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Random ergodic theorems for sub-Markovian operators
by
JANUSZ WOS (Wroctaw)

Abstract. Wo prove a random ergodic theorem for positive weak*-continuous
contractions on L*. This theorem generalizes a random ergodic theorem of Ryll-Nar-
dzewski [15] and some results of Nawrotzki [117.

In the classical random ergodic theory the average behavior of measure-
preserving transformations chosen at random from a set @ is studicd.
One of the problems is the structure of the limit funetion. This problem
was considered by Kakutani [8], Ryll-Nardzewski [15] and Gladysz
[6], [7]; the operator-theoretical generalizations were given by Cairoli [2].
The cage of a finite phase space was considered by Nawrotzki [11].

In [2] Cairoli obtained an extension of Ryll-Nardzewski random
ergodic theorem by considering a measurable family of positive contractions
on I; having a strictly positive invariant function. The aim of the present
paper is to give a natural extension of Ryll-Nardzewski theorem [15] and
of the main results of Nawrotzki [11] by considering a measurable family
P = {P: se8} of sub-Markovian operators, - i.e. positive weak*-con-
tinuous contractions on .

Section 1 is preliminary. Having a measurable family # = {P,: s e 8}
of sub-Markovian operators we define a sub-Markovian operator U (which
corresponds to the classical skew produect transformation). Section 2 is
devoted to the study of invariant functions and measures for the operatorU.
In Theorem 2.4 it is proved that the U-invariant functions do not depend
ossentially on random parameters on the conservative part of U. The
analogous result for the U-invariant measures is given in Theorem 2.6.
The method of proof of this theorem can also be applied to non-positive
operators (sco [17]). In Section 3 we state a random version of the indi-
vidual and strong ergodie theorems togother with the identification of the
limit function (Theorems 3.4 and 3.6). Finally, Section 4 contains an
cxample connected with Theorem 3.6. It is shown that given a two-gided
Bernoulli shift there exists an integrable function S with the property
that the ergodic averages conditioned on the future are divergent almost
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everywhere. We note that a similar example was exhibited by Burkholder
in [1] but it is not sufficient for our purposes.

The results in Sections 1-3 form & part of author’s doctoral thesis
written under the supervision of Professor S. Gladysz. The author wishes
to thank Professor 8. Gladysz and Professor C. Ryll-Nardzewski for thejr
helpful comments and stimulating conversations concerning the contents
of this paper.

1. Preliminaries. Let (X, o, u) Do a o-finite measure space and lot
(8, @, 2) be a probability space. By (8% #*, 1) we denote a countablo
product of (8, &, 2): 8% =8 X8X e, F' = BXByX oy M= 4 x
XA X ooy Where 8; =8, &, = B, A, = 1 fori=1,2,... By & we shall
denote the shift transformation on 8% ie. (8, 8, ...)& = (8, 8gy +.0) for
each (sy, 8y, ...) € 8%

In this paper only real measurable functions are considered and they
are denoted by f, g, . For each 1 <p < oo by Ly(X, o, p) = L, (u) wo
denote the usual Banach spaces and L} (x) denotes o cone consisting of all
nonnegative elements from L,(u). All inequalities and limit operations
appearing in this paper are understood almost everywhere, wnless stated
otherwise. Furthermore, we write lim f, =f on 4 if lim f, (@) = f(z) for

N 00

N0
u-almost all xe 4 < X.

The analogous notation is applied to the measure space (X X8,
o X B, ux1") and to functions defined on X x 8*. If we wish to regard
f(w; ") a8 a function of # defined on X for an 8* arbitrary fixed in 8",
we shall write fi. () for f(w; s*).

Now, let 2 ={P,: se 8} be a family of sub-Markovian operators
on L, (p), 1.e. for each s € § P, is a linear operator on Ly (1) (Wwhose value on
Je L (u) is denoted by P,f) with the following properties:

(i) P;i<1lon X,
(i) if felLZ(u), then P,f e LE(u),
(i) if im1, =0 on X (4, ), then limP,,lA" =: 0 on X,
N0 L)

The conditions (i)-(iii) are equivalent to the statement that oach
operator P, e? is a positive weak*-continuous contraction on Ly (u).
Therefore, each operator P, e # is an adjoint to a Ppositiva contraction on

Ly(u), which is denoted by the same symbol P,, but in written to the
right of its variable. So,

[1Pe-gip = [f-P,gap
X X

for feLy(u), geLy(u),

L.1. DEFINITTON. The family # = {P,: s e 8} of sub-Markovian oper-
ators on L (u) is called measurable if for every 4 e s thero exists a of X #-
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measurable function g(@, s) and a seb 8 € # with A(8') = 1 such that for
overy 8 € 8 Pyl (#) = gi (@) on X. .

Now, throughout the paper we fix a triple consisting of a o-tinite
measure space (X, &, u), & probability space (8, 4, A) and & measurable
fumily # = {Py: 8 € 8} of sub-Maxkovian operdtors on L, (u).

1.2. Lomma. For every fe L, (uxi*) there ewists a ge L (uxi*)
and a set 8" & #* with A*(8*') = 1| such that for each 8* = (s, s;,...) e 8%

(1) (I)nlf(az,a:,,... ))(-’X»’) = gy () on X.
The funetion g(a; &*) is determined uniquely mod (u X A*).

Proof. Without loss of generality we may assume that the measure
u ig tinite. First, let us consider a function f e T (1 x A*) of the form

1
AP I ol ¥
(2) 1@; ) = ,Z @y, (@) 153 (8%),
where Ay, ..., 4; [By, ..., B,] is a partition of X [§*] into mutually
disjoint s7-measurable [#*-measurable] sets and ay; are sgome real numbers.
By 1.1 there exist functions g;(x; 8) € L, (4 X4;) and a set S; € 4, with
4 (87) == L such that for every s, e §;

(gt)(al) () m'P011A¢(w) on X

(i #= 1, .0y k). Sinco for each §* = (8, 8, ...) € 8; X8, X8 X ..., we have
Ie

(Pofan)®) = 3 ayPy 1, (@)1g(s* ),
1,jm=1
we infer that the function

k
@38 = 3 ay0:(@; 8)15(s"8)
dygeal
satisties (1). .
Now, for an arbitrary function f e L (u x A7) there e}ilsts @ se(pienee
fulm; 8" of functions of the form (2) such that lim f,(@; 6*) = f(x; s*) on
. N>R N
X x 8" and that |f,(2; ") < M < oo on X x8*. Therefore there exists
aset 8% @ @ with A*(8") == 1 such that for every 8* e 8%
L (fy eey () == frgop(®)  om X
and that e
(3) (fep@ <M on X.

Hence, for each 8* € 8 Um(f, ) =Sy In the weak®-topology of
N300
L, (1) and, by the weak®-continuity of P,,
(4) NP, (fulaey = Po iy I the weak*-topology of L, (u)-
Fhwr 0O f
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As we have seen, there exist g,(;s )eL (#x1*) and a*jsetj 8 e g*
with A*(8*’) =1 such that for each §* =(s;,8,...)e8"" and each
n=1,2,..
(5> (Psl(fn s‘é)) gn) s‘E)( ) on X.
Moreover, since each operator P, € # is sub-Markovian, the inequality (3)
implies
X x8*.

Now, we shall prove that the sequence g, is fundamental in the
wealk™*-topology of L, (x xl*). In view of (6) it iy sufficient to check that

for every function h(x;s*) e Ly (u xA*) of the form h(w; 8*) = hy(@)hy(s*)
lim [ [ hg,d(uxA*) exists. It follows from (4) and (5) that for each s* & §*

00 X X 8*
lim [hy()g,(w; 8*) (@)
n—«bDDX

exists and, by (6), that
LﬁwmmmmeMwa

(6) g, (@5 8 < M on

Therefore lim f f kg, d(p x 1) exists by the Lebesgue dominated conver
n—00 XX

gence theorem. Smce the weak*-fundamental sequences are weak*-conver-
gent, there exists a function g(; 8*) € L ,(u X A*) such that hmg,, =g in

the weak™-topology of L, (u x 1*). It follows from (4) and (5) thwt g satisfies
(1), which proves the lemma.
Now, let f e L, (4 xA*) and let g be a function determined hy Lemma

1.2. We define a linear operator U on L (u xA*) by

Uf =g.
It is easy to check that U is a sub-Markovian operator om L, (uX1").
In particular, U is an adjoint to some positive contraction on I, (u x 4%,

which will be denoted by the same letter U, but will be written to the
right of its variable. Hence

ffo ga(ux ) -

for feL,(ux"), geLy(uxiy.
The following lemma, which is easy to prove, desceribes the action. of
the iterates of the operator U.
*13 Lmvwa. Let fe L (u xl*) Then there ewists a set S* e #* with
(8% = 1 such that for every s* = (81 83, ...) € 8% and every m == 1,2, ...

(U)o (@) =Py, Py oo Py figr 00 n(@) 0n X

= [ [ Ugd(uxa®)

Xxg*
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Now, for every n =0,1,2,... let E% denotes a sub-Markovian
operator on L (ux 4% thh sends to every funection fe L, (x xA*) the
conditional oxpcctatwn Fnf with respect to the sub-o-field

G = A XByX oo X B, x{B, 8,1} {0, S} X ...
We have
1.4. Loums U™ T = Bvrm U™ for every m,m = 0,1, 2,

Proof. Tt is sufficient to check that UE*rf = E¥n+17f f.or each
ﬁmctmn f D581y Byy oue) = Ly (@)1p (8) ... 15, (s;), where A e,B e,
(% = ) For such. f we have

La( nln, () ”l (B)) on

Jmn4l

hence there exists a set 8* e #* with 1*(8*) = 1 such that for each s*
= (8, 8, ...) € &

( UEV"’f)(s*)(

(Bnf)(@; 8%) == X %8,

Py 1w nl,}‘ (8;41) nAB,) on X.

Fentl

On the other hand, there exists a set §*' e

#* with 2*(8"") =1
such that for each * == (3, 8;,...) € §*

k
(Uf)an(®@) = Pyly(@) [[1n,0842) on X.

Feal
Thereforoe :
Y k
(B2 U f)goy(@) == Py Ly(0) [ [ 15,080 [] 4B) on X,
=] F=n-1

which proves the lemma.

We say that a function f defined on X x 8* does not depend essentially
on parameters s* if f is oquivalent mod(u xA*) to some %o-measurable
function.

Tor the sake of convenience, we will denote by T' the opemtor E“’o [
throughout the remaining part of the paper.

1.0, LimmsA. If @ function f e Iy(uxA*) does not depend essentially
on parametors *, thon the functions fU and fT also do mot depend essentially
on parameters 8* and fU = fT.

Proof. A function f does not depend essentially on parameters
8%, if fH® = f. Tt fI¥ = f, then fB*i =f and, by Lemma 1.4, fUE%
= fHU = fU. Moveover, i fB% =f, then fU =fB%U = (T, which
completoy the proof.

In the sequel the restriction of the operator T' to I (u) will be denoted
by the same letter 7. ‘ :
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1.6. Remark. All the operators defined up to now and aeting on
L, () or Iy (u % 1*) as well as their adjoints acting on Ly (u) or L, (ux2*),
respectively, can be uniquely extended to the operators acting on arhitrary
nonnegative functions defined on X or X x 8%, respectively (sce o.q. 5],
p. 4). These extensions will be denoted by the same lefters and, as it is
easily seen, the Lemmas 1.3, 1.4 and 1.5 are still valid for them.

1.7. Exavpre. Let @ = {p,: ¢ € 8} be & family of transformations
@1 X—>X and suppose that @ is measurable, i.e. the mapping (v, §)~»ap,
is & X #-/-measurable. Then the formula

(@3 ‘9*)?7* = (mqjsl; 8y 83y +01)

defines a measurable transformation ¢* on (X x8*, & X #*). Moreover, ¢*
preserves the measure u x2* if and only if for every A e o

[ wdp;?)aa(s) = p(4).
8

It every transformation ¢, € € is non-gingular, then the family & deter-
mines a measurable family of sub-Markovian operators & == {P,: s e S}
by thg formula

(Pof) (@) =flag) for felLyg(u).

The operator T is now given by (Uf)(@; 8*) = f((#; 8*)¢") and its iterates by

(U"f)(w; 5" == J (@s, @y, o Pop 3 Spry wee)e

2. The comservative part and invariant funetions. Let f, € L,(n)
be a function such that {f, > 0} = X and let

©o
Op ={o e Xz 3 (4,1%) (@) = oo}
Km0
The set 0 does not depend on the choice of f, € L (x) with the property
{fo>0} = X and is called the conservative part of the sub-Markovian
operator T' (see [5], Ch. IT, 2.2). The set Dy = X \Opis called the dissipative
part of T. The funetion f, considered as a function of the variables (v; s*)
has the following properties: f, & Ly (1 X 2*) and {f, > 0} = X x§*. There-
fore the set ‘

Oy = {(w; ™ e X x8% ﬁ(foU")(m;s*) - cx:}

Femal

is the conservative part of the sub-Markovian operator U. By Lemma 1.5
we have f,I" = f, U™ for n = 0,1, 2, ... Henco

2.1. TaEOREM., Oy = O, x8* on X x§*.

A funct.ion F(f =0 or felL(u) defined on X is called harmonic on
a set € e it Tf = f on 0. We say that a funetion [ i8 P-invariant on 0O it

icm°

Random ergodic theorems 197
thore exists a set 8 & 2 with A(8') == 1 such that for cach s e §' P,f = fon
(. Denoto
Ip = {Aded: Ac Oy and Tl =1, on Oy
and
Iy = {ded: A Op and 1, iy P-invariant on Op}.

2.2. LmmMA. Hach function f (f=0 or f e L (u)) defined on X and
harmonic on Oy i8 P-invariant on Op. In portioular, £ = S ,.

Troof. By ([13], Proposition V.5.2) if 0 < f < oo, then the equality
Tf == f on Op i oquivalent to the S -measurability of f on Cp. Moreover,
proceeding ag in tho proof of Theorem A. in ([5], Ch. ILT), we observe that
the assumption of the finiteness of f is not necessary here. Therefore it is
sulficient to prove the lemma for the functions of the form f =1,
where 4 e«

Lot 'L, = 1, on Cy. By Theorem

BT, =1,

2.1. this means that
Cp.

Multiplying the above cquality by the #,-measurable function 1.lcy
(4° = XNA) wo obbain

EF’O( UJ,A '1_4610[]) ==

on.

on X x8*%,

By ([13], Proposition V.5.2), UL, =1, on Cf, which proves the lemma.

The following examplo shows that in the above lemma O cannot
bo replaced by X, cven if the family # is determined by a family & of
neagure preserving transformations,

2.3. Exavprr. Lot X be a free group with two free generators @ and b
and lot » be a counting meagure on (X, &), where o = 2%, Let § = {a, b}
and A({a}) = A({b}) == 1/2. For each sel let ¢,: X—+X be the right
tranglation of X. Lot # == {P,: s e §} be determined by the family of
transformations @ == {p,: ¢ € 8§} as in Bxample 1.7.

For ocach #e[0,1) and & fixed de(0,1), d#1/2 put
W [(2 ~2d) for O0gu<l~d,
™ Vo pod—1)j2d  for 1l—d<u<l,
) w/2d for O<u<d,
“Wo Y (w1 —2d) (2 —2d) for d<w<L.

Sinco y, snd p, are the invertible transformations on [0, 1), we can define

Vamt == Pty g1 = gt .
Now, onch clement ® ¢ X can be written in the form @ =4t ... 1,
whero #; € {a, b, a~*, b=}, Donotie 4 = [1/2, 1) and put

Fw) = Flhtyoont,) == m(Ay]! tp[;l 1/;;:)
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if ® =1t,...1, e X. Here m denotes the Lebesgue measure on [0, 1).
The function f does not depend on the representation of an element ¢ e X
and hag the following properties:

1° 0 <f(x)< 1 for each we X,
2° fis harmonie since for each @ = t;%,... %, € X we have
Hf(op,) +1f(ap) = Im(dy -t ol) Him Ay gty
= m Ayt 9pt) = f(a),
3° f is not #-invariant since for @ == ¢ (tho identity in X) we have
Flo) = f(aa™) = m(dy7 y;t) = m(4) =12
and
flegs) = fla) = m(Ay7") = d #1/2.

We say that a function b (k> 0 or h e I, (u XA*)) defined on X x 8* is
U-invariant on a set 0 e & X B* it Uh = h on C. Let

Sy ={Ded xF": DcOyand ULy =1y on Op}.

2.4. TEBOREM. Hach fumction h (h >0 or heLg(uxAY) defined
on X X 8" and U-invariant on Cy, does not depend essentially on paramelers "
on Oy. In particular, £y = 5, x{ @, §*} mod (u x 4*).

‘Proof. Without loss of generality we may assume that the measure “
ig finite (observe that the sets Cj and Oy do not change if wo take a
measure 7 equivalent to u). Moreover, it is sufficient to prove the theo-
rem for the functions h € L (u % A*).

Let a function b e L,(uxA%) satisfy Uk = h on Cp. Then, using
([6, Ch. TI, (2.7)), we obtain for every m = 1,2,..

) Uh=h on Op.
Using Lemma 1.4, (1), and Theorem 2.1. woe have for g = B%h:
1y, Tg = 101’1’7?" UB%h = 101,-)@*0]3"1 Uh = 101,-E’"0 Uh
= B%(15, Uh) = B¥ (1o, h) = lop,g o0 X xS
i.e.Tg = g on C;. By Lemma 2.2 Ug = g on Uy, henco for ecach m = 1,2, ..
(2) Utg =g on Oy.

On the other hand, using Lemma, 1.4, (1), and Theorem £.L wo have
form =0,1,2,...

1o, - U™g = loy UmEh = log B*m O™k = Evm(lau- U™ h)
=E (1o,h) =1, -B*mh  on X x8",
Le. U™g =H*"h on 0y. By the martingale convergence theorem
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lim Bénh = h on X x§* (see [12], Corollary II-2-12). Therefore

M0

3) lm U"g =% on .
Moy 00

Comparing (2) and (3) we have h = g = H%} on ¢,.

In purticular, taking b =1; (D es/ x#*) we obtain the equality
Sy = Ipx{B, 8" mod(ux1*), which completes the proof.

In the above theorem Oy cannot bo replaced by X x8* This is the
consequenco of Hxample 2.3 and of the following

2.5. PrOPOSITION. The following conditions are equivalent :

(i) each harmonio function f e L, (u) is P-imvariant,

(i) each U-invariant function h e L (u x1*) does not depend essentially
on parameters s*.

Proof. Without loss of generality we may assume that the measure ]
is finite.

To obtain tho implication (i)=(ii) one proceeds as in the proof of
Theorem 2.4, replacing €y and O, by X x 8* and X, respectively, and using
the assumption (i) instead of Lemma 2.2.

Tor the prool of the converse implication assume that Tf = f for
a f € L, (p). Using Lemma 1.4 we obtain for m = 0,1, 2, ...

Em U f o B¥m U™ Uf = Um BN U = U"Tf=0U"f on Xxg,

which means that the sequence U™f forms a martingale with respect
to the increasing sequence of gub-o-fields ,, . Moreover, the functions U™ f
are uniformly bounded in L, (ux4*), and since the measure p is finite,
also in L,(u x4%). By the martingale convergence theorem there exists
a function h € L, (4 X A*) such that
(4) I U™f =h on X x8*

MO0
(see [12], Theorem IV-1-2). Moreover, the convergence in (4) holds in the
norm topology of Ij(uxA*) and in the weak*-topology of L (uXA*).
This implies that the martingale U™f is regular (see [12], Proposition
IV-2-3), henco

(8) Unf = B¥mph  for m =0,1,2,...

and, by the weak*-continuity of the operator U, that Uh = h. The assump-
tion (i) implios that & == B¥% and from (5) applied to m = 0 we obtain
J = B%} = . Therofore tho function f is #-invariant, which completes
the proof.

Now, we turn to the investigation of functions % defined on X x8*
and satisfying the equation h U == h.

The following result generalizes the fivst part of Satz 4 in [11].
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2.6. TuEoREM. Bach function heLy(uxA*) satisfying the equation
U = I does not depend essentially on parameters s*. :
Proof. I helLy(uxA*) and AU = h, then, using Lemmsa 1.4, we
have )
BE¥0 —]y = RUP B¥0 —BU™ == (WB%m —p) U™,
Since for each m =1,2,... U™ is & contraction on (s %1*), Lence
AT — Rl s 10y S BT — Rl gy
By the I,(u)-valued martingale convergence theorem, Lmhk - J in

Mot
the norm of Ly(x X4") (see [3], Theorom 2.1 (a)). Thevefore Al*o . p,
which completes the proof. ‘
. 2.7. Remark. For cach finite signed measure o dofined on o x #*
and absolutely continuous with respect to u x4* (o < 4 X" the formula

(eU)D) = [[Ulpde (Deo xa@"
xS
defines a finite signed measure oU < uxi*. Moreover, if &L (u x2*)
and o(D) = [f hd(ux4*), then WU = d(oU)/d(ux4*) on X x§*, whero
D

d(oU)[d (g x4*) denotes the Radon-Nikodym devivative.

The action of the operator 7' on » measure » defined on .« ) v L, s
defined similarly.

Theorem 2.6 formulated in the language of measures suys that oach
finite signed measure ¢ defined on & X#*, 0 <€ uxA* and invariant for
the operator U (i.e. satistying the cquation U = g) is of the form o
= % A* for a finite signed measuro » on «, Moreover, we have » <€ u and
»T = v, which follows from Lemms 1.5.

2.8. THROREM. Suppose that p is o-finite and subinvariant for the
operator T (i.6. 1T <1 on X). Then each Junction h e L, (ux 1) with 1
Sp< oo satisfying the equation WU = does not depend ossentially on
parameters s*.

Proof. If 17<1 on X, then 1U <1 on X xS* by Lemma L5,
Therefore the operator U, which iy a contraction on Iy (u x 2*), is simulta-
neously a contraction on L, (u x*). By the interpolation theorem (see
[4], Theorem VI.L0.LL) U is & contraction on. each Ly, (4 % A*) with 1<2p

< oo,

_Now, let AU =1 for a heL,(u XA*), L€ p< oo, Analogously as
in the proof of Theorem 2.6 we obtain

3 o
|RE%o =g uxany < (REEm — sz -

By the I,(u)-valued martingale convergenco theorom, lim hE¥m = &

e 0Q

icm°
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in the norm of L, (u X A*) (see [3], Theovem 2.1 (a)). Therefore hE% — h,
which completes the proof.

2.9. Remark. Theorem 2.6 is not true if & is not integrable (and only
positive) and Theorem 2.8 is false for p = co. To see this let us consider
the family & == {P,, P,} defined in Example 2.3. As we have seen, there
exigty o function by € L% (4 < A" such that Uhy = hy and &, depends essen-
fially on. parametors 8*. Since the measure u xA* in Example 2.3 is ¢*-
invariant, it follows that the measure do = I, d(u xA*) it also ¢*-invariant
and 8o hy U = hy.

3. Ergodic theorems. In general the restriction of the o-finite measure b
to tho o-ficld S, of subsets of 0y is not o-finite. However

3.1 LimmmA (seo [8], Oh. XII, (3.7)). The conservative part of the
operator ' decomposes uniquely mod u into a disjoint union

Op = CpU Oy,

o0
where Oy e Sy, Op = () 4, for an increasing sequence of sets A, €Sy
Nl

with u(A,) < oo, and pu(4) =0 or oo for every set A e 5y, A = C%. Lot 5L,
be the restriction of the o-field Sy to O, Then (Ch, Fh, p) is a o-finite measure
space. .
s -

Given o function f eI, (u) supported on O, B Tf will denote the

unique Sy-measurable function defined on O% and satisfying for every
- '
A e S} the equation. [ fdu = [ B Tfdu.
] 4

Analogously, we have

3.2. LimvmA. The conservative part of the operator U decomposes uniquely
mod (u xA%) into a disjoint union

Oy = 0V Oy,

bad "

where 0% & Fpyy O = \J D, for am increasing sequence of sets D, e S with
‘ Tl

(X AV(D,) <2 o0, and (X A*)(D) == 0. 0or oo for every set D e Jf][,—, D g*O’%{.

Lot &, be the restriotion of the o-fisld Sy to Of. Then (Oh, £y, pxAY) 48

a o-finite moasure space.

o, g
Given o function h e L, (u x A*) supported on Ok, B YA denotos the
unique #4-mensurablo funetion delined on 0% and satisfying for every
D & £ the equation.

[ [haquxa) =-mff.l4}f1”hd(‘u x A%,
D L

T — Studia Math. 74.2


GUEST


202 J. Woé

3.3. TuEoREM. (1) Cf = Ohx8* on X x8*,

(2) 0% = (L xS on X %8,

(8) S = SLx{ B, 8" mod(u x1*).

Proof. Let 4, be the sets appearing in Lemma 3.1. Weo have 4, x
x8* e Lpx{D, 8% and F,x{@, '} =Sy mod(ux1*), by Theorem
92.4. Moreover, (u x1*) (4, x8) = u(4,) < co. Therefore

OLx8* =] 4,x8 0y on Xx8%
fhmml
On the other hand, if D, ave the sets appearing in Lemma 3.2, then
D, &Sy =Ipx{@, & mod(pxAi*), by Theorem 2.4. Therciore D,
= B, x 8" on X x 8" for an increasing sequence of sets B, € #,. Moreover,
u(B,) = (uXA")(D,) < co. Henco

0, = Cj D, = U] B, x8" < 0px8 on Xx8,
==l n=
which proves (1). Furthermore, (2) follows from (1) and from Theorem 2.1,
and. (3) follows from (1) and from Theorem 2.4, which completes the proof.

The following theorem generalizes the random ergodic theorem of
Ryll-Nardzewski ([15], Theorem 1) and of Nawrotzki ([11], Satz 4).
In the formulation of this theorem the symbol P, denotes the extension
of the operator P,, € # to the cluss of all nonnegative functions defined on X
(see Remark 1.6).

3.4. TEmoREM. Suppose that p is o-finite and subinvariant for the
operator T. Then for each funclion f(w;s*) e Ly (uxA*) with L<<p<< o
there ewist a function f*(v) € I (u) and a set 8% € #* with A*(8*) =1 such
that for each s* = (s,,8,,...)e 8"

n-1
(4) ir{i; PyPy . Py fio @) =f@) on X,
k=0
and if p>1,
1 n—ﬁl ] Up
0 1 [ SRRy By =@ dul@)) - 0.
% 1" 5=

Moreover, the limit funclion satisfies

0 on
Sl (@, 8%
' }(10;,f)

Proof. From the assumption that 17 < 1 on X and from Lemma 1.5

it follows that 1U < 1 on X x8*. By the pointwise ergodic theorem applied
to the operator U it follows that for each function fe L (uxA*) there

(Dpu0k)x 8",

6
© a5 x 8.

=

on

icm

©
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exists o function f* € Lt (u % 2*) such that

1, )
lim - "kaf =% on X xg*

]

nesree W o
and

. 0 on  Dyuc,
(8) fro

L
B U(-‘«c:“},f ) o Cy

or f € L (p x A*)-s00 [5], Oh. VLI, Theorem B3; for f e L (u x2*) (7) holds
by [4], Theoremn VILL6.6 and (8) follows from the just mentioned theorems).

Using Theorem 2.1, Lemma 3.3 und (8) we conclude that the limit
funetion f* does not depend essentially on parameters ¢* and has the
form (6). (The @ p-measurability of f* can also be doduced from Theorem
2.8.)

By the Fubini theorem, Lemma 1.3 and (7) it follows that (4) holds
for F-almoxt all 8*, Winally, (5) follows from (4), the Fubini theorem and the
faet that for f e 1) (p x A*) with 1< p < oo wo have

sup

P
el 2yens W
e
(soe [4], Theorem VIIT.6.8). The proof of Theorem 3.4 has hereby been
completod.
The following result is analogous to Theorem 2.8.
3.5. QoROLLARY. Suppose that u is o-finile and subinvariant for the
operator 1" and L = p < oo. Then
(1) each U-invariant funclion b e L (ux 2*) does not depend essentially
on parameters 8* wnd
(1) each harmonic function f e Lk (u) is P-invariant.
Proof. (i) follows from Theorem 3.4. Now, if f e 1};,“(”) forlgp< oo
and Tf - f, then

0 on
f S
“(1g1f)

o}
(se0 [5], Oh. VLI, Theoren B). Therefore the @-invariance of f follows
from the formuln (6) in Theorem 8.4 and from the fact that the limit
funcbion f* in Theorem 8.4 iy #-invariant.
The part (i) of the above corollary can also be deduced directly from
Theorem 2.8.
Observe that by Lemma L2, Lemma 1.5 and by the definitions of

Dy,

on ()
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the operators U and T it follows thab
[FTgdp = [ [Py gdudi(s)
X § X
for every f € L (u), g € Lo(p). Hence, if 4 €7, then
pT(4) = [1T-1ap = [ [1P1dpdd(s) [ b, (4)das).
x § % §

In particular, the measure w iy invariant for the operator 1" if for overy
A e o we have

[ uP,(A)di(s) = p(4).

8

Let us introduce & stronger condition. Namely, we say that p iv -invariant
if for every A e« we have

uP (4) = u(4) A-almogt overywhere.
Now, we shall formulate & particular case of Theorem 3.4, when the
measure g is finite and T-invariant and p = 1.
3.6. Tumormm. Suppose that u is finite and invariant for the operator T,
Then for each function f(w; 8*) & Li (u X X*) there exist a function f*(w) e L (1)
and a set S & B* with 1 (8*) == 1. such that for every s* - (s, 85, ...) & &%

=1

1K ‘ )
(9) ?Iblmz Py Py oo Py fipy @) = f @) on X,
o8 k=0
and if
(10) [ ] flogtfa(uxrt) < oo

XX

(where log* & = max(0, loga)) or if u is P-invariant, then

(1)  lim f
T-»00 X

Moreover, the limit function satisfies

(12) f* == E‘f_r[:x(@oﬂ"}f [ X %8,

Ty,

1 o
7;21981.9‘,2 o Pyf @) @) A ) 0.

few0)

Proof. The convergence of tho ergodic averages (9) wak proved
in Theorem 3.4. Since w is finite and invariant for Ty ho O Gy o X
and formula (12) follows from (6). If S vaibistion (10), then
fu—1

L O
sup nZU’fglll‘ (1 X 2%

nex1,2,,., pwer

©
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(e [4], Theorem VIIL.6.8) which, anglogously as in the proof of (5) in
Theorem. 3.4, gives (11).

N O, SUppose that w is Z-invariant, Then, as it is casily seen, we have
BEUf = UK®F for each nonnegative function S, where 6 = {@, X} x&*.
Therefore, for eaeh f @ L (n % A)

) Nl ‘
G S
lim Z WU - Tim »-«EU’”E""’f = X080 pop . peg
nereo T o feroor T e

on X xS, Gonsequently, there oxists o vet 8% e @* with 8y =1
suel bhati Tor caeh 8% - (9, 8, ...) e 8
Aol
LK i 1 >‘ e 7] D *
(i) lim | w20 PPy Py, @ dn(@) = [ 1(2)du().
X Tawal) X
The formulas (9) and (13) imply (11), which completes the proof.

3.7. Remark. Tho additional assumption (10) in the above theorem ig
essontial even. if f doos not depend csgentially on parameters s*. A suitable
example will be given in Section 4.

Applying Theorem 3.6 and the Bunach-Steinhaus theorem we obtain

3.8. QororrAry. Suppose that u is finile and P-invariant and let
the o-fiold < bo countably gemerated. Then there ewists o set S8 & B* with
AM(8Y) === L suoh that for overy §* == (81, 8, ...) € 8* and for every f ¢ L ()
we have

N1
(14)  lim .»;;-219,,11’,,2 e Py f = BTf i the morm of Iy(u)
N=p00 o

and
13
TTe— y e ML
(16) 11:11; ““;’mk..}o JPy Pyy v Py = BITf

in the weak topology of Ly(u).

The following exnmple shows that the above corollary is false if the
assutupbion of the #-invarviance of g is replaced by the T-invariance.

3.8, Wxamperm, Lol (X, o, p) Do the interval [0, 1) with the Borel
o-fiold « and tho Iebosgue messure g and let 8 == {a, b}, A({a}) = A({b})
ax k20 Lot g, andd gy denote the transtormationg on X given by g, = ©/2
and wpy oo 0f2-- 102 for @ e X and lob @ == {P,, Py} bo determined by the
family @ == {g,, ¢} s in Hxample 1.7, Obviously, the measure u is T-
invariant. Moreover, ag it is eusily seen, for cach 8 = (s, 8, ...) € 8* we
have

lim 1P By ooo Py, (@) =0 on X,

NeepOQ
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which implies that in (14) the convergence does not hold even in the weak
topology of Ly (x) and that (15) is false cven for a fixed function f = 1.
Using the random ergodic theorem we can give another proof of
the following well-known result (see [10], Ch. VITL, Theorent 7 and [14),
Ch. 5, Lemma 1).
3.10. COROLLARY. Suppose that u is finile and dwvariant for the oper-
ator T, If P is a commutasive family of operators, é.c. if

(16) PP, = PP, forall  s,lad,

then p 4is P-invariant.
Proof. Fix a set 4 s/, The assumption (16) implics thut for every
s* = (8, &, ...) € 8 and cvery n == 0,1,2,... wo have

(17) <1 51 32 """" NL 1A> <1 8y "n~1 """ n171~/1>7

where {f,g) = ffgd,u for fely(p), gelio(p). Since 11 == 1, Theorem

3.6 implies t]mb there exists o sob 8% e #" with A*(8") == 1 such that
n—1

(18) lim ?k%am o Py ) = KLy L

for every s* = (s;,8,,...)e 8",

On the other hand, the equation 1T -= 1 moans that the sequonce
AP, Py oo Py, 1, forms o martingale with respect to the 111(',1*0 \‘amg
sequence of o-ficlds &, X B, X ... X%, x{@, 8, .} /{(7 810} % oo More-
over, this martingale is uniformly bounded in L, (4*). By the nmmum]e
convergence theorem there exists a function h, e J,i" (A" and a net 8 e g™
with 2*(8*) =1 such that for every ¢* == (s,, 8,,...) ¢ &

(19) nlilg<1ps“1>9n..1 e -Psl? Lid = b8y 8y 000)

and
(20) <1Pe“1)an_,1 e I)EIV 1y = EW"'I".II (81, 83y +01)

for m =0,1,2,... (sco [12], Theovemn IV-1-2 sl )l’m]umi‘l‘iun IV-2-3).
Using (17), (18) and (19) wo obtain by o oeonst o (L, L A,

By (20) APy 1) = {1, 1) for A-almost (111 8 e:ﬂ], whloh complotiog
the proof.

4. Example. In this scction wo shall construct o probability space
(X, o, p), a measurable family # - {P,: s e 8} of wub-Markovian opor-
ators on L (u) with uT = u and a function J e L (u) wuch that

N300

(1) IlmsupE”(——U”j) = oo g X A0,
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where & = {@, X} x#*. This gives
n-1

1
limsup ]ﬂ‘*( - Z U’“f) = oo pXxAta.e.,

{es]
e Towr0

and shows that the additional assumption (10) in Theorem 3.6 is essential.
Lt (8, 4, ) bo w nontrivial probability space and leb

0
II b“ o [I %n o n }4“
bt e 00 Fem 00 fm2 0
whera S, - N, o, Ay Alovd -0 0, =1, —2, ... Lot @, be a transfor-
mation on A given by

(o 8y 80y 800y = (cvny 8y, 80y 8,

(m('l let @ = {I’: 8 & 8} bo determined by the family of transformations
~~~~~ gt 8 € b} af in Hxample 1.7, (Note that if # contains all the sets
OJI 1hn form {s}, whore s € 8 and if A({s}) > 0 for every s € §, then each
@, & D is & nonsingular transformation on. (X, o7, u).) Observe that ¢*: X x
X8 >X % 8" is simply o two-gided Bernoulli shift and & consists of those
eventy which depend only on the future. Sincoe ¢* preserves the measure
w X2 we hawve T - p.
We shall construct a function f e I (X x 8%, of x #*, u x4*) such that
foin o {6, -measurable and

@) (X V{BT U = nlogn i.0}) =

Obviously such o function f satisfies (1).

Choose o Be# with 0 < A(B)< 1 and denote p = A(B), g =1—p.
Lot {a,}2., bo a strictly increasing sequence of positive real numbers.
Aggume that there existy o strictly increasing sequence of nonnegative
integers {b,}o0.q with by == 0 such that

2]
°, o
(3) 2 (ot =P Uy, 1) "D < 00,
K
(4) lim @, _,p" = 0,
00
o0
(5) an.p” w00,y
it ],
\ i b:,,,.;.l .
(6) liminf 255 > 1,
b0l '

where (@) denotes the negative part of #. We shall prove that under
these asyumptions thero exists an f € Ly (u XA¥) such that

Q) (X XY{EE U 22 @, 10) = 1.
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L3
Let 4, = X x8% 4, = q By (= 1,2, 00) und O, A, N4,

g
where B, = ... X8_ps X8 1 XBXE i X8 0% oG X X8 (-,
1,...). Denote o, =ay, 1 (n==0,1,2,...) and f, q (o, —pay)

(n =1,2,...). Let
I D bula,-

sl

N
Since 3 8,0"'q = ay—ayp™, we infor from (3) and (4) thal £ is inbegrablo

=1

and [ [ f@(uxA") = ;. Denoto
X

B e XSy XE_ KB XS gt

N
Since | 3 B, 1q, |<Ifl, we have by the Lebexgue theovem
n=l

00
(8) Bonf = 2] Bty for om0,
Rwal

Obsgerve that

» 1r'*n for nm,

i

(9) b b”"l
¢, A U Y
" I)ﬂ. " 1,(1‘]%'17& f[()l‘ e 771'1

for m = 0. Using (8), (9) and (4) we obtain

m

(10) E%”‘f = Z/‘fﬁlgn-+ Uy,  Tor om0,
]

Clearly, "

(1) B = Bmf for ko= 0,1, ..., by, —by—1, m 30,
Now, denoto Dy, =« {B%f 2 a;} (k- 0,1, 2,...). Wo shall prove thut
(12) Dy =4, for by, 5 byy g4, m 2 0,

. Fi?c w2 0 and by, <k < By, L. Using (LL), (10) and $he monotoni-
city of a,, we have

Borf o idrbm e . s

f H f Uy, ab,,”.[ RS

Thus 4,, < .D,. For the proof of the converse inelusion observe that

ap on A,

13) By =ty ~pa,) < a,_, - Uy < Oy, Tor el
Using (11), (10) and (18), wo obtain

m
Bf = B e V) - . .
f B mf s ; ﬂ’ilC'.l- < . max ﬂ,‘.’ < al(‘m w5 Ay 01 A;"L_

LI PR

©
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Thus 47, < D, which proves (12). (The case m = 0 in the last inclusion
ig trivial.)
It follows Lfrom (12) that

o0 o0
(14) D2 X2 Dy) = 3 by —b,) (1 3 4%)(4,)
T n=al}
3
= ) (Bya —b,)p™
Neos()
However, woe infer from (6) that there exists s> 0 such that by —b,
2 b, Torn 2 0. Thus (14) and (B) imply

(15) DXV (B > a) = 3 (x1)(Dy) = oo
Jevm () Ts=20)

Denotie F,, = {H*U"f > a,}, Tt is casy to check that BCU" = UE®n
for mz= 0. Thus F, = {U"B%f>a,} =¢*"D,. Since ¢* is measure-
preserving, (16) implies

(16) D (wx2)(F,) = co.
fmal

Wao whall need the following

LieMMA L, Lot @ == {b,}>., be a strictly increasing sequence of positive
wntegers and ot p: N->N be the shift tramsformation on positive integers.
Denote by y"G the image of G under v* and by || the number of elements of
a given sel. If the sequence @ == {b,}r, satisfies the Hadamard gap condition,
4.0, &f there caists an ¢ > 0 such that

b

() -.Jbittl>1+e for m=1,2,..,
n
then
loge
sup [Ny @ < 2 — o < 0
;;,I. 16Oy 6l log(1+-¢)
Proot, Suppose that for some n 2 1 and NV > 1 we have

(18) by b == by (=142, ),

whore 1)<l <2< ly. Denoto & = by, . Since Iy > ky, we have
by 2 b+ Thus, using (18) and (17) we obtain by ~b, = n = b, —
—bppy 2 by = by 1 3> ebyyy_y == ew. In particular,

(19) by, > ew.
Using (17) and (19) we have by 2> by, > by (1 +8)f > a(1+48)a for
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2

ho=0,1,...,N—1. Hence by, > e(l--¢)"*w. On the other hand,

biy_, < biy-1 = @. Therefore s(1- V2 < 1, Leo.
loge
TS T g

which proves the lemma.
Using (12) it is easy to cheek that

(X B (B0 Fyyg) = p 50 (R A () (e 5 A (I ),

where f;,; == G @{L, 2, o0y @-l-J} G = {byy bay o}y F 220,452 0, Thug
(6) and Lemma 1 imply that there existy u K <2 oo such that

(20) (o XA (B NI) < I (0 XA") () (g 3¢ A7) (1)

for all m,n20,m s=n.

We have

Lmvma 2 (see [9]). Lot (2, F, P) be a probability space and lot {11},
be a sequence of events satisfying 3 P(F,) = oo Lf for some constant K < oo

fwal

and for all m and n with m # n we have P(F,, 1) <L P (F,) P (F,),
then P(F, i0.)>0.

Now, (16), (20) and Lemma 2 imply that (u XA*)(F, .0.) 3 0, Hinally,
we shall use the following

Levma 3 (see [16], Corollary 2 and the footnoto on p. 140). Let
(R, 7, P, T)be an ergodic dynamical system. If {D,}2., i a non-ineroasing
sequence of events, then P(I"D, i.0.) =0 or 1.

Since ¥, = ¢*~"D, and, by (12), D, is a non-inercasing sequence of
sets we can apply Lemma 8 which gives (u X A*) (I, 1.0.) =+ L. This proves
(7).

Now, let a,, = (n--2)log(n-1-2) (n = 0,1, 2,...) and lob

1
bo =0, b, =)t | ) LT
0 ’ n [pN"' (N*I“%)log(Nw["-’l’b)] 1 (9’( l., P ),
where [#] denotes the integral part of w. Tleve N is o natieal monber so

large that b, is strictly increasing. We hava

T O n
which gives (6). Next, it is easy 1o cheek thub (4) and (B) hold. Now, wo
shall verity (3). Since

1 .1
P logn,

.............. =2

©
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for sufficiently large » and since the function

1 1
hz) = -log —— .
(@) zloge o8 Pelogw

is decreasing for sufficiently large #, we have

1 o1 1
[p"%lopm] o8 [p“wlogn] P [17"""‘(%~|«1)10g(n~|~1)] x
»log [~»";,;[~ e w;l v-~~] > ( 1 —1)log —
P (-l 1) 1og (n--1) p"nlogn " plogn
1 1 log (1/p) 1
e 1 = — —
P nlogn o8 P nlogn p"n*logn 2 2" plogn

for sufficiently large » Since.

logl/p 1 iy
; (p”nZIOgn Hog p"‘”"nlogn)p < %
we obtain (3). Therefore we have
(4 X A% ({F U™f = nlogn i0})
= (uxM{BU"f = (n+2)log(n+2) i.0)}) =1.
Taking |f| instead of f, we obtain (2) .
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