™) to A, (R™.

a—np
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(2.21) Remark. A version of 2.2 using the theory of molecules 2]
was announced by M. Taibleson and G. Weiss at the 1978 AMS Summer
Institute on Harmonic Analysis in Williamstown, Magsachusetts.

(2.3.1) Remark. The corollary is immediate from (2.2), (0.1), and (0.2)
and the comments following (0.2). For one writes I, = To .. oLy
(% times, some k > a/n) and bootstraps up to the desired result.

(2.4) Remark. Since H?(R™) =~ L4(R"), 1< q < oo, the theorems are
consistent with the known results stated in Section 0. In the elassical
sefiting of the unit dise, Corollary 2.3 is proved in [12]. In case qg=1,
a version of Corollary 2.3 is proved by 8. Ross Barker [1] using a variant
of the Carleson measures.

(2.5) Remark. The H® spaces are closely linked to the convolutions
(translation structure) on R™ Therefore it is not too surprising that we
must require T' to be “nearly” a convolution operator in order to obtain
results. Condition (2.1.3) is a quantification of this requirement.

(2.6) Remark. We will prove both theorems simultaneously. In this
fashion we can isolate the precise place where it appears to be necessary
(for Theorem 2.2) that 7 be a convolution operator.

(2.7) Remark. Theorems 2.1, 2.2 are false if the domain of the operator
is replaced by #?. Indeed, let n =1, 0 <a< 1, K(s,1) = ls —t1°7Y f(£)
= X[o,5(t). S0 feh?, 0 < p < L. Then Tf(x) ~ |»** for o large. Thus Tf
is not pth power integrable at oo, hence not in B, any 0 < ¢ << 1.

Proof of theorem. Fix =, N, ¢, and p >n/n+N,). To prove
Theorem 2.1 (Theorem 2.2), we need only prove that [[Tale < C(|Ta|ze<0)
when a is a p-atom. Fix ¢ € 00 (R"), suppg < {jo| <1/4}, ¢ > 0, [pds = 1.
By (1.8) we see that in order to prove Theorem 2.1 it is necessary to show
that ||Af.lze< 0, where 4 = Ta. For Theorem 2.2, it is necessary to
prove that |AT|..< .

We may suppose that

suppa < B(0, 8) = {{e R™: [¢|< 6}

and that |a(x)| < 6~2. The proof divides rather naturally into three cases.
The proofs are identical until we come to Case IIL. In this case, in order
to obtain our results, we either must assume that T is a convolution,
operator or that 0 < e < 1.

Case 1. |z| < 804. Then

(2.8) | % A ()] =U(p,(m-—s) f K(s, t)a.(t)dtds1
1ti<s
<[ a—s)yomm® [ |E(s, t)|dtds
s

<o [p(o—s)67"P 8%ds < O (by (2.1.1).
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Case I1. |z| > 809, ¢ < 2|w|. Then
> DiK(s,0)¢|p!) dtds|

181<N()

pexd @) =|[pla—s) [ a){E(s,0)—
1|6

by the orthogonality of p-atoms to all monomials (in ¢) of orde-r not exceed-
ing N(p). Now on the set where the integral does not vanish we have,
since & < 2 |»|, that |s|> |o]/2 > 2]

Moreover, [t|< ¢ on the domain of intcgration. Thus we use the
hypothesis (2.1.2) to estimate the last line by

Gf‘P (—s) §—nie ISI—n—N(p)—l-}-a SN (D) 1L g <0 imlwn-—N(p)—-H-a §ni+nt N(p)+1 .
Case III. |z| > 806, « > 2|z|. Then we write

lpexAd (@) <| [pu(w—s) [ K(s—1, 0)a(t)dtds |-+
+| [ pelo—s) [ 1K (s, ) — K (s—1, 0)]a(t)dtds| = X + ¥ .
Now

X=|f1((s, 0)f<p,(m—s—t)a(t)dtds|

=[5 0 f[p.o—s—t)— 3 (Dp)(0—s)(—1//p!] alt) dras]

181N (p)

since a is orthogonal te all monomials (in ) of degrec not exceeding N (p).
Using Lagrange’s form of the remainder in Taylor’s formula, and re-
calling that p,(u) = ¢ p(ufe), we may majorize the last line by
O [ IE(s, 0 [ & VO ol YO 670 Gt ds
Is1<2e e
Qe ¥~ N@)~1+a §N (D) +n-+1-n/p

<

< Olwl—n—N(P)~l+a SN (D) +nt1-nlp (by (2.1.1)).
It is in order to estimate Y that we need to distinguwish cases. In cage T

is & convolution operator then ¥ = 0 and there is nothing to do. In case T

is mot & convolution operator, we use 4% for the target space, 8o wo restrict &

t0 0 < &< 1. Therefore 806 < |z| < 1/2 and § < 1/160 (otherwise Case TIT

is vacuous). We apply (2.1.1b) and (2.1.3) to estimate

r< [ +

lsl<c2¢

J <0 [ 6t [ g, (n—s) 80 oot nds

ls|>26 lt|<28

< C lm]_n an+a—-mp+06—nlp+No+n < 0 lml——n 5n+a-—n/p _I_O
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To summarize cases IT, ITT, we have the following:
(2.9) In case T'is a convolution operator, suppa < B(0, 8), and |z| > 804,
we have
At (@) < O lo|~ " V@) ~1+e gN@)+n+1-njp

(2.10) In case T is not a convolution operator, suppe < B(0, 4), and
|@] > 804, we have

max {Cx|™" " P L, O |~ N1t SN Fnt1-nipy

Al () < 806 < || <12,

Glmrn—N(p)——l—!-a 6N(l°)+n+l—nlp’ 2] > 1/2’
Now we complete the proof in a few strokes. In case T is & convol-
ution operator we have

[1A* (@) 1de = [ A*(@)do+ [ A+ @y de =8+1T.
1x]<808 z(>808

Now, by (2.8),
8 gsrptenn) g, |

Thus § < €. Likewise, by (2.9),
o
T 08V () +n+1-nlp)g f ,,.(—n-—N(p)—1+a)q,,.n—ldr <0
808

by a simple computation. The integral converges by the choice of N (p)
and ¢. This completes the proof of 2.1.

The computations for 2.2 are mearly identical and we omit them.
Theorems 2.1 and 2.2 are proved.

§3. Concluding remarks. It is known that non-constant coefficient
operators do not preserve HP. This is one of the chief reasons for devel-
oping the local Hardy spaces (see [6]). Conditions (2.1.1) and (2.1.2)
are 3 weak version of the homogeneity of the classical kernels K,. They
cannot be essentially weakened. We do not know whether (2.1.3) can be
relaxed.

In the case of convolution operators our proof can be simplified.
Indeed ome need only show that |[Afzc<C and then invoke the fact
that convolution operators commute with the Riesz transforms (see [10],
[31). However, the proof we presented. in Section 2 is valid, without change,
in more general contexts for which there are no Riesz transforms. That
is to say, there are rather more general circumstances under which the
following assertion holds:

(3.1) A distribution f satisties f* € L? if and only if f has an appropriate
atomic decomposition.
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The assertion (3.1) can be formulated without reference to tra{nsla.tion
structure or to Riesz transforms. For p sufficiently near 1, agsertion (3.1)
holds on a number of “spaces of homogeneous ’nype” (see [2]). We .would
merely like to comment that 3.1 holds, in particular, on the unit })an
in € (for a proof, see [5]) and that the proofs of 2.1 and 2.2 transfer,
without significant change, to that context. .

Fmallirjjﬁwe note that the techniques of this paper can be used to
give some sufficient conditions that an operator f—>[E (2, 8)f(t)dt map
H?(R™) 0 WA (R™), m # 0y q > D.
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Inequalities for product operators
and vector valued ergodic theorems*

by
TAKESHI YOSHIMOTO (Kawagoe, Japan)

Abstract. The basic setting in this consideration is the function class QX5 %)
consisting of all strongly #-measurable X-valued functions f defined on X such that
LIS/ 81 [og* []1£111/£]° is integrable on the set where If1lE > ¢ for every ¢> 0, where
(X, 4, u) is a o-finite measure space and (X, [lI-1!1} is a Banach space. In this setting
some strong type and weak type inequalities (which are indispensable for studying
ergodic theorems) for products of Le-bounded quasi-linear operators of weak type
(1,1) are proved as generalizations of the maximal and the dominated ergodic the-
orems for the ergodic maximal operators. Moreover, we demonstrate that these results
enable us to obtain some vector valued extensions of the ergodic theorems of Dun-
ford-Schwartz type and further generalizations to functions in the class Q2 (X; X).

Local (mean and pointwise) ergodic theorems are also obtained to add to the above
results.

1. Introduction. The ergodic theorems (usually called the mean
ergodic theorem and the pointwise ergodic theorem) had received a con-
siderably general operator-theoretic treatment in the case where the
underlying space is just the Lebesgue space L,=L,X,%, u), where
(X, #, p) is a o-finite measure space. After the lapse of time, especially,
a new approach o the study of pointwise ergodic theorems has been devel-
oped in several recent papers. The contrivance to this is the weak type
inequality powerful and indispensable for investigating the convergence
almost everywhere of operator averages. The first step in this direction
was taken by Fava [4] who extended the so-called “non-commuting
ergodic theorems” of Dunford and Schwartz for positive operators to
functions in a larger class than the space L, by means of a weak type
inequality for products of maximal operators on L,+I, which iy the
clags of all functions of the form f = g% with gel, and heL,. The
method of proving the Fava inequality, as his proof shows, calls for the
Ppositivity of maximal operators. Recently the author [8] has generalized
his inequality to the case of quasi-linear operators without assumption

* Some partial results in this paper were presented at the Meeting of Math-
ematical Society of Japan on October 4, 1979.
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