icm°

STUDYA MATHEMATICA, T, LXXIV (1982)

On L7-differentiability and difference properties of functions*

by
TORD S8JODIN (Umes)

Abstract. A characterization of (ordinary) differentiability for functions f by
propertios of thoir binary differences Bjf due to J. Marcinkiewicz and A. Zygmund is
goneralized to the case of L2-ditferentiability. Our main result is then that a funetion f
is differentiable if and only if it iy L?-differentiable and satisfies certain conditions of
differonce type called 0, for suitable § and s. These conditions are expressed in torms
of the differences B% or the standard differences 4 ﬁf uging either LZ?-norm or supremum
norm. The results have applications to the study of differentiability propertics of
Besrel potentials of LP-functions by the author.

1. Introduction. We study the connection between difference proper-
ties and two types of pointwise differentiability of functions defined
in B". A function f(») is (ordinarily) differentiable at @ = a of order
1> 0 if there is a polynomial

P(r—a) = 2 Op(w—a)®

laj<m
of degree at most m, m <1< m-+1, such that

(1.1) R(2) =f(@)—P(x—a) =o(lx—al), z—>a.

Several other types of differentiability have been studied, cf. [3],
[4] and [6], p. 300. We say that f iz LP-differentiable at » = a of order 1 if
for some P as above we have

@2) (B, [ R(@)Pda)” =o(), r+0,1<p< oo
Be,r) ' :
[4]. It is clear that (1.1) implies (1.2). The purpose of this paper is to find
conditions on the function f which, together with (1.2), are equivalent
to (1.1). ‘
The motivation for thig study is that many spaces of functions in
analysis, for example Sobolev spaces, Besov spaces and Bessel potential
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spaces, are known to have IP-differentials outside some exceptional
sets, ef. [2] and [4]. It is therefore natural to ask under what conditions
functions in such spaces are ordinarily differentiable at certain points.

Results of this type for general functions with applications to Beggel
potentials of IP-functions were obtained by the author in [7]. The method
of proof used Taylor polynomials. Compare also B.-M. Stocke [9] for the
case [ = 1. In the present paper we continue the study of these problems
for general functions with a method of proof based on a type of differences
introduced by J. Marcinkiewicz and A. Zygmund [5].

Let f be a function satistying (1.1); then

A f(a) = - Zaahﬂl—o(lhlj), when  j>1 and j <m—1,
la=F
(1.3) A7f(6) = ¢, - Z’ 0.0 +o(Jnf), when m3> 1,
laf=m

AP f(a) = o(IBf), when m =0,

as h—0, where ¢;, L < j << m, are constants only depending on j and 45 f(a)
are the usual jth differences of f, ¢f. [10], p. 102. J. Marcinkiewicz and
A. Ziygmund [5], Lemma 1, p. 10, proved that (1.1) is equivalent to (1.3)
when 43 f is replaced by a type of binary differences B f (see Section 2 for
definitions) in the case # =1 and I integer. See also R. J. Bagby [13,
where it is shown by an example that (1.3) does not imply (1.1) when ! = 3.
J. Marcinkiewicz and A. Zygmund’s result extends to R* and all I > 0.
We begin our study with an L?-version of their result, where L?-differen-
tiability (sec Section 2 for definitions) iy characterized by certain L?-
properties of Bjf(a), 1< j < m+1L (Theorem 3.1).

We define & property of a function f(x) at # = a, called ¢, which
roughly says that |Bjf(»)| < e'|z—al® when |z—a| and b/l —a| are
small enough. Our main result states that ordinary differentiability is
equivalent to LP-differentiability together with a condition expressed
in terms of the properties 0, 1 < j < m+1 (Theorem 3.2).

2. Notation and definitions.

2.1. We use standard notation for points  in R and functions
f(®). The n-dimensional Lebesgue measure of o measurable sot T is denoted
by |B|. Integration with respect to Lebesgue measure is written i! Sflw)yde.
All functions are Lebesgue measurable. A
) L? ig the usual Lebesgue space with norm || flly 1< p < 0. A multi-
index a = (a4, ay, ..., @,), Where a; are non-negative integers, has length
la] = ay+a;+ ... +a,. The differentiation operator D* is defined by

e =) () (i) v
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We only consider the cases where D®f(x) is independent of the order of
differentiation.

2.2. Polynomials in R" are denoted by P, @ and R. They are always
written in the standard form P(x) = 3 C,-x*, where m >0 is an

laj<m

integer. We put P,(x) = P(z—a), where ¢ € R*, In order to make our
calculations short and clear we define

Wlpes = (B@, M [ 1f@ray)”, 1<p< oo,
Blx,r)

and

llp,z,» = esssup |f(y)], » = oo,

Jy—xl<r

for allw € B and # > 0. This means that ||f], ,,, is the LP-norm of f relative
to a certain absolutely continuous measure u = p,, with total mass one,
only depending on « and r, such that

au(y) = 1B(%, "™ A5 () @y -
We say that
(2.1) f=o0(", r>0, in IP(u,,)

it [|flly,,» = 0(r*), 7—0. When f depends on parameters we write L? (g, (3))
in (2.1) to indicate that the LP-norm is taken with respect to the variable ¥.

2.3. The standard jth order differences A% f(x) defined by
Aif(@) = fle+h)—f(@), = A4Ff(2) = 4,(41) (=),
j=1,2,... and the formula
) .
(2.2) @) = 315+ ({) fto +-1on)

are well known, ¢f. A. F. Timan [10], p. 102. The following type of binary
differences By f(#) were introduced in [5], p. 9. We use the notation from [1].
DrpINrrioN 2.1. Letj and m be positive integers and define T'(j, m) by

T@L,m) =1, T(+1,m)=@m—2%)T(j,m).
DoeriNiTioN 2.2. Define Bjf(»),j =1,2,3,..., by

Bif(#) = f(w+h)—f(2),

(2.3) Bit'f(@) = B, f(z)—2¢ Bif(2),

for any «, h € R" and any function f.
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It is easily seen that for j = 2
j—~1

T(j,m) = [[ e -2,

y=1

and that T'(j, m) = 0 if and only if j > m.

The following clementary properties of Bjf will be frequently used,
see [1] and [B]. Let f(2) = (x —a), |a|] =m = 1. Then

(i) Bif(a) =T(j, m)h",

(ii) BYf(x) = T(m, m)-h*, for all » € R",

(ili) Bif(x) =0, for all # € B® when j > m.

Let P(w) = 2 C, " be a polynomial of degree m >1, then by

laj<m

Taylors formula and (ii) above we get for 1 <j < m
. ) R D*Px)
(2.4) BiP@) = D Tij la) -t e
i<lal<m

For a j times continuously differentiable function f wo also have an
integral formula

1 24y 21 o
@8) Blf@=20 (a, [(a... [ @ 3L Doy,
0 4 tj—1 |a] =y .

analogous to [10], p. 103. It can be proved by induction over j. The proof is
left to the reader. . L

Further properties of the differences Bjif are found in Section 4.
Here we only note that Bjf(z) = 4% f(x) when j = 1 and 2 but not when
j=3.

2.4. We will need the notation of an I?-differential introduced by
A. P. Calderén and A. Zygmund in [4].

DerrvirioN 2.3. Let 1 > 0,1 < p < oo and let f(z) boe a moeasurable
function defined in & neighbourhood of # = @ in R". Then, if there is
a polynomial P(z) = 3 0,2, of degree m < ! such that

lal<m
(2.6) (1B (@, )| f 1f (@) WP(w—a)[de)I/” m=o(r),  rs0
. B(a,r) '

?

we say that f(@) is LP-differentiable ot @ = a of order 1 with L?-differential
Pz —a). '

‘We make the usual modification in (2.6) when P = oo.The LP-differen-
tial is uniquely defined in all cases ([4], p. 172).

2.5. We now define o property of a function f(x) at @ = a expressod
by the behaviour of Bjf(x) when 2 is cloge to a, h] <t @ —a| and % is

On LP.differentiability and difference properties 157

a small positive number. This property is called 7 and is by definition of
supremum type. In Section 5 we give several equivalent definitions of this
property, where Bjf is replaced by 4if and for the supremum norm is
replaced by an LP-norm.

DEFINITION 2.4. Let s > 0 and let j be a positive integer. Liet f(w)
be a function defined in a neighbourhood of # — @ in RB*. Then f has
property O at w = a if for every ¢ > 0 there are 6 > 0 and 0 < t<<min(e, 1)
such that 0 << & —a| < & implies

2.7) sup |Bif(@)| < elw—alf.
Inf<tla—a|
We prove in Lemma 0.1 that the property ¢f is equivalently defined
if,for 1 < p < oo, we replace (2.7) by the following requirement: -
For every &> 0 there are 6> 0 and 0<t< min(e, 1) such that
0< |z —a| << § implies

(2.8) (]B(O, tlo—a) [ !Bﬁf(m)P’dh)I/ﬂ <elr—al.

B0, tlz—al)

We make the nsual modification in (2.8) when p = co. .

Remark. Let f(#) be a polynomial of degree at most m. Then I
has property €4 at # =a for 0 <s<j, when 1<j<m and for all
820, when j>m. The function g(x) = ¢ V®!, & %0, g(0) = 0 has
property 0! at & = 0 for all j > 1 and s > 0.

3. Main results. Our first theorem is an L?-generalization of the
result of J. Marcinkiewicz and A. Zygmund [5] mentioned in the introduc-
tion. Section 3.2 containg our main result, which is a characterization
of ordinary differentiability by LP-differentiability and properties 07 for
1<j<m+1 and suitable s. :

3.1. We give the conditions in Theorem 3.1 in two equivalent forms
(a)-(c) and (d)-(e).

THmOREM 8.1. Let 1 >0, L<<p < oo and let m be the largest integer
loss tham or equal to 1. Let f (&) be « measurable function defined in & neighbour-
hood of @ == a in R*. Then f(z) has an LP-differential

Ple—a) = ) Co—a), 0, =f(a),
laj<m
of order U at a if and only if the following conditions are satisfied:
() (1B, NI [ IBIf(@)=T(,5) 3 C.hPan"® = o),
B(o,r) la]==jf
Jor j=1,7<m—1,
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®)  (BO,A [ |BEf@)=Tm,m) ) I = ofr),

B(0,7) laj=m
for m>1,

(c) (lB(O,r)I"' f|B§{‘“f(a)]1’dh)”-”=o(r’), as  r—>0.

B(0,7)

We exclude (c) when 1> 1

Theorem 3.1 holds for ordinary differentiability with all L*-norms
replaced by supremum norms. See [5] for the case # =1 and ! integer.
The general R™case is proved analogously.

We refer to this version of Theorem 3.1 ag the case of ordinary dif-
ferentiability (or the supremum norm case).

Remark. Note that the conditions (a) and (b) are ompty when
0< 1< 2 and 0 <l< 1, respectively. It can be proved that (b) implies (c)
for alll > 0. The proof uses (2.3) and is left to the reader.

The conditions (a)-(c) in Theorem 3.1 can be replaced by the following
set of conditions:

(@)
(1B, I [ IBif(@) =T, ) D Cali"dn'r
(3.1) - B, lal=j
= o(r’), r~>0, when L<j<gm,
()
(32)  (IBO,n™ [ IBpTf(@)Pdh)? =o(s"), as r-0.

B(0,7)

In view of the remark following Theorem 3.1 it is clear that (a)—~(c) implies
(d)—(e). We now prove the converse.

Assume that (d) and (e) hold. It only remains to prove (b) in the
case | > m = 1. Consider the formula

(3.3) Brfla) = sz(’ DB f(a) 42N B v (@),

=1

which is obtained by repeated use of (2.3). We then get

34)  Brf(a)—T(m,m) Y 0.
fa|=m
N

= 2B @) 2 (Bf) =L m, m) ) Cu(h2Y.

= letl =1

©

icm
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Taking LP-norm over B(0, r) in the variable % and using the notation from
Section 2.2, we get by a simple change of variables

|Brf(@) —T(m,m) 3 0,1

lap=m

0,0,r

2

.l — -
< 2, 2N B (a) 0,

Foms1
T (my m) 2 ¢ h“PO,rNi

where 7y, = ¢:27%, Letting N—oco and using (d) we get for any > 0

i

+2m By f(a) -

(3.5) ]

B f(a) —T{m, m) Z‘ o, <

2 gm(k=1) ”‘B;:H']f(a) “p,o,rlz .

It now follows from (3.5) and (e) as in [1] that (b) holds. This completes
the proof that (a)—(c) in Theorem 3.1 can be replaced by (d)-(e). The same
conclusion holds in the case of ordinary differentiability when we take
supremum norm in (a)—(e).

3.2. We are now in a position to state our main result, Recall the
property 07 defined in Section 2.5.

Tunorem 3.2. Let 1> 0 and lot m be the largest integer < 1. Let f(x)
be a function defined in o neighbowrhood of # = a in R". Then f(a) is ordi-
narily differentiable ot @ = & of order 1 if and only if f is L?-differentiable
atx = o of order T with an L*-differential whose constant term is f(a) and f has
property Ol at o = a,1 < j < m+1, where

(3.6) s = j, when jZ=1 and j<m
(3.7 B i, when j=m+1,

Remark. It will be clear from the proof of Theorem 3.2 that con-
ditions (3.6) and (3.7) eorrespond to (3.1) and (3.2), respectively. Note that
{3.6) iy empty when 0<Cl< 1.

The proof of Theorem 3.2 makes use of the characterization of I¥-
differentianbility given by Theorem 3.1 (conditions (3.1) and (3.2)) and its
analogous version for ordinary differentiability described in Seetion 3.1.

Before wo ¢an go into the details of the proof we need more information
about the differenees BPf. The proof of Theorem 3.2 is given in Section 6.

4. Some lemmas on the differences BJ'f and APf. We begin this
section with o simple lemma about BLf. Tho more technical Lemma 4.2
seemis to be new. It will be used in So(,tlon b (proving Lemma 5.1) and in
the proof of Theorem 3.2. The sccond part of this section studies the
relationship between the ditferences BTf and AP
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4.1. Lemma 4.1 is well known for the differences A3'f, ¢f. [10],
p. 102. The present case (except for (4.3)) was proved in [5], p. 9.
LmmuA 4.1. Let m be a positive integer. Then there are unique integers
o; = a(i,m), 0<e<m~—1, and p =p(m), only depending on i and
m, such that
m—1
(4.1) Bpf(a) = D) o,f(w-+2°h) -+ ff(x),
7=30
for all ¢, h e R™ and all functions f.
Lurther,
m=—1
(4.2) D wtp =9,
=0

(43)  sgna(i,m)=(—1*",  sgnpim) = (=1, and @, =1.

Proof of Lemma 4.1. The formulas (4.1) and (4.2) were proved in [5].

Combining (4.1) with (2.3) we get the relations
a(0,m+1) = —2".a(0, m),
i, m+1) =a(i—1, m) —2™a(i,m), 1<i<m—1,
a(m,m+1) = a(m—1, m),
Blm+1) = (1~2")f(m),
and (0,1) =1, §(1) = —1, for m > 1. The proof of (4.3) is now finished
by an induction argument. We omit the details.

Remark. Lemma 4.1 implies that B*f (z) = A7 f(#) only whenm = 1
and 2.

-Our next lemma is of & more technical nature. It gives a connection
between B'f(#) and BPf(x) for arbitrary kb and %. The terms on the right
side of (4.4) are linear combinations of the values of [ at certain points
in R*. These points make up a simple geometrical figure (a triangle sub-
divided by a set of parallel lines and a set of lines through & corner of the
triangle).

Levma 4.2, Lot m be a positive integer. There are WNAQUG  NON-R610
integers uy, 0 <i<m—1,0,0 <i<m—2 and = such that

m—1

(44)  BRf(@) = D) Bl o 200)+

=0
m—=2

+ 2 OBy, st1mg,_py T (@) +2Byf (),

Jor all 2,0, %t cR® and all functions f.
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(The middle term on the right-hand side is emeluded when m = 1.) In
Sact wy= a(iy,m), v, = —a(i, m) and z = —B(m), the numbers defined in
Lemma 4.1. ‘

Proot of Lemma 4.2, The case m = 1 iy easily settled. We let
m 2 2 and b % k. Wo shall prove that ,, v, and # are uniquely determined
by the requirement that (4.4) holds for all f. Inserting (4.1) into (4.4),
(4.4) becomes u linear equation in the values of f at (m(m+1)+1) ditferent
points with coetficients depending on Uiy Vgs &y ap-= a(t, m) and B = B(m).
Thus (4.4) holds for all functions f if and ouly if all these coefficients are
zero. Thiy gives the following system of linear equations in the unknowns
gy Dy AT 22

M2
(4.5) B Y v-Bz =,

7=
(4'6) Uy == Uy Gy gy 0<d sm _1y
(4.7) Bruyt-zrap =0, 0<i<m—-1,

(4.8) Uty k0 =0, 05i<m—1, and O0<j<<m—2.

Sinee o, and f are non-zero by Lemma 4.1, we find that (4.6)—(4.8) has the
unique solution stated in the lemma. These values of %; and. v; satisfies (4.5)
because of (4.2). Whoen % =k, (4.4) reduces to an identity. The proof
of Lemma 4.2 is now complete.

We have the following counterpart of Lemma 4.2 for the ditferences
ARy,

Limmara 4.3, Lot m be o positive integer; then it holds that

nh

L
A1) = 30" (7)o @40 = D=1 (") A2, (@),

Tl Ju=1

Jor allwy by % & R™ and all functions f.

The proot of Lemma 4.3 iy straightforward using formula (2.2). Wo
omit the details.

4.2. Wo remurked in Seetion 4.1 that BPf(x) and Af(w) are not
identical when m 32 8. In gpite of this fact we can prove that either of
these two ditferences can be expressed in terms of the other, as described by
our next two lemmas. A variant of Lemma 4.4 is proved in [5], p. 11
(except for the uniquencss of the coefficients w(i, m)).

Lumna 4.4, Bor every positive imteger m, there are umique integers
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u(i,m), 0 <i< N, N, = 2™ —m, such that
NWL
Brf(@) = ) u(i, m)-A2f(w+3-h),
=0
Jor all @, h € RB" and all functions f.
Proof of Lemma 4.4. The cases m =1 and m = 2 are easily setitled
by the remark following Lemma 4.1, since §N; = N, = 0. .
We prove the existence of the integers (i, m) by induction over m.
Assume that there exist integers w (i, m), 0 <4< N, such that (4.9)
holds for all #, h and f. Then by (2.3) and the induction hypothesis we get

Bp+if(@) = B3 f(a) — 2™ Bf (@)

(4.9)

N, 7% Jj=1
=Y u(i,m )] Z‘(’”) AV (54 24h 4 Toh) +
i=0 J=1 k=0 J
Np
+ 12 u(d, m) - 2™ (47 f (2 2h) — A3 f (w4 ih)
=(
=I+1I,
where we have used the formula
m f—1
A5f(@) ~2maf(w) = 31 37 (M) dyifa k),
Jm=) k=0
¢.f. [10], p. 105. In the term XI we writo
26~1 -
A7f(@-+20h) —A2f (@ +ih) = ' APV (w0 jh).
It is now clear that a

Non
Brtif(a) = 3 u(i, m) Ap+if(w+ih)
=0
where u(i,m)’ are imtegers and N <2
2N, 4 (m—~1) = N,.,. This
completes the proof of tt st "the intog ; i<
e rai 1,P 1e existence of the integers w(i, m), 0 < ¢ < N,
In order to prove uniquencss of the ; s u(d '
TONS ho integers w E R i
(4.9), we assume that o () 0 S N

N’m
D) Y A7F (@) == 0,

(4.10)
i=0
holds for all #, h € R* and all functions f. Now (4.10) is equivalent to
Nm m
70 G R L TR
g%% (J) (=1) f(»??-l—('wl-g)h) = ()

icm
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which holds for all functions f if and only if

3 ve(f) (-0,

ik

(4.11)

for every 0 < %< 2™ '. It is however easy to prove that (4.11) implies
y; = 0,0 i< N,. We leave the details to the reader. This completes
the proof of Lemma 4.4.

TmvMA 4.5. For every positive integer m, there are real numbers ¢(i, j)
= ¢(t, §, m) such that

(4.12) At (@) = D] 6(s, §) B f(w-+jh)
A

holds for all x, h € R™ and all functions f, where
A={({,§);i=1,j=0 and 2™ +5< 2™ m}.

Remark. Note that ¢ <m and j < 2™ '-(m—1), where (i,j)e 4.

Proof of Lemma 4.5. The set A contains all pairs (i,j) for which
1<i<m and 0<j< 2™ (m—i). Hence we have CardA = 2™ x
x m(m—1)-+m. Let b 7= 0 and define

B = {x-+k-h; & integer and 0 << m 2"},

Then the left hand side of (4.12) is a linear combination of the values of f
at the points in B with known coefficients given by (2.2). The right hand
side of (4.12) is by Lemma 4.1 a linear combination of the values of f at the
points of B whose coefficients are linear forms in the variables ¢(i, B
Now assume that (4.12) holds for all functions f. Then (4.12) is equivalent
to o system L of linear equations in the variables ¢(%,j). The number of
variables is Card 4. and the number of equations is Card B. Conversely, any
golution ¢(, j), (¢,4) € 4, of the system I implies that (4.12) holds for all
functions f. It therefore suffices to prove that the system L has a solution.
Lomma 4.5 cloazly holds when m = 1 and m = 2 since then Bp'f = a%f.
When w8 wo have Cardd =2"*-m(m—1)+m> 2m=lom -1
= Card . Now it follows from the general theory of systems of linear
equations that L has a (not necessarily unique) solution. This completes
the proot of Lemma 4.5.

5. Some lemmas on property 0} . In this section we prove that property
¢! can bo cquivalently defined with the supremum norm replaced by an
LP-norm, 1 < p < oo andfor the differences Bi freplaced by the differences
A5 f. This is done in a series of lemmas. In Section 5.1 we show how to pass
from an LP-norm to supremum norm and in Section 5.2 we prove that the
ditferences Bif and A% f arc equivalent in a certain sense,
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5.1. We start with the case of the differences B f.
Levma 5.1 Let 820 1< p<< o0 and let § be a positive inleger.

Let f(z) be a function defined in a neighbourhood of » = a in R™. Then
S () has property Cf at 2 = a if and only if (2.8) holds.

Proof of Lemma 5.1. It is evident that property 0} implies (2.8).
Assume that (2.8) holds, p = 1 and that ¢is an arbitrary positive number.
Choose & and ¢ according o (2.8). We now use Lemma 4.2 to split B, f(x)
into & linear combination of the following three types of terms:

(61) B @), Blorgpy f@+2D)  and B ().
Considering (5.1) together with (2.7) we are led to define the following sets
By = {k; 2" =R <t lw—a+2Rf}, 0<i<<j—1,

By ={k; |2k —h)| < t-lp—al}, 0<i<j—2,
G ={k; k<t |z—al}.

Let H be the intersection of all sots By, I, and G. We are going to prove
that

(5.2) all sets By, F'; and ¢ have measure < ¢(f, n)- |H],

provided [k < 27194 |z —qa| and 0 < ¢ < 1. First we note that ull sets By,
F,and @ have measure less than ¢(j,m)-(t-|lw—al)™. The proof of (5.2) is
completed by showing that

(5.3) {k; k| < 27t jg—al} = H.

The proof of (5.3) is straightforward and is omitted. This proves (5.2).
Now by Lemma 4.2 we get that

IBif (@)l = [H|™* [|Bif(x)|dk
H

is majorized by ¢(f, n) times s sum of terms of the three types

(5.4) 16 Gf \Bif («)|dk,

(5.5) |E1.|—1~Ef Blisioig_yf(@+2R) 1Ak, 0 <é<j1,

and i

(5.6) w-l-l f 1B] s stimsgeny (@) Ao, 0<igj—2.
&1

By our assumptions and a simple change of variables in (5.3) and (6.6),
we find that there is 6 > 0 such that (6.4), (5.5) and (5.6) are less than
¢(J; ) ¢*l@—al’, provided 0 < |z —a| < §/2 and |hl< 2719 4 |@ —a). Thig
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proves that f(») has property ¢ at o — a4 when P = 1. The case
p > 1 now follows from Hblders inequality. This completes the proof of
Lemma 5.1.

Our next lemma and its proof are the analogue of Liemma 5.1 with
Bif replaced by A f and using Lemma 4.3 instead of Lemma 4.2 in the
proof. The proof iy therefore omitted.

Lmvma 6.2, Let 8> 0,1<p<< 0o and let J be a positive integer.
Let f(w) be a function defined in & neighbourhood of # = a in R™. Then the
Jollowing two properties of f are equivalent:

() f satisfios Definition 2.4 with Biif replaced by 41,

(b) f satisfies (2.8) with BLf replaced by Alf.

5.2. Here wo prove that property ¢! can be equivalently defined
with the difference Bjf replaced by 44f.

Levma 5.3. Let s > 0 and let § be a positive integer. Let f () be a function
defined in a neighbourhood of @ = a in B". Then I has property 07 at a if
and only if (2.7) holds with B} f replaced by Aif.

Proof of Lemma 5.3. First suppose that J has property €7 at a. Let ¢
be an arbitrary positive mumber and choose 8 > 0 and 0 < § < min (e, 1)
according to (2.7). By Lemma 4.5 we have

(5.7) A f(@) = Dle(i, k) "Bl @+ k217 ).

)

Eagy caleulations show that for all # and & satisfying 0 < o —al< 16
and [b] < min(1/2§, (1/§)-27%)- |z —al, (5.7) implies that

1431 (@) < 2 le(é, B)] & lo+R-2 T h—af" <2° 3lo(i, k)| e lo—al’.
A o

Thig proves that (2.7) holds with Bif replaced by 4if. The converse is
proved analogously and the proof is therefore omitted.

5.3. Lemmas 5.1-5.8 now give the following result.

LoMmA 5.4. Let j be a positive integer and Tet 8= 0. Then property Cf
18 equivalently defined when the supremum norm in (2.7) is replaced by an
LP-novm, 1< p < oo, (as in (2.8)) andjor the difference BLf is replaced by
435

Lemma 5.4 implies that Theorem 3.2 can be formulated using the
differences 4}f instead of Bjf (in the definition of property ¢f) although
our proof of Theorem 3.2 requires the differences Bif (via Theorem 3.1).
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Roughly speaking, Lemma 5.4 means that the differences Blf and
A f are equivalent in the sense of property O] expressed in supremum form
(Definition 2.4) or in Lf-form ((2.8)).

6. Proof of Theorems 3.1 and 3.2.

6.1. Proof of Theorem 3.1. Theorem 3.1 was proved in the case of
ordinary differentiability, where n = 1 and 7 are integers in [0], p. 10.
See also [1]. The same method of proof can be used in our LP-case and
therefore the details are left to the reader.

6.2. Proof of Theorcm 3.2. The nccessity part of Theorem 3.2 iy
obvious in view of the remark following Definition 2.4. We omit the
details. The idea of proof of the sufficiency part of the theorem is to wuse
the characterizations of L*-differentiability and ordinary differentiability
(conditions (3.1) and (3.2)) given by the two versions of Theorem 3.1
described in Section 3.1.

Let P(x—a) = 3 C,(z—a)® be the LP-differential of f(x) at & = a.

le|<m

Lemma 4.2 gives for 1<<j<m

-1 ( wf(@) =14, ) |n§1 O,,h") m:;jafBgH-l—i(k—h)f(a-1*2”70) -
- 2: “f(BL-er—m_,,)f (@) —T(j, ) If‘;jo (B4-27 (e — 1)) ) +
+ T3, 4) 2 G D7 O — (b 274 —m))°)
= A
=I+II+111.

Let s > 0 and choose 6 > 0 and 0 << ¢< min(e, 1) according to the defi-
nition of property ¢j. Then for any fixed &, |h| < 27§, we get

sup I ] (27 ]y e 200 [Rd = o(f, n)-s- b)Y,
Jk—~h|=t|Ri gl: é: ’
and
sup |III| < e(f, )| T (5, )]+ " lal= > 10al e b}
1k—h|<t|h| = |a.,/
= o(jym): D10, slh).
Joe| =g

We take IP-norm in (6.1) w.x.b. % over |b—h|<#|h|. Then we make
the change of variables h~2"1(k —h) = 2 in each term in II and note

icm°
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that |2| <
(6:2)  181-|Bif(a)

(1 41%)-|h|. This yields the estimate

=T(3,5) )} Ot

la|=7

< g Z la ] (L1 UBEF(a) =T (3, 5) > Cutll,0,qtym +

=0 laf=j
oGy ) {1+ 37 10a) o b,
lel=jF
for every fixed h, |h| < 2'7-3, where we have used the notation from
Section 2.2. The LP-norm in the first term in (6.2) is by assumption o (|}’
ag h—0.
It now follows that for 1< j << m

Bif(a)—=T(3,5) D) Cu-l® = o(Ihf),
lal=§
as h—0.
The case § = m+1 is treated analogously. We leave the details to
the reader. The proof of Theorem 3.2 is now finished by an application
of the supremum norm case of Theorem 3.1.

7. A counterexample.

R. J. Bagby [1] considered the function f(x —1y+%.23, when
2 = 427-3% and f = 0 elsewherc. Then 4§f(0 —o(lh\’), j=1,2,8
(in fact, 43f(0) = but f is not differentiable of order 3 at & = 0. This
proves tha‘t Theorem 3.1 is false for ordinary differentiability with Bif
replaced by 4if when # =1 and 1 = 3.

It remains an open question if there is an analogous counter-example
for the L?-case of Theorem 3.1.

Bagby’s example indicates that the differences Bjf(a) are better
adopted than 4}f(a) to describe differ entiability of f(#) at # = a. However
it do es not rule out that there is o formulmtxon of Theorem 3.1 only using
the differences 43f(a) (and not BLf(a)

Acknowledgement. I would like to thank Professor R. J. Bagby for
pointing out an error in my attempt to extend his example in Section 7
to the L*-case.
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On Morrey-Besov inequalities

by
DAVID R. ADAMS and JOHN L. LEWIS (Lexington, Kentucky)

Abstract. The authors consider functions  which satisfy a local integrability
condition of Morrey-Besov type. They prove that « is locally in a certain Lorentz
space. Examples are given to show this result is best possible.

1. Introduction. Let # be a point in » dimensional Buclidean spaco
R", || the Fuclidean norm of «, dv Lebesgue measure on R", and |E| the
Lebesgue measure of a measurable set B < R*. If @, is a cube in R", let
L2(Qy); 1 < p< oo, denote the usual Lebesgue space of functions that
are pth power integrable on @,. Then in [8], Ross shows that any function
e LP(Q,) which satisfies

(1) [ lu(@ +4) —u(@)Pdo < AP 12 1QHm,
Q

whenever @ and Q41 = {r+1: x €@} are parallel subcubes of Q,, also
belongs to L"(Q,) for all r < p* = Ap/(A—ap). Here 1< p< Afa, 0<
<L,0< i<, and A4 is a positive constant independent of ¢ € R® and Q.
(1.1) can Dbe viewed as a mixture of the usual Nikol’skii condition ([6],
P-153) when 2 = 7, and a Morrey type condition involving the ath differen-
ce quotient. When A = n, it is known [4], that (1.1) implies u & weak-
I (@), whereas when o = 1, it is known [1] that condition (1.1) implies
% € L7 (Q,). Thus we are motivated to determine, in all cases, the “best
integrability class” for functions satisfying (1.1) as well ag for a related
Morrey-Besov condition, (1.2) below. To be more specific, let L(a, b),
I€a< 00,1l b o0, denoto the Lorentz space of measurable fune-
tions f on R™ with

Wi = ([ [5+l{e: 1£(@)] > )| e]s™ dspP < oo

Note that L{a,a) = L*R"), L{a, o) = weak-L*(R"), and IL(a,b,)
< L(a, by) when b, < b,. Given a function u, let 4,u () = u(z4-t) —u(w),
whenever o and -t arc in the domain of definition of w. Inductively,
define Afu for %> 2, u positive integer, by dfw = 4,(4¥ u). We then
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