Weak approximate identities and multipliers bу DAVID L. JOHNSON and CHARLES D. LAHR (Hanover, N.H.) Abstract. Let A be a Banach algebra and let Ω be a right Banach A-submodule of A^* . Then $\operatorname{Hom}_A(A, \Omega^*)$ is characterized in terms of dual spaces and approximate identities for certain choices of A and Ω having applications in harmonic analysis. For example, let Λ be an L-algebra, let $\Omega \subseteq \mathfrak{B}$ (the space of all weakly almost periodic functionals in Λ^*) be a C^* -subalgebra of the commutative von Neumann algebra Λ^* , and suppose that Ω is a left Λ -module as well. Then $\Omega \cong C_0(T)$, where Γ is the maximal ideal space of Ω , and $\Omega^* \cong M(T)$. Now, if Λ has a right \mathfrak{B} -approximate identity (a.i.) bounded by one, then $\operatorname{Hom}_{\Lambda}(\Lambda, M(T))$ is isometrically algebra anti-isomorphic to a closed subalgebra of M(T) via the map $T \mapsto \mu_T$, where the action of T is by generalized convolution on the right with μ_T . Moreover, the map $T \mapsto \mu_T$ is onto if and only if Ω is an essential right Banach Λ -module if and only if Λ has a bounded two-sided Ω -a.i. It is also proved that if A is a convolution measure algebra and Ω (as above) contains the identity of the von Neumann algebra A^* , then A has a two-sided Ω -a.i. bounded by one if and only if the compact semigroup Γ has an indentity. I. Introduction. Let A be an arbitrary Banach algebra and W a right Banach A-module. Then $\operatorname{Hom}_A(A,W^*)\cong (A\otimes_A W)^*$, where $A\otimes_A W$ is the (completed) A-tensor product of A and W ([16], [17]). Concrete realizations of $\operatorname{Hom}_A(A,W^*)$ have been given in terms of $(A\otimes_A \otimes_A W)^*$, $(A\circ W)^*$ (defined below), and W^* in cases where more information is available about A and/or W ([16], [17], [12], [10], [2], [21]). In this paper, we study $\operatorname{Hom}_A(A,W^*)$ primarily when $W=\Omega$ is a right Banach A-submodule of A^* and A possesses a right Ω -approximate identity. In Section II, property $P2(\Omega)$ is defined $(P2(A^*))$ is Máté's property P2([11], [21])) and is shown to be equivalent to A possessing a certain kind of right Ω -approximate identity (Theorem 2.1). Applications of Theorem 2.1 are made to (noncommutative) Segal algebras, and to commutative Banach algebras A with $\Omega = \operatorname{cl}(\operatorname{sp}(AA))$. In the latter case, $P2(\Omega)$ is equivalent to $\operatorname{Hom}_A(A, \Omega^*) \cong (A \circ \Omega)^*$ (Theorem 2.5). Section III is devoted to a discussion of $\operatorname{Hom}_A(A, \Omega^*)$ for algebras A possessing a bounded right Ω -approximate identity (when $\Omega \subseteq A^*$, this assumption is weaker than assuming A has a bounded right approxi- mate identity [7]). Such algebras have property $P2(\Omega)$ (Corollary 2.2). Typically in Section III, Ω is a Banach A-subbimodule of \mathfrak{W} , the space of weakly almost periodic functionals in A^* . If A has a bounded two-sided Ω -approximate identity, then Ω is essential (as a right Banach A-module) and $A \circ \Omega$ and Ω have equivalent norms; the converse holds provided A has property $P2(\Omega)$ (Theorem 3.4). This result (together with Theorem 2.5) for A commutative and $\Omega = \operatorname{cl}(\operatorname{sp}(AA))$ yields Birtel's representation of the multiplier algebra of A when A has a bounded ΔA -approximate identity [1]. Now, if A is an L-algebra [14], then A^* is a commutative von Neumann algebra. Suppose that the Banach A-subbimodule $\Omega \subseteq \mathfrak{M}$ is a C^* -subalgebra of A^* with maximal ideal space Γ . Then $\operatorname{Hom}_A(A, M(\Gamma))$ is represented (isometrically and algebra anti-isomorphically) in the Banach algebra (under generalized convolution) $M(\Gamma)$ for algebras A possessing a right \mathfrak{W} -approximate identity bounded by one (Theorem 3.8), thereby extending previous representations of the right multiplier algebra $M_R(A)$ of A ([13], [9]). A special instance of Theorem 3.8 (see also Corollary 3.3) is the following. Let G be an arbitrary locally compact group, let $A = L^1(G)$, and let Ω be the C^* -algebra of (continuous) almost periodic functions on G. Then $$\operatorname{Hom}_{L^1(G)}(L^1(G), M(\Gamma)) \cong M(\Gamma),$$ where Γ , the maximal ideal space of Ω , is the almost periodic (Bohr) compactification of G. The final result of Section III is another application of Theorem 3.4 and states that if A is a convolution measure algebra (CMA) and the G^* -algebra Ω contains the identity of A^* , then A has a two-sided Ω -approximate identity bounded by one if and only if the compact semigroup Γ has an identity. This result was proved in [8] for semisimple commutative CMA's A with $\Omega = \operatorname{cl}(\operatorname{sp}(\Delta A))$. We close the introduction with some definitions, notation, and basic facts. The projective tensor product $A \otimes W$ of A and W is the Banach space completion of the algebraic tensor product $A \otimes W$ with respect to the greatest cross-norm. Each tensor t in $A \otimes W$ has a representation of the form $$t = \sum_{k=1}^{\infty} a_k \otimes w_k,$$ where $\sum_{k=1}^{\infty} ||a_k|| \, ||w_k|| < +\infty$, and the norm of t in $A \otimes W$ is $$\inf \big\{ \sum_{k=1}^\infty \|a_k\| \|w_k\| \colon t = \sum_{k=1}^\infty a_k \otimes w_k \big\}.$$ If W is an arbitrary right Banach A-module, then W^* is a left Banach A-module under the adjoint action of A (i.e., for $a \in A$, $w^* \in W^*$, define aw^* by $\langle w, aw^* \rangle = \langle wa, w^* \rangle$, all $w \in W$). The Banach space $\operatorname{Hom}_{\mathcal{A}}(A, \widetilde{w}^*)$ of all continuous left A-module homomorphisms (i.e., $T \in B(A, W^*)$) such that T(ab) = a(Tb), all $a, b \in A$) is isometrically isomorphic to the dual space $((A \otimes W)/K)^*$, where $$K = \operatorname{cl}(\operatorname{sp}\{ab \otimes w - b \otimes wa: a, b \in A, w \in W\})$$ in $A \otimes W$ ([17], p. 72). In fact, if $((A \otimes W)/K)^*$ is identified with the subspace K^{\perp} of $(A \otimes W)^*$, then this isometric isomorphism is simply the restriction to $\operatorname{Hom}_{\mathcal{A}}(A, W^*)$ of the isometric isomorphism $T \mapsto g_T$ from $B(A, W^*)$ onto $(A \otimes W)^*$, where $g_T(a \otimes w) = \langle w, Ta \rangle$, $a \in A$, $w \in W$. Let $B: A \otimes W \to W$ be the norm-decreasing linear map defined by $B(a \otimes w) = wa$, $a \in A$, $w \in W$, and let $A \circ W = (A \otimes W)/\ker B$ with quotient norm. Then $(A \circ W)^* = (\ker B)^{\perp}$ in $(A \otimes W)^*$. Further, since K is clearly contained in $\ker B$, it follows that $$(A \circ W)^* = (\ker B)^{\perp} \subseteq K^{\perp} \cong \operatorname{Hom}_{A}(A, W^*).$$ II. Property P2(Ω). Let $A=(A,\|\cdot\|)$ be a Banach algebra, let Ω be a closed linear subspace of the dual $A^*=(A^*,\|\cdot\|)$ of A, and suppose that Ω is a right Banach A-submodule of A^* with respect to the pre-Arens product fa of $f \in A^*$, $a \in A$, defined by $\langle fa, b \rangle = \langle f, ab \rangle$, $b \in A$. Then A is said to possess property P2(Ω) if whenever $$\sum_{k=1}^{\infty}\|f_k\|\,\|a_k\|<+\infty,$$ $f_k \in \Omega$, $a_k \in A$, and $\sum_{k=1}^{\infty} f_k a_k = 0$, then $$\sum_{k=1}^{\infty} \langle f_k, a_k \rangle = 0.$$ In terms of the norm-decreasing map $B: A \otimes \Omega \to \Omega \subseteq A^*$ defined above and the norm-decreasing evaluation map $\xi \colon A \otimes \Omega \to C$ defined by $\xi(a \otimes f) = \langle f, a \rangle$, property $P2(\Omega)$ states that $\ker B \subseteq \ker \xi$. Property $P2(A^*)$ is simply property P2 of Máté [11] and will be denoted as such. Our first characterizations of property $P2(\Omega)$ involve right Ω -approximate identities and the space M(A) of (continuous) double multipliers of A [4]. THEOREM 2.1. Let A be a Banach algebra and let Ω be a right Banach A-submodule of A^* . Then the following statements are equivalent: - (1) The algebra A has property $P2(\Omega)$. - (2) There exists a net $\{u_i\}$ in A such that, if $$\sum_{k=1}^{\infty}\|a_k\|\|f_k\|<\ +\infty,$$ $a_k \in A, f_k \in \Omega, then$ $$\sum_{k=1}^{\infty} \langle f_k, a_k \rangle = \lim_{\lambda} \sum_{k=1}^{\infty} \langle f_k, a_k u_{\lambda} \rangle.$$ (3) The map $(S,T)\mapsto g_T$ is a vector space homomorphism from M(A) into $(A\circ\Omega)^*$. (4) The evaluation map ξ is in $(A \circ \Omega)^* = (\ker B)^{\perp}$. Proof. $((1)\Leftrightarrow(4))$. Immediate. ((2) \Rightarrow (3)). The map $(S,T)\mapsto T$ from M(A) into $\operatorname{Hom}_A(A,\Omega^*)$ is a vector space homomorphism, and the map $T\mapsto g_T$ from $\operatorname{Hom}_A(A,\Omega^*)$ into $(A\otimes\Omega)^*$ is an isometric isomorphism. Thus, it suffices to show that, if $(S,T)\in M(A)$, then $g_T\in (\ker B)^\perp$. However, if $t=\sum\limits_{k=1}^\infty a_k\otimes f_k\in \ker B$, then, assuming (2), $$egin{aligned} g_T(t) &= \sum_{k=1}^\infty \langle f_k, Ta_k angle &= \lim_\lambda \sum_{k=1}^\infty \langle f_k, (Ta_k)u_\lambda angle \ &= \lim_\lambda \sum_{k=1}^\infty \langle f_k, a_k(Su_\lambda) angle &= \lim_\lambda \left\langle \sum_{k=1}^\infty f_k a_k, Su_\lambda ight angle \ &= \lim_\lambda \left\langle B(t), Su_\lambda ight angle &= 0 \,, \end{aligned}$$ establishing (3). $((3)\Rightarrow (4))$. If $I: A\to A$ is the identity operator, then the image of the double multiplier (I, I) in $(A\circ \Omega)^*=(\ker B)^{\perp}$ is $g_I=\xi$, the evaluation map. $((4)\Rightarrow(2)). \ \, \text{Since} \quad B\in B(A\otimes\Omega,A^*), \quad B^*\in B(A^{**},(A\otimes\Omega)^*); \quad \text{hence,} \\ B^*(A)\subseteq (A\otimes\Omega)^*. \ \, \text{Now, if} \ t\in A\otimes\Omega \ \, \text{and} \ \, a\in A, \ \, \text{then} \ \, \langle t,B^*(a)\rangle = \langle B(t),a\rangle. \\ \text{Consequently, with respect to the dual pair} \ \, \langle A\otimes\Omega,(A\otimes\Omega)^*\rangle \ \, \text{the polar} \ \, \text{(in} \ \, A\otimes\Omega) \ \, \text{of} \ \, B^*(A) \ \, \text{is ker} B. \ \, \text{Thus, the bipolar (in} \ \, (A\otimes\Omega)^*) \ \, \text{of} \ \, B^*(A) \ \, \text{is} \ \, \text{(ker} B)^\perp, \ \, \text{and so, by the bipolar theorem,} \ \, B^*(A) \ \, \text{is weak}^* \cdot (\text{i.e.,} \ \, \sigma((A\otimes\Omega)^*, (A\otimes\Omega)^*)) \ \, \text{dense in} \ \, \text{(ker} B)^\perp. \ \, \text{Therefore, since} \ \, \xi\in (\text{ker} B)^\perp \ \, \text{by hypothesis,} \ \, \text{there exists a net} \ \, \{u_\lambda\} \ \, \text{in} \ \, A \ \, \text{such that} \ \, \xi=wk^*-\lim_\lambda B^*(u_\lambda) \ \, \text{in} \ \, (A\otimes\Omega)^*, \ \, \text{thereby proving} \ \, (2). \ \, \blacksquare$ It is readily verified that, if A has no right annihilators and if Ω separates the points of A, then the map in statement (3) of Theorem 2.1 is a vector space isomorphism. Further, for an arbitrary Banach algebra A, the net $\{u_i\}$ in statement (2) is in particular, a right Ω -approximate identity; that is, if $a \in A$, $f \in \Omega$, then $\langle f, au_\lambda \rangle \xrightarrow{} \langle f, a \rangle$. However, the existence of a right Ω -approximate identity does not seem to imply property $P2(\Omega)$ without some boundedness assumption on the approximate identity. A right Ω -approximate identity $\{u_i\}$ for A is said to be operatorized. bounded if $$\sup \{\|au_{\lambda}\|: a \in A, \|a\| \leq 1, \text{ all } \lambda\} < +\infty.$$ COROLLARY 2.2. Let A be a Banach algebra and let Ω be a right Banach A-submodule of A^* . If A has an operator-bounded right Ω -approximate identity $\{u_i\}$, then A has property $P2(\Omega)$. Proof. Let $$M = \sup\{\|au_1\|: a \in A, \|a\| \le 1, \text{ all } \lambda\} < +\infty,$$ and suppose that $$t = \sum_{k=1}^{\infty} a_k \otimes f_k \in \ker B \subseteq A \widehat{\otimes} \Omega.$$ Then, for each N > 0, $$\begin{split} |\xi(t)| &= |\xi(t) - \langle B(t), u_{\lambda} \rangle| = \Big| \sum_{k=1}^{\infty} \langle f_k, a_k - a_k u_{\lambda} \rangle \Big| \\ &\leq \Big| \sum_{k=1}^{N} \langle f_k, a_k - a_k u_{\lambda} \rangle \Big| + (M+1) \sum_{k=N+1}^{\infty} \|f_k\| \|a_k\|, \end{split}$$ for every λ ; hence, it follows that $$|\xi(t)|\leqslant (M+1)\sum_{k=N+1}^{\infty}\|f_k\|\,\|a_k\|\,.$$ Letting $N \to \infty$ yields $\xi(t) = 0$. Thus, $\xi \in (\ker B)^{\perp}$. If G is a compact group and $A = L^P(G)$, where $1 \le P < +\infty$, then, since A has an operator-bounded (by 1) two-sided approximate identity, it follows from Corollary 2.2 that A has property P2 (and so P2(Ω), for every right Banach A-submodule Ω of A^*). Some of the strength of property P2 is revealed in its characterizations below. COROLLARY 2.3. For a Banach algebra A, the following statements are equivalent: - (1) A has property P2. - (2) $\operatorname{Hom}_{A}(A, A^{**}) \cong (A \circ A^{*})^{*}$. - (3) $\operatorname{Hom}_A(A, W^*) \cong (A \circ W)^*$, for every right Banach A-module W. Proof. The equivalence $(1)\Leftrightarrow (2)$ is proved in ([21], Thm. 2.3), and $(3)\Rightarrow (2)$ is clear. To prove that $(1)\Rightarrow (3)$, we first observe that statement (3) holds if and only if, for every $T\in \operatorname{Hom}_{\mathcal{A}}(A,W^*)$, the corresponding g_T in $(A\otimes W)^*$ is contained in $(\ker B)^{\perp}$. However, if $T\in \operatorname{Hom}_{\mathcal{A}}(A,W^*)$, then $$T^* \in \mathcal{B}(W^{**}, A^*)$$. Thus, for each $t = \sum_{k=1}^{\infty} a_k \otimes w_k \in \ker B$, $$g_T(t) = \sum_{k=1}^{\infty} \langle w_k, Ta_k \rangle = \sum_{k=1}^{\infty} \langle T^*w_k, a_k \rangle;$$ 6 hence, since A has property P2 (see Theorem 2.1), $$\begin{split} g_T(t) &= \lim_{\lambda} \sum_{k=1}^{\infty} \langle T^* w_k, \, a_k u_{\lambda} \rangle = \lim_{\lambda} \sum_{k=1}^{\infty} \langle w_k, a_k(T u_{\lambda}) \rangle \\ &= \lim_{\lambda} \sum_{k=1}^{\infty} \langle w_k a_k, T u_{\lambda} \rangle = \lim_{\lambda} \langle B(t), T u_{\lambda} \rangle = 0 \,. \end{split}$$ Consequently, $g_T \in (\ker B)^{\perp}$ and (3) obtains. It is clear from the remarks made in the introduction that $\operatorname{Hom}_A(A, W^*) \cong (A \circ W)^*$ if and only if $K = \ker B$. Thus, A possesses property P2 if and only if $K = \ker B$ for the right Banach A-module A^* (equivalently, $K = \ker B$ for every right Banach A-module W). Similarly, if Ω is a right Banach A-submodule of A^* , then $\operatorname{Hom}_A(A, \Omega^*)$ $\cong (A \circ \Omega)^*$ if and only if $K = \ker B$ and, in this case, A has property P2(Ω) (by Theorem 2.1, since ξ is clearly contained in K^{\perp}). However, the fact that A has property $P2(\Omega)$ does not, in general, seem to imply that $\operatorname{Hom}_A(A, \Omega^*) \cong (A \circ \Omega)^*$, although this implication does hold whenever $T^*\Omega\subseteq\Omega$, for all T in $\operatorname{Hom}_A(A,\Omega^*)$ (see the proof of Theorem 2.5) below). If A is a symmetric Segal algebra in the sense of Reiter ([15], Sec. 4) with auxiliary norm $\|\cdot\|_{S}$, then Corollary 2.3'yields our next result, from which the noncommutative versions of several factorization theorems for (symmetric) Segal algebras (c.f. [10], Thm.'s 1, 2, 3) follow readily. Proposition 2.4. Let G be a locally compact group, let A be a symmetric Segal algebra in $L^1(G)$, and let W be a right Banach $L^1(G)$ -module. Then $$\operatorname{Hom}_{L^1(G)}(A, W^*) = \operatorname{Hom}_A(A, W^*)$$ and $A \otimes_{L^1(G)} W = A \circ W = A \otimes_A W$. Proof. It is immediate that W is a right Banach A-module and that $\operatorname{Hom}_{I^1(G)}(A, W^*) \subseteq \operatorname{Hom}_A(A, W^*)$. On the other hand, since A is dense in $L^1(G)$ and W^* is a left Banach $L^1(G)$ -module, $\operatorname{Hom}_A(A, W^*) \subseteq$ $\operatorname{Hom}_{L^1(\Omega)}(A, W^*)$. Thus, $\operatorname{Hom}_{L^1(\Omega)}(A, W^*) = \operatorname{Hom}_A(A, W^*)$ and so $A \otimes_{L^1(G)} W = A \otimes_A W.$ Finally, since A is a symmetric Segal algebra, it follows from [15], p. 34, that A possesses an operator-bounded approximate identity. Hence, A has property P2 by Corollary 2.2, and by Corollary 2.3 $\operatorname{Hom}_A(A, W^*)$ $= (A \circ W)^*$, implying that $A \circ W = A \otimes_A W$. If A is a commutative Banach algebra, then one Ω of particular interest is $cl(sp(\Delta A))$, the closure in A^* of the linear span of the maximal ideal space $\triangle A$ of A. Note that Ω separates the points of A if and only if A is semisimple. THEOREM 2.5. Let A be a commutative Banach algebra with maximal ideal space ΔA and let $\Omega = \operatorname{cl}(\operatorname{sp}(\Delta A))$. Then A has property $\operatorname{P2}(\Omega)$ if and only if $\operatorname{Hom}_{A}(A, \Omega^{*}) \cong (A \circ \Omega)^{*}$. Proof. (=). This follows immediately from Theorem 2.1, since $M(A) = M_R(A) \rightarrow \text{Hom}_A(A, \Omega^*)$ is a vector space homomorphism. (\Rightarrow) . It suffices to show that, if $T \in \operatorname{Hom}_{\mathcal{A}}(A, \Omega^*)$ then g_T in K^{\perp} is also in $(\ker B)^{\perp}$. Toward this end, fix T in Hom $_{\perp}(A, \Omega^*)$. Now given χ in ΔA , $\chi a = \langle \chi, a \rangle \chi$, for every a in A. Choose e in A so that $\langle \chi, e \rangle = 1$; then $\gamma e = \gamma$, and $$egin{aligned} \langle T^*\chi, a angle &= \langle \chi, Ta angle &= \langle \chi, e(Ta) angle \ &= \langle \chi, T(ea) angle &= \langle \chi, T(ae) angle &= \langle \chi, a(Te) angle \ &= \langle \chi a, Te angle &= \langle \chi, a angle \langle \chi, Te angle, \end{aligned}$$ for all a in A. Hence, $T^*\chi = \langle \chi, Te \rangle \chi \in \operatorname{sp}(\Delta A)$, and so $T^*(\Delta A) \subseteq \operatorname{sp}(\Delta A)$; whence, by the linearity and continuity of T^* , $T^*(\Omega) \subseteq \Omega$. Next, suppose that $t = \sum_{k=0}^{\infty} a_k \otimes f_k \in \ker B$; then $$g_T(t) = \sum_{k=1}^{\infty} \langle f_k, Ta_k \rangle = \sum_{k=1}^{\infty} \langle T^* f_k, a_k \rangle,$$ and since A has $P2(\Omega)$ (see Theorem 2.1), $$egin{aligned} g_T(t) &= \lim_\lambda \sum_{k=1}^\infty \langle T^*f_k, a_k u_\lambda angle &= \lim_\lambda \sum_{k=1}^\infty \langle f_k, a_k (Tu_\lambda) angle \ &= \lim_\lambda \sum_{k=1}^\infty \langle f_k a_k, Tu_\lambda angle &= \lim_\lambda \langle B(t), Tu_\lambda angle &= 0 \,. \end{aligned}$$ Therefore, $g_T \in (\ker B)^{\perp}$ as desired. In the setting of Theorem 2.5, it is more convenient to work with ΔA rather than Ω . Indeed, every commutative Banach algebra A possesses a ΔA -approximate identity, directed by the finite subsets of ΔA , and composed of the quasi-product of elements e_i , where $\langle \gamma_i, e_i \rangle = 1$, and $\{\chi_i: i=1,\ldots,n\}$ is a finite subset of ΔA . Using standard estimates, it follows that an operator-bounded $\triangle A$ -approximate identity is also an operator-bounded Ω -approximate identity, where $\Omega = \operatorname{cl}(\operatorname{sp}(\Delta A))$. Hence, a commutative Banach algebra possessing an operator-bounded AAapproximate identity has property $P2(\Omega)$. III. Norm-bounded Ω -approximate identities. The presence of an operator-bounded right Ω -approximate identity guarantees that A has property $P2(\Omega)$ (Corollary 2.2) and, therefore, that M(A) can be represented in $(A \circ \Omega)^*$. In this section, we investigate $(A \circ \Omega)^*$ as a Banach algebra (under Arens product) for certain right Banach A-submodules Ω of A^* when A possesses a norm-bounded right Ω -approximate identity. Arens products on A^{**} are defined in the following way. If $a \in A$, $f \in A^*$, and $\varphi \in A^{**}$, then $f^a, f^{\varphi}, f_{\varphi}$ are those elements of A^* defined by: $\langle f^a, b \rangle$ $= \langle f, ba \rangle, b \in A; \langle f^{\varphi}, a \rangle = \langle fa, \varphi \rangle, \ a \in A; \langle f_{\varphi}, a \rangle = \langle f^{a}, \varphi \rangle, \ a \in A. \ \text{Finally,} \ \text{if} \ \varphi, \ \psi \in A^{**}, \ \text{then the Arens products} \ \varphi \circ \psi \ \text{and} \ \varphi \psi \ \text{are those elements} \ \text{of} \ A^{**} \ \text{defined by:} \ \langle f, \varphi \circ \psi \rangle = \langle f_{\varphi}, \psi \rangle, \ \text{and} \ \langle f, \varphi \psi \rangle = \langle f^{\psi}, \varphi \rangle, \ f \in A^{*}. \ \text{The above definitions for Arens products are taken from} \ [14], \ \text{as are the following definitions.} \ \text{An element} \ f \ \text{in} \ A^{*} \ \text{is} \ \textit{weakly almost periodic} \ \text{(resp.,} \ \textit{almost periodic}) \ \text{if the set} \ \{f^{a}: \ a \in A, \ \|a\| \leqslant 1\} \ \text{(equiv., the set} \ \{fa: \ a \in A, \ \|a\| \leqslant 1\} \ \text{is} \ \text{relatively compact in the weak (resp., norm)} \ \text{topology on} \ A^{*}. \ \text{The linear subspace} \ \mathfrak{B} \ \text{(resp.,} \ \mathfrak{A}) \ \text{of all weakly almost periodic} \ \text{functionals in} \ A^{*} \ \text{is norm-closed.}$ Throughout this section, unless expressly stated otherwise, Ω will be assumed to be a closed subspace of \mathfrak{B} . Further, in the spirit of [14], it is assumed that Ω is a Banach A-subbimodule of \mathfrak{B} under the two pre-Arens products fa and f^a , $a \in A$, $f \in \Omega$; this is equivalent ([14], Thm. 3.1) to f_{φ} and f^{φ} belonging to Ω , for all $f \in \Omega$, $\varphi \in A^{**}$. Under these assumptions, Ω^{\perp} is a two-sided ideal in A^{**} in each of the Arens products, and the two Arens products coincide on $\Omega^* = A^{**}/\Omega^{\perp}$ ([14], Thm.'s 3.2, 3.4). Thus the product of two elements in Ω^* is obtained by extending them to A^* , computing either Arens product of the extensions in A^{**} , and then restricting to Ω . For notational convenience, the same symbol will sometimes be used for a functional in Ω^* and an extension of it in A^{**} . If Ω is an arbitrary right Banach A-submodule of A^* , then $\Omega_e = \operatorname{cl}(\operatorname{sp}\{fa\colon f\in\Omega,\ a\in A\})$ is called the essential part of Ω and is again a right Banach A-submodule of A^* ([16], Def. 3.5). If $\Omega=\Omega_a$, then Ω is said to be an essential right Banach A-module. The following proposition and corollaries interpret this concept in our setting. PROPOSITION 3.1. Let A be a Banach algebra and let Ω be an arbitrary right Banach A-submodule of A^* which is also a left A^{**} -module (i.e., $f^{\varphi} \in \Omega$, all $f \in \Omega$, $\varphi \in A^{**}$). If A possesses a bounded right Ω -approximate identity $\{u_{\lambda}\}$, then Ω is essential if and only if $fu_{\lambda} \to f$ weakly, for all f in Ω . Proof. (<-). This is clear, since $\{fu_{\lambda}\}\in \Omega_{e}$, and Ω_{e} is norm (hence, weakly) closed. (\Rightarrow) . First, if $f \in \Omega$, $\alpha \in A$, then $$\langle (fa)u_{\lambda}, \varphi \rangle = \langle f, (au_{\lambda})\varphi \rangle = \langle f^{\varphi}, au_{\lambda} \rangle \rightarrow \langle f^{\varphi}, a \rangle = \langle fa, \varphi \rangle,$$ for all $\varphi \in A^{**}$; thus, $(fa)u_{\lambda} \rightarrow fa$ weakly. It follows immediately that $gu_{\lambda} \rightarrow g$ weakly, for every $g \in \operatorname{sp}\{fa\colon f \in \Omega,\ \alpha \in A\}$. For an arbitrary f in $\Omega = \Omega_e$, we argue as follows. Let $\varepsilon > 0$ and $\varphi \in A^{**}$ be given, and let $$M = (\sup\{\|u_{\lambda}\|: \lambda\} + 1)(\|\varphi\| + 1) < +\infty.$$ $-g, \varphi\rangle| < \varepsilon/2$. For each such λ , $$\begin{split} |\langle fu_{\lambda} - f, \varphi \rangle| \leqslant |\langle (f - g)u_{\lambda} - (f - g), \varphi \rangle| + |\langle gu_{\lambda} - g, \varphi \rangle| \\ < \|f - g\|(\|u_{\lambda}\| + 1)\|\varphi\| + \varepsilon/2 < \varepsilon/2 + \varepsilon/2 = \varepsilon. \quad \blacksquare \end{split}$$ COROLLARY 3.2. Under the hypotheses of Proposition 3.1, if $\Omega = \Omega_e$, then $\{u_i\}$ is a (bounded) left Ω -approximate identity as well. COROLLARY 3.3. Let A be a Banach algebra and let Ω be a Banach A-subbimodule of \mathfrak{M} . Then the following statements are equivalent. - (1) A has a bounded right Ω -approximate identity $\{u_{\lambda}\}$, and Ω is essential. - (2) A has a bounded two-sided Ω -approximate identity $\{u_{\lambda}\}$. Proof. $((1) \Rightarrow (2))$. Corollary 3.2. $((2)\Rightarrow(1))$. If $f\in\Omega$, then, since $\Omega\subseteq\mathfrak{B}$, the net $\{fu_{\lambda}\}$ has a weakly convergent subnet with limit g in Ω_{\bullet} . However, the fact that $\{u_{\lambda}\}$ is a left Ω -approximate identity implies that $\{fu_{\lambda}\}$ converges weak* to f. Thus, $f=g\in\Omega_{\bullet}$. Now, $A \circ \Omega = (A \otimes \Omega)/\ker B$ is isometrically isomorphic to the image Z of B in Ω equipped with the quotient norm $|\cdot|$; more precisely, $$Z = \left\{h \in \varOmega \colon \ h \, = \, \sum_{k=1}^{\infty} f_k a_k \, = \, B(t), \ \ t \, = \, \sum_{k=1}^{\infty} a_k \otimes f_k \in A \, \widehat{\otimes} \, \Omega \right\}$$ and $$|h| = \inf \Big\{ \sum_{k=1}^{\infty} \|a_k\| \, \|f_k\| \colon \ h \, = \sum_{k=1}^{\infty} f_k \, a_k \in Z \Big\},$$ for h in Z. With respect to the norm $\|\cdot\|$ that Z inherits from Ω (or A^*), $\|h\| \leq |h|$, for all $h \in Z$. If A possesses a bounded right approximate identity $\{u_{\lambda}\}$ ($\|u_{\lambda}\| \leq M$, for all λ) and if $\Omega = A_{\epsilon}^* = \operatorname{cl}(\operatorname{sp}\{fa\colon a\in A,\ f\in A^*\})$, then by the Hewitt-Cohen factorization theorem, $\Omega = \{fa\colon a\in A,\ f\in \Omega\}$; in particular, Ω is essential. Hence, $\{u_{\lambda}\}$ is a (bounded) two-sided Ω -approximate identity (Corollary 3.2). Moreover, since $|fau_{\lambda}-fa| \leq ||f|| \|au_{\lambda}-a\|_{\stackrel{>}{\to}} 0$ and $|fau_{\lambda}| \leq M \|fa\|$, $f\in \Omega$, $a\in A$, it follows that $\|fa\| \leq |fa| \leq M \|fa\|$, for all $f\in \Omega$, $a\in A$; thus, $A\circ\Omega\cong(Z,|\cdot|)$ is topologically isomorphic to Ω . At the same time, it is easily seen [12] that $A\circ A^*$ is topologically isomorphic to Ω . Hence, by Corollaries 2.2 and 2.3, $\operatorname{Hom}_A(A,A^{**})\cong(A\circ A^*)^*$ and $\operatorname{Hom}_A(A,\Omega^*)\cong(A\circ\Omega)^*$ are topologically isomorphic to each other and to Ω^* . It is a natural problem then to consider the equivalence of the two norms $\|\cdot\|$ and $|\cdot|$ on Z for other choices of Ω . THEOREM 3.4. Let A be a Banach algebra and let Ω be a Banach A-sub-bimodule of \mathfrak{M} . Then the statements: - (1a) A possesses a bounded two-sided Ω -approximate identity. - (1b) Ω^* has a two-sided identity. are equivalent, as are the statements: - (2a) $Z = \Omega$, as sets. - (2b) Ω is essential, and $A \circ \Omega$ and Ω have equivalent norms. Moreover, $(1) \Rightarrow (2)$ and, if A has property $P2(\Omega)$, then $(2) \Rightarrow (1)$. Proof. ((1a) \Rightarrow (1b)). Let $\{u_{\lambda}\}$ be a bounded two-sided Ω -approximate identity for A, and let $\|u_{\lambda}\| \leq M$, for all λ . Then $\{u_{\lambda}\}$ is a bounded net in A^{**} and, as such, has a $\sigma(A^{**}, A^*)$ -convergent subnet (still written $\{u_{\lambda}\}$) with $\sigma(A^{**}, A^*)$ -limit E in A^{**} , $\|E\| \leq M$. Since $\Omega \subseteq A^*$, $E \in \Omega^*$ and $\|E\|_{\Omega^*} \leq \|E\| \leq M$. Further, if $\varphi \in \Omega^*$, then $$\langle f, E\varphi \rangle = \langle f^{\varphi}, E \rangle = \lim_{\lambda} \langle f^{\varphi}, u_{\lambda} \rangle = \lim_{\lambda} \langle fu_{\lambda}, \varphi \rangle = \langle f, \varphi \rangle,$$ for all f in Ω (see Proposition 3.1), so $E\varphi=\varphi$ in Ω^* . On the other hand, if $f\in\Omega$, then $$\langle f^E, a \rangle = \langle fa, E \rangle = \lim_{\lambda} \langle fa, u_{\lambda} \rangle = \lim_{\lambda} \langle f, au_{\lambda} \rangle = \langle f, a \rangle,$$ for all a in A; hence, $f^E = f$, and so $$\langle f, \varphi E \rangle = \langle f^E, \varphi \rangle = \langle f, \varphi \rangle,$$ for all φ in Ω^* . $((1b)\Rightarrow(1a))$. Let E be a two-sided identity in Ω^* with $||E||_{\Omega^*}=M$, and let E' be a norm-preserving extension of E to A^* . Then there exists a net $\{u_{\lambda}\}$ in A, $||u_{\lambda}|| \leq M$, for all λ , such that E' is the $\sigma(A^{**}, A^*)$ -limit of $\{u_{\lambda}\}$. It follows immediately that $\{u_{\lambda}\}$ is a two-sided Ω -approximate identity for A. $((2a)\Rightarrow(2b))$. Since $Z\subseteq\Omega_e$ always, (2a) implies that Ω is essential. In addition, the map $A\circ\Omega\hookrightarrow\Omega$ is a norm-decreasing vector space isomorphism which is onto by (2a); hence, $A\circ\Omega$ and Ω have equivalent norms by the open mapping theorem. $((2b)\Rightarrow(2a))$. Since $A\circ\Omega$ and Ω have equivalent norms, Z is closed in Ω and, since Z is dense in Ω_a , $Z=\Omega$. $((1)\Rightarrow(2))$. Let E be an identity for Ω^* , ||E||=M, and let E' be an norm-preserving extension of E to A^* . Now, if $T\in B(A,\Omega^*)$, then $T^{**}(E')\in \Omega^{****}$ and, by restriction to $\Omega\subseteq \Omega^{**}$, defines a unique element φ_T in Ω^* . The resulting map $T\mapsto \varphi_T$ is linear and continuous with $||\varphi_T|| \leq ||T^{**}(E')|| \leq M||T||$. Moreover, if $\varphi\in\Omega^*$ and R_φ in $B(A,\Omega^*)$ is defined by $R_\varphi(a)=a\varphi$, then $\varphi_{R_\varphi}=\varphi$. Indeed, it is immediate that $R^*_\varphi(f)=f^\varphi$, for $f\in\Omega$, and so $\langle f,R^{**}_\varphi(E')\rangle=\langle f,E\varphi\rangle=\langle f,\varphi\rangle$, for all f in Ω . Therefore, the map $R\colon \Omega^*\to B(A,\Omega^*)$ defined by $\varphi\mapsto R_\varphi$ is a norm-decreasing linear isomorphism with $\|R_{\varphi}\| \leqslant \|\varphi\| = \|\varphi_{R_{\varphi}}\| \leqslant M \|R_{\varphi}\|$; hence, R imbeds \mathcal{Q}^* in $B(A, \mathcal{Q}^*)$ as a closed subspace with an equivalent norm. Now, since $A \circ \Omega \cong (Z, |\cdot|) \subseteq (\Omega, ||\cdot||)$ and $||h|| \leqslant |h|$, for all $h \in Z$, statement (2) holds if $(A \circ \Omega)^*$ and Ω^* are topologically isomorphic. However, if $\varphi \in \Omega^*$, then it is routine to verify that $g_{R_{\varphi}} = B^*(\varphi)$ in $(\ker B)^{\perp} = (A \circ \Omega)^*$. Further, B^* is a norm-decreasing vector space isomorphism (if $B^*(\varphi) = B^*(\psi)$, then $\varphi = \psi$ on Z, and Z is dense in Ω by Corollary 3.3) from Ω^* onto a $\sigma = \sigma((A \otimes \Omega)^*, A \otimes \Omega)$ — dense subspace $B^*(\Omega^*)$ of $(\ker B)^{\perp} = (A \circ \Omega)^*$. Thus, if $B^*(\Omega^*)$ is σ -closed, then B^* is onto, and $(A \circ \Omega)^*$ and Ω^* are topologically isomorphic by the open mapping theorem. By the Krein-Smulian theorem ([18], Cor. to Thm. 6.4, p. 152), $B^*(\Omega^*)$ is σ -closed in $(A \otimes \Omega)^*$ if $B^*(\Omega^*) \cap S_1$ is σ -closed, where S_1 is the closed unit ball in $(A \otimes \Omega)^*$. But, if $\{B^*(\varphi_r)\}_r$, is a σ -Cauchy net in $B^*(\Omega^*) \cap S_1$, then, for each $f \in \Omega$, $a \in A$, the net $\{\langle fa, \varphi_r \rangle\}_r$, converges. Since $\{\varphi_r\}_r$ is bounded in Ω^* , with $\|\varphi_r\| \leq M$ for all γ , the formula: $\langle fa, \varphi \rangle = \lim_r \langle fa, \varphi_r \rangle$, $f \in \Omega$, $a \in A$, defines an element φ of Ω^* with $\|\varphi\| \leq M$. It follows immediately that $B^*(\varphi) = \sigma - \lim_r B^*(\varphi_r)$ in $(A \otimes \Omega)^*$ and, since S_1 is σ -closed, $B^*(\varphi) \in B^*(\Omega^*) \cap S_1$. Thus, the proof of $((1) \Rightarrow (2))$ is complete. $((2)\Rightarrow(1);\ A\ \text{has}\ P2(\Omega))$. Since $A\ \text{has}\ \text{property}\ P2(\Omega)$, the evaluation map $\xi\in(A\circ\Omega)^*$; hence, by (2), there is a unique element E in Ω^* such that $\xi=B^*(E)$. Because $\langle f^E,a\rangle=\langle fa,E\rangle=\xi(a\otimes f)=\langle f,a\rangle$, for all a in A, $f^E=f$, for all f in Ω ; consequently, $\varphi E=\varphi$, for all φ in Ω^* . On the other hand, if $\varphi\in\Omega^*$, then $\langle fa,E\varphi\rangle=\langle f^\varphi,aE\rangle=\langle f^\varphi,a\rangle=\langle fa,\varphi\rangle$, for all $f\in\Omega$, $a\in A$; thus, since Ω is essential, $E\varphi=\varphi$. Theorem 3.4 provides an interpretation of a well-known multiplier representation theorem. If A is a commutative semisimple Banach algebra with a bounded ΔA -approximate identity $\{u_{\lambda}\}$, then $\{u_{\lambda}\}$ is a (bounded) approximate identity for $\Omega=\operatorname{cl}(\operatorname{sp}(\Delta A))$. Hence, Theorem 3.4, together with Theorem 2.5, implies that $\operatorname{Hom}_A(A, \Omega^*)$ is topologically isomorphic to Ω^* . Further, since A is semi-simple, the canonical map $M(A) \hookrightarrow \operatorname{Hom}_A(A, \Omega^*)$ is a norm-decreasing vector space isomorphism. Thus, $M(A) \hookrightarrow \Omega^*$ and this map is the continuous algebra isomorphism (Ω^* is a commutative Banach algebra) described by Birtel ([1], Sec. 3). In addition, Theorem 3.4 implies that such a representation of M(A) exists, if and only if A has a bounded ΔA -approximate identity, showing Birtel's assumption is best possible. If Ω satisfies statement (1) of Theorem 3.4, then A has property $\operatorname{P2}(\Omega)$ (Corollary 2.2), and by Theorem 3.4, $(\ker B)^{\perp} = (A \circ \Omega)^*$ is topologically isomorphic to Ω^* . In the case discussed above, $(\ker B)^{\perp} = K^{\perp}$; thus, $\operatorname{Hom}_{\mathcal{A}}(A, \Omega^*) \cong (A \circ \Omega)^*$ and a representation of $\operatorname{Hom}_{\mathcal{A}}(A, \Omega^*)$ in Ω^* follows. In general, however, it seems that only the containment $(\ker B)^{\perp} \subseteq K^{\perp}$ obtains. Consequently, a description of the elements of $\operatorname{Hom}_{A}(A, \Omega^{*})$ which are represented by elements of Ω^{*} or, equivalently, of the subspace of $\operatorname{Hom}_{A}(A, \Omega^{*})$ corresponding to $(A \circ \Omega)^{*}$ is in order. PROPOSITION 3.5. Let A be a Banach algebra, and let Ω be a Banach A-subbimodule of \mathfrak{M} . If A possesses a bounded right Ω -approximate identity, then an element T in $\operatorname{Hom}_A(A, \Omega^*)$ is of the form R_{φ} , for some φ in Ω^* , if and only if $T^*\Omega \subseteq \Omega$. Proof. Since $R_{\varphi}^*(f) = f^{\varphi}$, for all $f \in \Omega$, the implication (\Rightarrow) is clear. For the reverse implication (\Leftarrow) , let $\varphi = \varphi_T$, where φ_T is as defined in the proof of Theorem 3.4 $((1)\Rightarrow(2))$. Then for each $a \in A$, $f \in \Omega$, $$\langle f, R_{\varphi}(a) \rangle = \langle fa, T^{**}(E') \rangle = \langle T^{*}(fa), E' \rangle = \langle (T^{*}f)a, E' \rangle$$ $$= \lim_{\lambda} \langle T^{*}f, au_{\lambda} \rangle = \langle T^{*}f, a \rangle = \langle f, Ta \rangle;$$ hence, $T=R_{\varphi}$. If Ω is an arbitrary Banach A-subbimodule of \mathfrak{B} , then it is not to be expected that $\mathrm{Hom}_{\mathcal{A}}(A,\,\Omega^*)\cong (A\circ\Omega)^*$, even when A has property $\mathrm{P2}(\Omega)$. However, for the special cases $\Omega=\mathfrak{B},\,\mathfrak{A}$, property $\mathrm{P2}(\Omega)$ does suffice. PROPOSITION 3.6. Let A be a Banach algebra and let $\Omega = \mathfrak{M}, \mathfrak{A}$. Then A has property $\operatorname{P2}(\Omega)$ if and only if $\operatorname{Hom}_A(A, \Omega^*) \cong (A \circ \Omega)^*$. Proof. It suffices to prove that $T^*\Omega \subseteq \Omega$, for all $T \in \operatorname{Hom}_{\mathcal{A}}(A, \Omega^*)$. Let $f \in \Omega$ and let $O_L(f) = \{fa: a \in A, ||a|| \leq 1\}$. Then $$\begin{aligned} O_L(T^*f) &= \{ (T^*f) \, a \colon a \in A \,, \ \|a\| \leqslant 1 \} = \{ T^*(fa) \colon a \in A \,, \ \|a\| \leqslant 1 \} \\ &= T^*(O_L(f)) \,. \end{aligned}$$ Thus, if $f \in \mathfrak{W}(\mathfrak{A})$, then $T^*f \in \mathfrak{W}(\mathfrak{A})$ ([14], Thm.'s 2.1, 2.2). COROLLARY 3.7. If A is a Banach algebra possessing P2(\mathfrak{M}), then $\operatorname{Hom}_{A}(A, \Omega^{*}) \cong (A \circ \Omega)^{*}$, for every Banach A-subbimodule Ω of \mathfrak{M} . Proof. Let $T \in \operatorname{Hom}_A(A, \, \Omega^*)$, and let g_T be the corresponding element of K^\perp . It suffices to show that $g_T \in (\ker B)^\perp$. Now, from the previous proposition, $T^*\Omega \subseteq \mathfrak{B}$. Hence, if $t = \sum\limits_{k=1}^\infty a_k \otimes f_k \in \ker B \subseteq A \otimes \Omega$, then, since A has $\operatorname{P2}(\mathfrak{W})$, $$\begin{split} g_T(t) &= \sum_{k=1}^{\infty} \langle f_k, T a_k \rangle = \sum_{k=1}^{\infty} \langle T^* f_k, a \rangle \\ &= \lim_{\lambda} \sum_{k=1}^{\infty} \langle T^* f_k, a_k u_{\lambda} \rangle = \lim_{\lambda} \sum_{k=1}^{\infty} \langle f_k, a_k (T u_{\lambda}) \rangle \\ &= \lim_{\lambda} \langle B(t), T u_{\lambda} \rangle = 0 \,, \end{split}$$ where $\{u_{\lambda}\}$ is the net of Theorem 2.1. If $T^*\Omega\subseteq\Omega$, for all $T\in\mathrm{Hom}_{\mathcal{A}}(A\,,\,\Omega^*)$, then $\mathrm{Hom}_{\mathcal{A}}(A\,,\,\Omega^*)$ becomes a Banach algebra under the product $$\langle f, (ST)a \rangle = \langle S^*f, Ta \rangle, \quad f \in \Omega, \ a \in A,$$ where $S, T \in \operatorname{Hom}_A(A, \Omega^*)$ (see [6] for more details). Using this fact, we obtain a generalization of ([9], Thm. 3.1) and ([13], Thm. 2.1) for L-algebras (i.e., Banach algebras which are complex L-spaces ([14], [20])). Now, the dual A^* of an L-algebra A is a commutative von Neumann algebra and, in the following theorem, Ω will be a \mathcal{O}^* -subalgebra of A^* ; hence, $\Omega \cong \mathcal{O}_0(\Gamma)$, where Γ is the maximal ideal space of Ω equipped with the usual Gelfand topology, and so $\Omega^* \cong M(\Gamma)$. The Banach space $M(\Gamma)$ is a Banach algebra under a generalized convolution product ([14], Eqn. 5.2). Let $\pi' \colon A \to M(\Gamma)$ be the canonical map given in ([14], Thm. 5.1). THEOREM 3.8. Let A be an L-algebra and let Ω be a Banach A-sub-bimodule of $\mathfrak W$ which is a *-subalgebra of A*. Suppose that A possesses a right $\mathfrak F$ -approximate identity bounded by one, where $\mathfrak F=\mathfrak A$ if $\Omega=\mathfrak A$ and $\mathfrak F=\mathfrak W$ if $\Omega\neq\mathfrak A$. Then $\operatorname{Hom}_A(A,M(\Gamma))$ is isometrically algebra anti-isomorphic to closed subalgebra of $M(\Gamma) \cong \Omega^*$ via the map $T \mapsto \mu_T$, where T and μ_T satisfy $Ta = \pi'(a) *\mu_T$, $a \in A$. The map $T \mapsto \mu_T$ is onto $M(\Gamma)$ if and only if Ω is an essential right Banach A-module. Proof. Let $\{u_{\lambda}\}$ be a right \mathfrak{F} -approximate identity, $\|u_{\lambda}\| \leq 1$ for all λ , and let E be the $\sigma(A^{**}, A^*)$ limit of a subnet (still written $\{u_{\lambda}\}$) of $\{u_{\lambda}\}(\|E\| \leq 1)$. Then it is routine to show that $f^{E} = f$ for all $f \in \mathfrak{F}$ and so $\langle f, \varphi E \rangle = \langle f, \varphi \rangle$ for all $f \in \mathfrak{F}$, $\varphi \in A^{**}$. Let $T \in \operatorname{Hom}_{A}(A, \Omega^{*})$, and let φ_{T} be the restriction $T^{**}(E)$ to Ω . Clearly, $\|\varphi_{T}\| \leq \|T^{**}(E)\| \leq \|T\|$. Moreover, if $f \in \Omega \subseteq \mathfrak{F}$, then, since $T^{*}\mathfrak{F} \subseteq \mathfrak{F}$ by Proposition 3.6, $$\langle f, a\varphi_T \rangle = \langle fa, T^{**}(E) \rangle = \langle T^*(fa), E \rangle$$ = $\langle T^*f, aE \rangle = \langle T^*f, a \rangle = \langle f, Ta \rangle, \quad a \in A.$ Hence, $Ta = a\varphi_T$ for all $a \in A$, whence $||T|| \leq ||\varphi_T||$ and $T = R_{\varphi_T}$; so by Proposition 3.5, $T^*\Omega \subseteq \Omega$ for all $T \in \operatorname{Hom}_A(A, \Omega^*)$. It follows that the isometry $T \mapsto \varphi_T$ from $\operatorname{Hom}_A(A, \Omega^*)$ into Ω^* is an algebra anti-isomorphism. For if $S, T \in \operatorname{Hom}_A(A, \Omega^*)$, then for all $f \in \Omega$, $a \in A$, $$\langle (ST)^*f, a \rangle = \langle f, (ST)a \rangle = \langle S^*f, Ta \rangle$$ $$= \langle S^*f, a\varphi_T \rangle = \langle (S^*f)^{\varphi_T}, a \rangle,$$ and $$\langle S^*f, a \rangle = \langle f, Sa \rangle = \langle f, a\varphi_S \rangle = \langle f^{\varphi_S}, a \rangle;$$ hence, 14 $$\langle f, a\varphi_{ST} \rangle = \langle fa, (ST)^{**}(E) \rangle = \langle (ST)^*f, aE \rangle = \langle (ST)^*f, a \rangle = \langle (S^*f)^{\varphi_T}, a \rangle = \langle (f^{\varphi_S})^{\varphi_T}, a \rangle = \langle f, a\varphi_T \varphi_S \rangle.$$ Further, the map $\varphi_{\tau} \mapsto \mu_{\tau}$ from Ω^* into $M(\Gamma)$ is an isometric algebra isomorphism by ([14], Thm. 5.1) and hence the composite map $T \mapsto \varphi_T \mapsto \mu_T$ is an isometric algebra anti-isomorphism of $\operatorname{Hom}_{A}(A, \Omega^{*})$ into $M(\Gamma)$ with $Ta = a\varphi_T \mapsto \pi'(a) * \mu_T$, $a \in A$. Now, if Ω is an essential right Banach A-module, then the hypotheses. imply that $\operatorname{Hom}_{A}(A, \Omega^{*}) \cong (A \circ \Omega)^{*} \cong \Omega^{*} \cong M(\Gamma)$ (the fact that the F-approximate identity is bounded by one yields $A \circ \Omega \cong \Omega$) as Banach spaces, with the isometry implemented as above (for $T \in \text{Hom}_A(A, \Omega^*)$), the φ_T defined above is the φ_T defined in the proof of Theorem 3.4 $((1) \mapsto (2))$. Hence, the mapping $T \mapsto \mu_T$ from $\operatorname{Hom}_A(A, \Omega^*)$ to $M(\Gamma)$ is onto. Conversely, if $\operatorname{Hom}_A(A, \Omega^*) \cong M(\Gamma) \cong \Omega^*$, then $(A \circ \Omega)^* \simeq \Omega^*$, and $Z = \Omega$. as sets (see proof of Theorem 3.4 ((1) \Rightarrow (2))). Thus, Ω is essential by Theorem 3.4. ■ If, in addition to satisfying the hypotheses of Theorem 3.8, Ω separates the points of A, then A is isometrically imbedded in $M(\Gamma)$ via the canonical map π' : $A \to M(\Gamma)$ ([14], Thm. 5.1). Hence, the norm-decreasing algebra homomorphism from $M_R(A)$ into $\operatorname{Hom}_A(A, M(\Gamma))$ is an isometry, and so the map $T \mapsto \mu_T$ from $M_R(A)$ into $M(\Gamma)$ is also an isometry. In this manner, Theorem 3.8 is seen to be an extension of ([13], Thm. 2.1, Cor. 2.2) in which A is assumed to possess a right norm approximate identity bounded by one; moreover, $\{u_{\lambda}\}$ is a left Ω -approximate identity as well if and only if Ω is essential and $\operatorname{Hom}_A(A, M(\Gamma)) \cong M(\Gamma)$. It should be noted that if it is known that $T^*\Omega \subseteq \Omega$, for all $T \in \operatorname{Hom}_{\mathcal{A}}(A, \Omega^*)$, then the \Re -approximate identity assumption can be weakened to assuming only an Ω -approximate identity. When A is a convolution measure algebra (CMA), both $\mathfrak B$ and $\mathscr A$ are *-subalgebras of A^* containing the identity ([20], Lemma 3.2). In addition, if Ω is a Banach A-subbimodule of $\mathfrak W$ which is a C^* -subalgebra of $\mathfrak W$ containing the identity of A^* , then Γ is a compact semigroup ([14], Cor. 5.3). As an easy consequence of Theorem 3.4, the existence of an identity in Γ is characterized (cf. [20], Sec. 4, Remark and [8], Cor. 3.2). Proposition 3.9. Let A be a convolution measure algebra and Ω be a Banach A-subbimodule of M which is a C*-subalgebra of A* containing the identity of A^* . Then A possesses a two-sided Ω -approximate identity bounded by one if and only if Γ has a two-sided identity. Proof. From Theorem 3.4, A has a two-sided Ω -approximate identity bounded by one if and only if $\Omega^* = M(\Gamma)$ has a two-sided identity of norm one, which is equivalent to Γ having an identity ([18], Prop. 1.6.6, [3], Lemma V.8.6). ## References - [1] F. T. Birtel, On the commutative extension of a Banach algebra, Proc. Amer. Math. Soc. 13 (1962), 815-822. - [2] C. V. Comisky, Multipliers of Banach modules, Nederl. Akad. Wetensch. Proc. Ser. A 74 (1971), 32-38. - [3] N. Dunford and J. T. Schwartz, Linear operators I, Pure and Applied Mathematics Series, vol. VII, Interscience, New York 1958. - [4] B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299-320. - [5] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. - C. A. Jones, Approximate identities and multipliers of Banach algebras, Dissertation, Dartmouth College, 1978. - [7] C. A. Jones and C. D. Lahr, Weak and norm approximate identities are different, Pacific J. Math. 72 (1977), 99-104. - [8] C. D. Lahr, Approximate identites for convolution measure algebras, ibid. 47 (1973), 147-159. - [9] Multipliers for certain convolution measure algebras, Trans. Amer. Math. Soc. 185 (1973), 165-181. - [10] R. Larsen, Factorization and multipliers of Segal algebras, preprint, University of Oslo, 1974. - [11] L. Máté, The Arens product and multiplier operations, Studia Math. 28 (1967), 227-234. - [12] On representation of module-homomorphisms (multipliers), Studia Sci. Math. Hungar, 8 (1973), 187-192. - [13] S. A. McKilligan, On the representation of the multiplier algebras of some Banach algebras, J. London Math. Soc. (2) 6 (1973), 399-402. - [14] S. A. McKilligan and A. J. White, Representations of L-algebras, Proc. London Math. Soc. (3) 25 (1972), 655-674. - [15] H. Reiter, L¹-algebras and Segal algebras, Lecture Notes in Math., vol. 231. Springer-Verlag, Berlin, Heidelberg, New York 1971. - [16] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443-491. - [17] Multipliers and tensor products of L^p-spaces of locally compact groups, Studia Math. 33 (1969), 71-82. - [18] S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, New York, Heidelberg. Berlin 1971. - [19] H. H. Schaefer, Topological vector spaces, Springer-Verlag, New York, Heidelberg, Berlin 1971. - J. L. Taylor, Noncommutative convolution measure algebras, Pacific J. Math. 31 (1969), 809-826. - [21] B. J. Tomiuk, Multipliers on dual A*-algebras, Proc. Amer. Math. Soc. 62 (1977), 259-265. Received May 10, 1979 (1548)