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Weak approximate identities and nrultipliers

by
DAVID L. JOUNSON and CHARLES D. LAHR (Hanover, N.H.)

- Abstract. Let 4 be a Banach algebra and let 2 be a right Banach 4-submodule
of A*. Then Hom 4 (4, Q%) is characterized in terms of dual spaces and approximate
identities for cortain choices of 4 and @ having applications in harmonic analysie.

Tor example, let 4 be an L-algebra, let 2 < W (the space of all weakly almost
periodic functionals in 4%) be a (*.subalgebra of the commutative von Neumann
algebra A*, and suppose that £ is a left A-module as well. Then Q = Gy ("), where I
iy the maximal ideal space of @, and Q* = M (I'). Now, if 4 has a right W-approxi-
mate identity (a.i.) bounded by one, then Hom (4, M (I')) is isometrically algebra
anfi-isomorphic to a closed subalgebra of M (I') via the map T+>uq, where the action
of T is by generalized convolution on the right with ugp. Moreover, the map Tespurp
is onto if and only if € is an ossential right Banach A-module if and only if 4 has
a bounded two-sided Q-a.i. .

It is also proved that if 4 is a convolution meagure algebra and Q (as above)
contains the identity of the von Neumann algebra A*, then A has a two-sided Q-a.i.
bounded by one if and only if the compact semigroup I’ has an indentity.

1. Introduction. Let A be an arbitrary Banach algebra and W
a right Banach A-module. Then Hom,(4, W*) == (A®, W)*, where
A®,W is the (completed) A-tensor product of 4 and W ([16], [17]).
Conerete realizations of Hom, (4, W) have been given in terms of (A®4
@ W)*, (AoW)* (defined below), and W* in cases where more infor-
imation is available about 4 and jor W ([16], [171, [12], (10, [2], [21D). In
this paper, we study Hom,(4, W*) primarily when W = 2 is a right
Banieh A-submodnle of A* end A possesses n right Q-approximate
identity.

Tn Section II, property P2(LQ) is defined (P2 (4% is Maté’s property
o ([LL], [21]) and is shown to be equivalent to 4 possessing a certain
kind of vight Q-wpproximate identity (Theorem 2.1). Applications of
Theorem 2.1 ave made to (noncommutative) Segal nlgebras, and to com-
mubative Banach algebras A with @ = el(sp(zJA)). In the latter case,
P2(0) is cquivalent to Hom, (4, 2%) = (4o 2)* (Theoren 2.5).

Section TIT is devoted to n discussion of Hom (4, 0% for algebras
A possessing & bounded right £-approximadte identity (when Q< 4%
this assumption is weaker Wg A has a bounded right approxi-
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mate identity [7]). Such algebras have property P2(2) (Corollary 2.2).
Typically in Section IIT, £ is a Banach A-subbimodule of MW, the space
of weakly almost periodic functionals in A*. If 4 has a bounded two-
sided Q-approximate identity, them £ is essential (as o right Banach
A-module) and 4o 2 and £ have equivalent norms; the converse holds
provided A has property P2(R) (Theorem 3.4). This result (together
with Theorem 2.5) for 4 commutative and Q = cl(sp(44)) yields Birtol’s
representation of the multiplier algebra of 4 when 4 has a bounded
A4-approximate identity [1].

Now, if 4 is an L-algebra [14], then 4* is a commutative von Newmann
algebra. Suppose that the Banach A-subbimodule @ < I8 is a O*-sub-
algebra of 4* with maximal ideal space I' Then Hom, (4, M(I) is rep-
resented (isometrically and algebra anti-isomorphically) in the Banach
algebra (under generalized convolution) M (I") for algebras A possessing
& right ZB-approximate identity bounded by one (Theorem 3.8), thereby
extending previous representations of the right multiplier algebra M r(4)
of 4 ([13], [9]). A special instance of Theorem 3.8 (see also Corollary 3.3)
is the following. Let G be an arbitrary locally compact group, let 4 = L}(@),
and let 2 be the (*-algebra of (continuous) almost periodic functions on @.
Then

Hole(g)(Ll(G), M(T) == M(I),

where I, the maximal ideal space of £, is the almost periodic (Bohr)
compactification of @ The final result of Section IIT is another appli-
cation of Theorem 3.4 and states that if 4 is a convolution measure algebra
(OMA) and the (*-algebra £ contains the identity of 4%, then A has
a two-sided Q-approximate identity bounded by one if and only if the
compact semigroup I' has an identity. This result was proved in [8] for
semisimple commutative OMA’s 4 with Q = clisp(A4)).

We close the introduction with some definitions, notation, and
basic facts. The projective tengor product A QW of 4 and W is the Banach
Space completion of the algebraic tensor product AQW with respoct
to the greatest cross-norm. Bach tensor £ in A®W has a representation.
of the form

o
t= Za’k®wk1

k=1
where kZ’ llag ol < + oo, and the norm of f in AW is
=1

it Sl = Y aen),

If W is an arbitrary right Banach 4-module, then W* is a left Banach
A-module under the adjoint action of 4 (ie., for a € 4, w* e W*, define
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aw* by {w, aw*) = {wa, w*y, all w € W). The Banach space Hom (4, i)
of all continuous left A-module homomorphisms (i.e., T e B(4, W*) such
that T (ab) = a(Th), all a,b e A) is isometrically isomorphic to the dual
space ((AQW)/K)*, where

K = cl(sp{ab®@w —bQwa: a,becAd,weW})

in AQW ([17], p. 72). In fact, if (A &W)/K)* is identified with the sub-
space K* of (AQW)*, then this isometric isomorphism is simply the
restriction to Hom (4, W*) of the isomefric isomorphism Tw»g, from
B(4, W*) onto (AQW)*, where gp(aQ@w) = <w, Tad, ac A, we W.

Let B: AQW—W Dbe the norm-decreaging linear map defined by
B(a®Qw) = wa, a € A, w € W, and let AoW = (AQW)/ker B with quotient
norm. Then (AoW)* = (kerB)* in (4@ W)*. Further, since K is clearly
contained in kerB, it follows that

(AoW)* = (kerB)* = K+ ~Hom, (4, W*).

II. Property P2(Q). Let 4 = (4, |-]]) be a Banach algebra, let 2
be a closed linear subspace of the dual A* = (A%, {-[|) of A, and suppose
that £ is a right Banach A4-submodule of 4* with respect to the pre-
Arens product fa of fe A%, ae 4, defined by {fa,bd) = {f, abd, be A.
Then A is said to possess property P2(R2) if whenever

D Ifilllagll < +o0,
k=1
fre, a4, and g‘fka,, =0, then
k=1

2 Ty > = 0.
k=1
In terms of the norm-decreasing map B: AQ02—-2 < A* defined above
and the norm-decreasing evaluation map &: AQL—C defined by &(a® f )
= {f, a), property P2(R2) states that kerB < ker£. Property P2 (A*? is
gimply property P2 of M4até [11] and will be denoted as such. Our first
characterizations of property P2(R) involve right Q-approximate iden-
tities and the space M (4) of (continuous) double multipliers of A [4].
THEOREM 2.1. Let A be a Banach algebra and let Q be a right Banach
A-submodule of A*. Then the following statements are equivalent:
(1) The algebra A has property P2(£).
(2) There exists a net {u,} in A such that, if

D lallifill < +o0,

k=1
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a,cd, f,eQ, then

De

Py @y = limy Y ey @02
k=1

1

&
]

(8) The map (8, T)—gy is a wvector space homomorphism from I (A)
into (Ao 2)*

(4) The cvaluation map & is in (Ao Q)" = (kerB)L.

Proof. ((1)<«-(4)). Immediate.

((2)=(3)). The map (8, T)—T from M(A4) into ¥om, (4, 2% is
a vector space homomorphism, and the map T+ g, from Hom (4, Q%)
into (A&2)" is an isometric isomorphism. Thus, it suffices to show that,

it (8,7)eM(4), then gy e (kerB)*. However, if ¢ = 3 ,®f, € ker B,
then, assuming (2), k=1

gr(t) = D) fy Tayy = lim, 3 <fr, (Tag) s>
k=1

le=1

= lim, 2 {Frer @y (Suy)> = lim, < Zfrc“m S%;_>
k=1 k=1

= lim, <B(1), Sugy = 0,

establishing (3). :

((3)=(4)). If I: A—~A ig the identity operator, then the image of
the double multiplier (I, I) in (4o Q)* = (kex B)* is g; = ¢, the evalu-
ation map.

X (4)=(2)). Since BeB(A9Q2,4%), B*eB(4™, (489)"); hence,
BY(4) = (AQQ)*. Now, ift e AQQ and a e 4, then <, B*(a)> = {B(t), a).
(?onsequenﬂy, with respect to the dual pair (AQRQ, (A&L)*> the polar
(in A®Q) of B*(A) is kerB. Thus, the bipolar (in (AQ2)*) of B*(4) is
‘(kerB)l, and so, by the bipolar theorem, B*(4) is weak™*- (ie., c({A &R,
(4®2))) dense in (kerB)-L. Therefore, since £ e (kerB): by hypothuﬁiﬂ,
there exists a net {u;} in 4 such that § = wk*—lim,B*(x,) in (A&Q)",
thereby proving (2). m '

It is readily verified that, if A hag no right annihilators and if 2
ﬁeparates the points of 4, then the map in statement (3) of Theorem 2.1
18 & vector space isomorphism. Further, for an arbitrary Banach algebra
.A, th‘e net {,} in statement (2) iy in particular, a right Q-approximate
1de.'nt1ty; that is, it aed, feQ, then (f,au>— (f, ad. However, the
existence of a right Q-approximate identity does not seem to imply prop-
}erty -P2(Q) without some boundedness assumption on the apprdxiimﬁﬁe
identity. A right Q-approximate identity {u,} for A is said to be opemtor;
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bounded if
sup{llou,f: ae 4, o<1, all i} < +o0.

COROLLARY 2.2. Let A be a Banach algebra and let Q be a right Banach
A-submodule of A*. If A has an operator-bounded right Q-approvimate
identity {u,}, then A has property P2(Q).

Proof. Let

M = sup{laul: a4, ol <1, all 2} < +oo,

and suppose that
1= Zak&fh ekerBc AQQ.

k=1

Then, for each N >0,
&) = 1E() — B, wdl =] 3 ur ax— ) |
k=1

©co

D el

k=N+1

N
<)}§<fk7 %—akua>\+(M+1)

for every i; hence, it follows that

IEBI< M+ D7 [l lagl-
k=N+1

Letting N—co yields &(f) = 0. Thus, £ e (kerB):. =

Tf @ is a compact group and A = IF (@), where 1 <P < + oo, then,
gince A has an operator-bounded (by 1) two-sided approximate identity,
it follows from Corollary 2.2 that A has property P2 (and so P2(Q), for
every right Banach A-submodule 2 of A*). Some of the strength of prop-
erty P2 is revealed in its characterizations below.

COROLLARY 2.3. For a Banach algebra A, the following statements
are equivalent:

(1) A has property P2.

(2) Hom 4 (4, 4™) = (Ao A",

(3) Hom, (4, W*) = (AoW)*, for every right Banach A-module W.

Proof. The equivalence (1)<-(2) is proved in ([21], Thm. 2.3), and
(8)=(2) is clear. To prove that (1)=(3), we first observe that statement
(3) holds if and only if, for every 7 e Hom,(4, W*), the corresponding
g in (AQW)* is contained in (kerB)L. However, if T e Hom (4, W"),
then T* e B(W**, 4*). Thus, for each t = > @, ®w, € kerB,

E=1

gr(t) = ) <y, Tayy = D' (T wy, 45
k=1 k=1
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hence, since 4 has property P2 (see Theorem 2.1),

gp(t) =1lim; D' {T*w,, agu;d = limy ) (w0 (Tus)
k=1

k=1
= lim,1~§_11 wy, @y Ty = lim, (B(2), Tu,y = 0.
k=1

Consequently, g, & (kerB)L and (3) obtains. m

It is clear from the remarks made in the introduction that
Hom, (4, W*) = (AoW)* if and only if K = kerB. Thus, 4 possesses
property P2 if and only if K = kerB for the right Banach A4-module
A* (equivalently, K =kerB for every right Banach A-module W).
Similarly, if 2 is a right Banach A-submodule of A%, then Fom,, (4, 2%)
= (Ao 9)* if and only if K =kerB and, in this case, 4 has propoerty
P2(Q) (by Theorem 2.1, since ¢ is clearly contained in K). However,
the fact that 4 has property P2(£2) does not, in general, seem to imply
that Hom,, (4, 2*) 2« (Ao 2)*, although this implication does hold when-
ever T*Q < Q, for all T in Hom (4, Q%) (see the proof of Theorem 2.5
helow).

If 4 is a symmetric Segal algebra in the sense of Reiter ([15], Sec. 4)
with auxiliary norm |- |lg, then Corollary 2.3’yields our next result, from
which the noncommutative versions of several factorization theorems for
(symmetric) Segal algebras (c.f. [10], Thm.’s 1,2, 3) follow readily.

PrOPOSITION 2.4. Let @ be a locally compact group, let A be a symmetric
Segal algebra in L'(G), and lot W be a right Banach L*(@)-module. Then

Homyg) (4, W*) = Homy (4, W*) and A®ueW = AoW = AQW.

Proof. It iy immediate that W is a right Banach A-module and that
Homgig (4, W*) < Hom, (4, W*). On the other hand, since 4 is dense
in I¢) and W"is a lefs Banaech I'(G)-module, Hom,, (4, W <
Homp g (4, W*). Thus, Homgyg(4, W*) = Hom, (4, W*) and so
AQugW = A® W.

Finally, since 4 is a symmetric Segal algebra, it follows from [15],
D. 34, that 4 possesses an operator-bounded approximate identity. Hence,
4 has property P2 by Corollary 2.2, and by Corollary 2.3 Hom,, (4, W*)
= (AoW)*, implying that AoW = AQ,W. m

If A is a commutative Banach algebra, then one @ of particular
interest is cl(sp(4.4)), the closure in A* of the linear span of the maximal
ideal space 4A of A. Note that £ separates the points of A if and only
if 4 is semisimple.

THEOREM 2.5. Let A be a commutative Banach algebra with maximal
ideal space AA amd let Q = cl(sp(4A4)). Then A has property P2(Q) if
and only if Hom, (4, Q%) =~ (4o Q)"
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Proof. («). This follows immediately from Theorem 2.1, since
M(A) = Mp(4)-Hom, (4, Q%) is a vector space homomorphism.
(=). It suffices to show that, if 7' e Hom, (4, Q%) then g, in Kt is
also in (kerB)'. Toward this end, fix 7 in Hom,(4, Q%). Now given g
in 44, ya = {y, a)>y, for every a in A. Choose ¢ in 4 so that {y, ) = 1;
then ye = yx, and
Iy, 0y = {x, Tay = g6, Tay = (g, ¢(Ta))
= x; T(ea)p = <z, T(ae)> = <y, a(Te)>
= {ya, Tey = {y, a><x, Tey,
for all ain A. Hence, 7%y = {x, Ted> 3 € sp(44), and so T*(44) < sp(44);
whence, by the linearity and continuity of 7%, T%(Q) < Q. Next, suppose

that t = 3 a,®f, ekerB; then
=1

92(t) = Y fur Taydy = DT *Fy 4,
k=1 k=1

and since 4 has P2(£2) (see Theorem 2.1),

grlt) =lim, ) Ty 15 = lim; Y <y axl L)
k=1 k=1

= limlz Sty Ty = 1imKB (1), Tu,> = 0.
k=1

Therefore, gr € (kerB)* as desired. m

In the setting of Theorem 2.5, it is more convenient to work with
AA rather than Q. Indeed, every commutative Banach algebra A possesses
a AA-approximate identity, directed by the finite subsets of A4, and
composed of the quasi-product of elements e;, where {y;, ¢ =1, and
{g;: 42=1,...,n} is a finite subset of 44. Using standard estimates,
it follows that an operator-bounded AA-approximate identity is also an
operator-bounded Q-approximate identity, where 2 = cl{sp(44)). Hence,
a commubative Banach algebra possessing an operator-bounded A4-
approximate identity has property P2(2).

TIl. Nerm-bounded Q-approximate identities. The presence of an
operator-bounded right Q-approximate identity guarantees that A has
property P2 (L) (Corollary 2.2) and, therefore, that M(4) can be rep-
resented in (4 o 2)*. In this section, we investigate (4o 2)* as a Banach
algebra (under Arens product) for certain right Banach A-submodules
0 of A* when A possesses a norm-bounded right Q-approximate identity.
Azens products on A™ are defined in the following way. It a € 4, f e A%,
and g e A*, then f% f%, f, are those elements of A* defined by: {f* b)>
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=<{f1bay,be d;{f*, a> ={fa,p), a € 4;{f,, a> ={f* @), a € A. Finally,
if ¢, y e A™, then the Arvens products poy and gy are those elements
of 4™ defined by: {f,oy) = {(f,, v, and <{f, op> = {f* ¢, fed™.
The above definitions for Arens products are taken from [14], as ave
the following definitions. An element f in A* is weakly almost periodio
(resp., almost periodic) if the set {f*: a A, |a| <1} (equiv., the set
{fa: a4, Jal| <1}) is relatively compact in the weak (resp., norm)
topology on A*. The linear subspace T (resp., M) of all weakly almost
periodie (resp., almost periodie) functionals in A* ig norm-cloged.
Throughout this section, unless expressly stated otherwise, £ will
be agsumed to be a closed subspace of . Further, in the spirit of [147,
it is assumed that 2 is a Banach A-subbimodule of MW under the two
pre-Arens products fa and f% a € 4, f € Q; this is equivalent ([14], Thm.
3.1) to f, and f* belonging to £, for all f € 2, ¢ & A™. Under these assump-
tioms, 2+ is a two-sided ideal in 4™ in each of the Arens products, and
the two Arens produets coincide on 2% = A™/Q+ ([14], Thin’s 3.2, 3.4).
Thus the product of two elements in Q" is obtained by extending them
to A", computing either Arens product of the extensions in A**, and then
restricting to . For notational convenience, the same gymbol will
sometimes be used for a functional in ©* and an extension of it in 4**
I £ is an arbitrary right Banach 4-gsubmodule of A%, then
Q. =cl(sp{fa: fe R, aeA}) is called the essential part of £ and is
again & right Banach A-submodule of 4™ ([16], Def. 3.5). Tt Q = Q,,
then O is said to be an essential right Bamach A-module. The following
proposition and corollaries interpret this concept in our setting.
PROPOSITION 3.1. Let A be a Banach algebra and let Q be an arbitrary
right Banach A-submodule of A* which is also a left A**-module (i.c., f* € Q,
all fe®, ped™). If A possesses a bounded right Q-approvimate identity
{uz}, then Q is essential if and only if fu,~f weakly, for all f in Q.
Proof. («=). This iy clear, since {fu,} € 2,, and Q, is norm (hence,
weakly) closed.
(=). Tirst, if fe Q, ae A, then

for all p € A™*; thus, (fa)u,~fa weakly. Tt follows immediately that gu,->g
weakly, for every g esp{fa: fe 2, a e A}. For an arbitrary fin 2 = @,,
we argue 25 follows. Let & > 0 and ¢ € A™ be given, and lot

M = (sup{luall: 2} +1)(llpll +1) < +oo.!

There exists a ¢ in sp{fa: fe @2, a € A} such that [|f—g|| < e/230 and,
for this g, there exists an index 1, such that A > A, implies that [<gu,—
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—g, @) < /2. For each such 1,

[Kfur—Ff, 93] < K(F=9)wa—(F—9), >+ [<gua—g, 9>
< If =gl (el +1) ol +-2/2 < e/2+-¢/2 = ¢. m

CorOLLARY 3.2. Under the hypotheses of Proposition 3.1, if @ = 2,,
then {u,} is a (bounded) left Q-approwimate identity as well.

CorOLLARY 3.3. Let A be ¢ Banach algebra and let 2 be a Banach
A-subbimodule of . Then the following statements are equivalent.

(1) A has a bounded right Q-approvimate identity {u,}, and Q is
essential.

(2) A has a bounded two-sided Q-approvimate identity {u,}.

Proof. ((1)=(2)). Corollary 3.2.

((2)=(1)). If fe Q, then, since 2 =W, the net {fu,} has a weakly
convergent subnet with limit g in 2,. However, the fact that {u,} is a left
Q-approximate identity implies that {fu,} converges weak* to f. Thus,
f=g9gecf, =

Now, Ao Q = (A®R)[kerB is isometrically isomorphic to the image
Z of B in @ equipped with the quotient norm |-|; more precisely,

Z = {heQ: h =§fkak = B(1), t=2ak®fheA®.Q}
k=1 k=1
and

| = int { f lagll Iz B = 2 fuay €2},
k=1 =

for h in Z. With respect to the norm ||-|| that Z inherits from £ (or A%y,
1Bl < B, for all heZ. .

If A possesses a bounded right approximate identity {w.} (lluall <.M s
for all 1) and if 2 = A¥ = cl(sp{fa: a c 4, feA"}), then by the Hewitt—
Cohen factorization theorem, £ = {fa: a€ 4, fe 2}; in particular, Q
is essential. Hence, {u,} is a (bounded) two-sided Q-approximate identity
(Corollary 3.2). Moreover, since |faw,—fa|< |flllau;—al- 0 and | fau,|
< Mfal, fe @, acA, it follows that (fall < |fo| < M HfaH, for all fe 2,
aed; thus, AoQ = (Z,|]) is topologically isomorph}c to [2 At th'e
same tinle, it is easily seen [12] that Ao A* is topologically 1son}:o:‘phm
to . Hence, by Corollaries 2.2 and 2.3, Hom (4, A™) = (40 4™)* and
Hom (4, Q%) =~ (Ao 2)* are topologically isomorphic to each other
and to Q. )

It is a natural problem then to consider the equivalence of the two
norms ||-|| and |-| on Z for other choices of £2.
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THEOREM 3.4. Let A be a Banach algebra and let 2 be a Banach A-sub-
bimodule of V. Then the statements:

(1a) A possesses a bounded two-sided Q-approwimate identity.

(1b) Q* has a two-sided identity.
are equivalent, as are the statements:

(2a) Z = R, as sels.

(2b) @ is essential, and Ao Q and Q have equivalent norms.

Moreover, (1)=-(2) and, if A has property P2(R2), then (2)=(1).

Proof. ((1a)=(1Db)). Let {u,} be a bounded two-sided Q-approximate
identity for A, and let |lu,| < M, for all A. Then {w,} is a bounded net
in A™ and, as such, has a o(4™, A*)-convergent subnet (still written
{w;}) with o(4™, A*)-limit B in 4™, |B]< M. Since Q< A", Be*
and [|Bllge < |IBl < M. Further, if ¢ e Q% then

{fy By = <f7 By =l (f% ;) = limy {fus,y @) = {f, o),

for all f in 2 (see Proposition 3.1), so Hp = ¢ in Q*. On the other hand,
if fe £, then

{fF @y = <fa, By =l {fa, uyy = lim,{f, awd = (f, ap,
for all ¢ in A4; hence, fZ = f, and so

il = <fE> > =<{f,®>,
for all ¢ in Q%

((1b)=-(1a)). Let B be a two-sided identity in Q* with ||Bj|,. = M,
and let B be a norm-preserving extension of F to A*. Then there oxigty
a neb {u,} in A, |lu| < M, for ull 2, such that B is the (4™, A*)-limit
of {u}. It follows immediately that {u,} is a two-sided Q-approximate
identity for A.

((22)=(2b)). Since Z = 2, always, (2a) implies that £ iy cssential,
In addition, the map Ao Qs is a norm-decreasing wvector space iso-
morphism which is onto by (2a); hence, 402 and Q have equivalent
norms by the open mapping theorem.

((2b)=(2a)). Since 4o 2 and 2 have equivalent norms, 7 is closed
in @ and, since Z is dense in 2,,% = Q.

(1)=(2)). Let B be an identity for Q¥ |B| = M, and let B’ bo
an*norm-preserving extension of B to A*. Now, it 7 eB(4, 2%, then
T (B) e Q"™ and, by restriction to Q = 2", defines a wnique element
pr in Q. The resulting map T, is linear and continuous with ol
< || T** (&) < M|\ T|. Moreover, if ¢ € 2* and R, in B(4, Q% is defined
by E,(a) = ap, then Pr, = ¢. Indeed, it is immediate that By(f) =7,
for fe 2, and so {J, R:*(E’)) = {f, Be) = {f, ¢p>, for all f in Q. There-
fore, the map R: Q*>B(A4, 2% defined by p—R, is a norm-decreasing
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linear isomorphism with [ || < [l = [|<pR¢|| < M|R,|; hence, B imbeds
0" in B(4, Q% as a closed subspace with an equivalent norm.

Now, since Ao = (Z,|']) = (2,(-]) and |h]< |h|, for all heZ,
statement (2) holds if (4o Q)* and Q are topologically isomorphic. How-
ever, if ¢ € Q% then it is routine to verify that g = B*(¢) in (kerB):
= (Ao Q)*. Further, B* is a norm-decreasing veator space isomorphism
(if B*(¢) = B*(y), then ¢ = p on Z, and Z is dense in Q2 by Corollary 3.3)
from Q" onto a ¢ = o((AQQ)", ARR)— dense subspace B*(2%) of (kerB)*
= (Ao Q)*. Thus, if B*(£%) is o-closed, then B* is onto, and (4o2)*
and Q* are topologically isomorphic by the open mapping theorem.

By the Krein—-Smulian theorem ([18], Cor. to Thm. 6.4, p. 152),
B*(2%) is o-closed in (4&0Q)* if B*(Q*)~S, is o-closed, where S, is the
closed unit ball in (4§ 2)*. But, it {B*(¢,)}, is a o-Cauchy net in B*(2*)n
n8y, then, for each fe 2, a e A, the net {(fa,p, >}, converges. Since
{@,}, is bounded in 2%, with |¢| < M for all y, the formula: <{fa,p)
= lim, {fa, p,> fe R, acd, defines an element ¢ of Q* with |p| < M.
Tt follows immediately that B*(p) = o —lim, B*(p,) in (482)* and, since
8, is o-closed, B*(p) € B*(2*)n8,. Thus, the proof of ((1)=-(2)) is com-
plete.

((2)=(1); 4 has P2(£)). Since 4 has property P2(£), the evaluation
map & e (4o f)*; hence, by (2), there is a unique element B in £ such
that & = B*(E). Because {f%,a) = (fa, B = &(aQf) = {f, a), for all
ain A, f% =f, for all f in Q; consequently, B = ¢, for all ¢ in 2% On
the other hand, if ¢ € Q%, then (fa, Hp) = {f%, al> = {f* ad = {fa, o>,
for all fe 2, aed; thus, since 2 is essential, Bp =¢. ®

Theorem 3.4 provides an interpretation of a well-known multiplier
representation theorem. If 4 is a commutative semisimple Banach al-
gebra with a bounded A4-approgimate identity {u,}, then {u,} is a (boun-
ded) approximate identity for Q = el(sp(AA)). Hence, Theorem 3.4, to-
gether with Theorem 2.5, implies that Hom, (4, 2%) is topologically iso-
morphic to Q% Further, since A is semi-simple, the canonical map M (4)
=.Hom, (4, Q% is a norm-decreasing vector space isomorphism. Thus,
M(A4)=-Q* and this map is the continuous algebra isomorphism (9% is
a commutative Banach algebra) described by Birtel ([1], See. 3). In
addition, Theorem 3.4 implies that such a representation of M (4) exists,
if and only if 4 has a bounded A4-approximate identity, showing Birtel’s
assumption is best possible.

Tf @ satisfies statement (1) of Theorem 3.4, then A has property
P2(£) (Corollary 2.2), and by Theorem 3.4, (ker B)* = (4o 2)*is topolog-
ically isomorphic to ©* In the case discussed above, (kerB): = K*;
thus, Hom (4, Q%) =~ (Ao R)* and a representation of Hom,(4, Q%)
in Q* follows. In general, however, it seems that only the containment
(kerB): = K obtains. Consequently, & description of the elements of
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Hom, (4, %) which are represented by elements of £* or, equivalently,
of the subspace of Hom (4, %) corresponding to (4o Q)* is in order.

PrROPOSITION 3.5. Let A be a Banach algebra, and let 2 be o Banach
A-subbimodule of M. If A possesses a bounded right Q-approximate identity,
then an element T in Hom (A4, Q%) is of the form R,, for some ¢ in QF,
if and only if T*Q < 0.

Proof. Sinee Ry(f) =f° for all f € @, the implication (=) is clear.
For the reverse implication (<), let @ = @p, where @, is ag defined in
the proof of Theorem 3.4 ((1)=(2)). Then for each acd, fe Q,

(f1 By(a)y = <fa, T*(B')) = <T*(fa), B'> = {(T"f)a, B>
= Um<TYf, ) = (IVF, 0 = {f, Ta);

hence, T = R,. =

If 2 is an arbitrary Banach A-subbimodule of 9, then it is not to
be expected that Hom, (4, Q%) =~ (40 2)*, even when A has property
P2(L). However, for the special cases Q =, A, property P2(0) does
suffice.

ProPoSITION 3.6. Let A be o Banach algebra and let Q = W, U.
Then A has property P2(2) if and only if Hom (4, 9% = (4o Q)"

Proof. It suffices to prove that 7%Q < 0, for all T e Hom , (4, £2%).
Let feQ and let Op(f) = {fa: ae 4, |la] <1}. Then

OL(T*f) = {(T"f)a: ac A, lal| <1} = {T*(fa): ac A, |a| <1}
:‘T*(OL(f))-
Thus, if fed (A), then T*feW (A) ([14], Thm.’s 2.1, 2.2). m

CororLARY 3.7. If A is o Bamach algebra possessing P2(IB), then
Hom, (4, 2%) = (Ao Q)*, for every Bamach A-subbimodule Q of .

Proof. Let T eHom, (4, %), and let g, be the corresponding ol-
ement of K+, Tt suffices to show that g5 & (ker B)*. Now, from the previous

proposition, T*Q < 8. Hence, if ¢ = 3 a,®f;, e kerB = AQR, then, since
A hag P2(), k=1

0r(8) = Y <fi» Ty = ST, a)
k=1 =1

=lim; 3Ty apeny = lim, 3" Sy, 0, (Tu,)>

Ie=1 fo=1

= lim, (B(t), Tu,» =0,

where {u;} is the net of Theorem 2.1. m
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It T"°Q < Q, for all T e Hom (4, %), then Hom (4, £*) becomes
a Banach algebra under the product

f> (8T)ay = (8°f, Ta,

where 8, T e Hom (4, Q%) (see [6] for more details). Using this fact,
we obtain & generalization of ([9], Thm. 3.1) and ([13]}, Thm. 2.1) for
L-algebras (i.e., Banach algebras which are complex L-spaces ([14],
[201)). Now, the dual A* of an L-algebra 4 is a commutative von Neumann
algebra and, in the following theorem, £ will be a C*-subalgebra of A*;
hence, 2 = Cy(I"), where I' is the maximal ideal space of 2 equipped
with the nsual Gelfand topology, and so £* ~ M (I'). The Banach space
M (I") is a Banach algebra under a generalized convolution product ([14],
Eqn. 5.2). Let n’: A—-M(I') be the canonical map given in ([14], Thm.
5.1).

THEOREM 3.8. Let A be an L-algebra and let Q be & Banach A-sub-
bimodule of W which is a *-subalgebra of A*. Suppose that A possesses &
right F-appromimate identily bounded by one, where F = if Q@ =A
and F =MW if 2 #A.

Then Homy(A, M (1")) is isometrically algebra anti-isomorphic to
closed subalgebra of M (I') o= Q% via the map Troug, where T and up
satisfy Ta = 7' (a) *ug, o € A. The map Touy is onto M(I') if and only
iof Q is an essential right Banach A-module.

feR, acd,

Proof. Let {u,} be a right F-approximate identity, [u,]| <1 for
all 1, and let B be the o(4™, A*) limit of a subnet (still written {u,})
of {u,}(|B] <1). Then it is routine to show that fZ = f for all f e ¥ and
so (f,pH> = (f, > for all feF, ¢cA™ Let T eHom,(4, 2%, and
let g be the restriction T**(H) to Q. Olearly, [l < T ()] < T}
Moreover, if fe 2 < §, then, since T = § by Proposition 3.6,

{fs aggy = (fa, T(B)) = (T*(fa), B>

=<T*fya'E>=<T*f7a‘>=<f7Ta>7 aed.

Tence, Ta = apy for all o € 4, whence ||T| < llogl and I' = R,,; so by
Proposition 3.5, T*Q < £ for all T e Hom, (4, 2%). It follows that the
isometry T'pq from Hom 4, (4, £*) into £* is an ulgebra anti-isomorphism.
For if &, T e Homy, (4, 2%), then for all fe D, ac A,

STV f, ay = (f, (8T)ay = (8"f, Ta)
= (8'f, appy = (8*F)°T, a),

and

<S*f1 ay = {f, 8oy = {f, apsy = {f78, ap;


GUEST


14 D. L. Johnson, C. D. Lahr

hence,

<fy apsry = {fa, (ST)™(B)> = {(8T)*f, aB)
= {(8T)'f, @y = L(8*F)"7, ay = L(f*$)°7, ay = {f, appos) .
Further, the map ¢psup from QF into M (I') is an isometric algebra iso-
morpbism by ([14], Thm. 5.1) and hence the composite map T'i—ppuy.
is an isometric algebra anti-isomorphism of Hom, (4, £ into M (I}
with Ta = appon’(a)*up, acA.

Now, if £ is an essential right Banach 4-module, then the hypotheses.
imply that Hom, (4, 0*) o= (Ao Q)" o~ Q* = M(I') (the fact that the
F-approximate identity is bounded by one yields Ao 2 =~ ) as Banach
spaces, with the isometry implemented as above (for T e Hom , (4, 2%,
the @y defined above is the ¢y defined in the proof of Theorem 3.4 ((1)—(2))).
Hence, the mapping T'ru, from Hom (4, Q%) to M(I') is onto. Con-
versely, if Hom, (4, 9*) =~ M (I') o Q, then (40 Q)* =~ 0% and Z = Q,
ag sets (see proof of Theorem 3.4 ((1)=(2))). Thus, 2 is essential by The-
orem 3.4. m

I, in addition to satisfying the hypotheses of Theorem 3.8, 2 sepa-
rates the points of 4, then A is isometrically imbedded in M (I') via the
canonical map a’: A-M(I") ([14], Thm. 5.1). Hence, the norm-decreasing
algebra homomorphism from Myz(4) into Hom,(d, M(I) is an iso-
metry, and so the map T'+sup from Mp(A) into M (I') is also an isometry.
In this manner, Theorem 3.8 is seen to be an extension of ([18], Thm. 2.1,
Cor. 2.2) in which 4 is assumed to possess a right norm approximate iden-
tity bounded by one; moreover, {u,} is a left Q-approximate identity
as well if and only if Q is essential and Hom (4, M(I") =~ M(I).

-It should be poted that if it is known that T*Q < £, for all
T eHom,(4, ), then the F-approximate identity agsumption can be
weakened to assuming only an Q-approximate identity.

When 4 is a convolution measure algebra (CMA), both 9 and « are
*-gubalgebras of A* containing the identity ([20], Lemma 3.2). In addition,
i 2 is a Banach A-subbimodule of M which is a C*subalgebra of M
containing the identity of 4* then I'is a compact semigroup ([14], Cor.
5.3). As an easy consequence of Theorem 3.4, the existence of an identity
in I is characterized (cf. [20], Sec. 4, Remark and [8], Cox. 3.2).

ProrosITION 3.9. Lot A be a convolution measure algebra amd Q be
a Bamach A-subbimodule of W which is a C*-subalgebra of A* comtaining
the identity of A*. Then A possesses a two-sided Q-approwimate identity
bounded by one if and only if I' has a two-sided identity.

Proof. From Theorem 3.4, 4 has a two-sided Q-approximate identity
bounded by one if and only if Q* = M (I') has a two-sided identity of
norm one, which is equivalent to I having an identity ([18], Prop. 1.6.6,
[8], Lemma V.8.6). m
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