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Individual boundedness condition for
positive definite sesquilinear form valued kernels

by
J. BTOCHEL (Krakéw)

Abstract. In the present paper we get some equivalent forms of the individual
boundodness condition. We show that every positive definite kernel on a produet of
w-semigroups with dilatable sections is itself dilatable. The last part of the paper deals
with the question when a pogitive definite operator function on a »-semigroup is simply
a »-representation. Our result relates to that of [5].

1. In the sequel F stands for either the real number field R or the
complex number field €. Let X and Y be either vector spaces or topological
vector spaces over F. Denote by L(X, ¥) and OL(X, Y), respectively,
the space of all linear operators and the space of all continuous linear
operators on X to ¥. We write OL(X) = 0L(X, X). Iy stands for the
identity operator on X. The space of all sesqulhear forms and the space of
all jointly continnous sesquilinear forms on X x X are denoted by Ly(X, F)
and 0L4(X, F), respectively. (Bw, #”) stands for the value of B € Ly(X, F)
on (v, #') e X xXX.

Leb H bo a Hilbert space over F. Denote by (%, h')y the inner product
of hand h'; h, b’ € H. We write by = (h, h){ for the norm of h, he H.
The norm of .A e OL(H) is denoted by (4], the adjoint of A by A*. If
(H)er 18 8 family of subsets of H, then. V H, stands for the smallest closed

linear subspace which includes the umon U H,.

2. Lot T be o set. A kernel B: T xT-»Ly(X, F) is said to be positive
definite (PD) if the following conditions hold true:(?)

n
D Y Bl 1oy @320, ty ey b €T; 01y @ e Xy n=1,2, ...,
1y fual

(2) (B, o, 0" = (B(t t)w o, 4,tel;ooeX.

(*) Whon I = €, (2) follows from (1) (see [2], [4])-
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Tt is known (see [2], [7], [13]) that for every PD ke.rnel B: I'xT—+Ly,(X, F)
there exists a Hilbert space K over F and a function D: T-L(X, K) such

that
t,t'el; o,2' € X,

3) (B(t', t)z, oy = (D(t)z, D(t")@')x,
(4) K =tV1'D(t)X.

(K, D) is called the minimal factorization of B. Notice‘ that a minimal
factorization of B is determined up to a unitary isomorphism ([4]).

Now let 8 be a »-semigroup of actions on T (we do not require § to
have a unit). Write 8(f) for the action of s €8 on t e T. Suppose Wo are
given » PD kernel B: T xT->L,(X, F) satisfying the following condition:

(5) B(t, s(t)) = Bls*(1),¥'), ¢,V eTl;8e8.

If (K, D) is a minimal factorization of B, then (sce [2], [3]) there exists
a family C(s), ¢ € 8, of closed, densely defined linear operators on K such
that

(6) the set Ky = |J D()X is included in the domain of

“ each O(s),8€8,
() O(s)D(t) =D(s(t)), teT;se8h,
(8) O(s*) =C(s)* K,.

The family (0(8)), i called the propagaior of (D (1))er-

Denote by Sp the set of all 8 € § such that 0(s) is a bounded oper-
ator (*). It is easy to see that s € Sy if and only if there exists a real number
¢, >0 such that

on

(9) 2 {B(s(t)), 8(t)) @, @) < 0 Z (B4 t) @y, @

Gg=1 f=1
for each ty,...,t, €T; @y, ..., m, €X;n =1,2,...

Therefore the definition of 85 does not depend on the choice of a minimal
factorization of B. In the case of 8§ = S5 wo say that B satisfies the bounded-
ness condition (BC). As is known, there exist many equivalent forms of the
boundedness condition (see [2], [3], [9], [10]). There arises a natural
question if some of them can be used to deseribe the set 85. The following
lemma is a necessary preliminary to answering the question.

Limpyrva 1. Let 8 be a x-semigroup of actions on T, If B: T xT—+Ly(X, I
is a PD kernel satisfying (B), then the set S defined by

(*) Itis possible that 85 = ©; however, if § has a unit ¢ then s & § B
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s ey if and only if s e 8 ond there exists a real number ¢y > 0 such
that

(10) {Bs(t), s(t))x, 2) < 0 {B(t, Yo, 2>, teT,veX,

is a *-subsemigroup of 8. Moreover, if ¢,, (s) stands for the minimal real
number ¢y satisfying (10), then ¢y,: 8;—~R, is a submultiplicative function
such Mhat Cy,, (8%) == Gy (8), s € 83,

Proof. It is easy to seo that Sp is a subsemigroup of S and that
ot Sp—R is o submultiplieative function. We have only to prove that
stely if selp.

Suppose that s e 87 Then, using (5), (10) and the Schwarz inequality
(sce [4], the inequality (4), p. 18; [9]), we obtain

{B(s*(t), s* ()@, @) = <B(s(3*(t)), t)m, z)
< (B(s(s(1), 8 (s* (1)), @2 (B2, )@, 2)H
< sz(‘q)l/2 {B{t, t)m, m>1/2 <B (8*(1)7 s (t)) @, ‘”>”2:
This leads to
CB(s* (1), 8 (1)@, &) < (04, (8)CB(8, ), @)~ "(B (s%(1), 8% (1) 0, @D,
n=1,2,...

tel,veX.

so by a limit pagsage we get
CB(s* (1), $* (D)@, @) < 0 (8) B2, 1)1, @),

This means that s* € 83 and 6y, (8*) < 6,,(s), which completes the proof.
In the following theorem we will describe the set S5 with the aid
of some inequalities appearing in dilation theory.

TemorEM 1. Let 8 be ax-semigroup of actions on T. Suppose that B:
I'xT—Ly(X, F) is a PD kernel satisfying (5). If ¢ € 8, then the following
conditions are equivalent:

(1) there ewists a real number ¢, = 0 such that (9) holds true,
(ii) there ewists a real mumber oy > O such that (10) holds true,
(iii) there ewisls a real number ¢y > 0 such that

(11)  liminf(B((s*s)" (1), () (1)@, 2> ™" < 0y, teT,meX,
f-+o0

teT,0eX.

(iv) there ewists a real number ¢, = 0 suoh that

g—k—1

(12) <o,

limint( ' <B((s*8)(4), (%6 (8)) 2y, 7))

koo AT
for each ty,...,%, €T; o, ..

(v)

wo,eX;n=1,2,..,

sefp.
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" If euyls) stands for the minimal extended real number ¢, satisfying
(84%), % =1,2,3,4, then 0,,(8) = 03, (8) = €3, (8) = Gy { (s) for all se 8.

In the sequel cB(s) stands for one of the ewtended veal nusnbers o, (s),
kF=1,2,3,4,5¢8.

Proof. The implications (iv)=-(ili) and (i)=-(ii) are obvious. It is
plain that ¢y, (8) < 61y, (8) B0A €4, (5) < 04, (8); § € 8. The Szaframiec in-
equality (see [4], Lemma 1, p. 28; [9]; [10]) shows that the implications
(iif) =(ii) and (iv)=(i) hold true and that ¢y, (s) < 3, (8) 5 €1, (8) K €4 (8),
s € 8. Sumiming up, we have only o prove the implieation (if) =(iv) and the
inequality ¢y, (s) < €y, (s), s € 8. ’

Let (E, D) be a minimal factorization of B. Suppose that s € §%. Then
(s*s)** € 8, &k =0,1,2,... (by Lemma 1). Tt follows that

(18) D ((s*s1* (1)) Oom{(58) ]2 1D (1) 2]
teT,0eX, b =0,1,2,...

B)aflx <
< O (8 ID (D)2,
Using (13), we have

(Z(B §*g)

, (8%8) k(ti))mi, wﬁ)rk“l
1,j=1

n

= [ X (Dllss" ()i, D{(s%s)* (4) )|

1,1—1
<ty 8 (2 1D )]

< (1ot eals ™
z,eX,n,k=1,2,..

for each ty,...,t, €T,y ..., ., 80, by a limit
passage, we geb (iv) with ¢y = ¢,, (¢). Thig completes the proof.

COROLLARY 1. Let 8, T, X, B be as in Theorem 1. Suppose that B is
a PD kernel satisfying (5). Then Sz is a x-subsemigroup of 8 with the following
properties:

i) if there ewists a natural number b such that (8*8)2k

(if) en(s) = (op((s*sP )f™ ", s 8,k =0,1,2,.

The proof of (i) and (ii) follows from the Szafraniec inequality (see [4],
Lemma 1, p. 28; [9]; [107).

COROLLARY 2. Let S be a *-algebra. Suppose that B: § x8-»L,(X, C)
is a PD kernel satisfying (5). If, for every s e 8, the mapping B(s,): S
=Ly (X, C) is linear, then Sy is a x-subalgebra of 8. Moreover, aB( W s
o SeMiInorm.

Notice tha‘g the Paschke dilation theorem ([1], Th. 1, p. 413) for
completely positive linear maps on U*-algebras can dircctly be obtained
fro‘m Corollary 2 and the general dilation theorem by Sz.-Nagy ([12],
Principal Theorem).

Notes. The inequality (10) belongs to Masani (see [2], [3])-

g—k1

e g then s e 85,

The
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inequality (12) is due to Szafraniec (see [9], [10]). The boundedness
condition (BC) has been introduced by Sz.-Nagy ([12]).

8. Now we consider positive definite kernels on generalized direct
products of x-semigroups and %-algebras. We show that if sections of such
a kernel are dilatable (for this terminology see [4] and [7]) then the kernel
iy itself dilatable.

To begin with we introduce the following definition. We say thatb
a x-semigroup (resp. a *-algebra) 8 is a generalized direct (g.d.) product of
s-gemigroups (vesp. x-algebras) (S;).; if tho following conditions hold
true:

(14) 8, is a *-subsemigroup (resp. a *-subalgebra) of 8,7 e 1,

(15) 88 = 8;8;, 8, €8;, 8685 1,jel,4#],

(16) 8 is a =-semigroup (vesp. a x-algebra) generated by U S;.
del

A few examples are now in order.

Examrre 1. Suppose that § is a direct product of *-semigroups §;,
i e I, with units e;, 4 € I, respectively, i.e.
8 = {(8,)ser: there exists a finite set I, = I such that s; = e, % € INIo}.
Denote by §; the #-semigroup {s el: 8 =¢,jelN {i}}, 4el. Then § is
a g.d. product of *-semigroups §;, i e 1.

ExAMPLE 2. Lot 8 be a tensor product of x-algebras S;,¢ =1, 2, ..., n,
with units e;,4 =1,2,...,n, respectively. Denote by 4§, the x-algebra

1R ... R8_ B8;R6,,Q ... Qe,, T=1,2,..,1

Then § is a g.d. product of -algebras §;,4 =1,2, ..., n

Now we are able to prove the following

TupoREM 2. Let 8 be a g.d. product of x-semigroups 8;, i € I. Suppose
that B: 8 XxS—Ly(X, F) is a PD kernel satisfying (B). If for every i € I the
kernel B; = Blg,xs, satisfies (BC), then B iiself satisfies (BO).

Proof. Let us fix se1,s5,¢8; and te8. The conditions (14), (18)
and (16) imply that thero exists a finite non-empty set I, = I such that
t = [] 4, where t; 6 §;, j € I,. Examine three cases:

tely "
Case 1.4 ¢ I,. Then by the Schwarz inequality (see [4], the inequality
(4), p. 18; [9] we have
d, (t, 3) £ (B((s] (85,71, (58,0 @, oy
< (B t t,t t w, m>2—k 2<B~;( si @>qk+1_18>k3“ 8 81)215““16‘*8 )m’ m>z—k—2
< (B, 0@, 5 <Bi(stsi, stso, o™ (eg (878 T
< (B, )@, 1> CBy(sT sy, st 8@, o op (9T
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for each v e X,k =0,1,2,...; 80

xn hmmfdk (t, ) < op (%)

Case 2. i eI, and the set I\ {i} is non-empty. Then ¢ = 4#', where
[1 1. Using (15) and the Schwarz inequality, we obtain
JEIn\{t}
@, (¢, @) d_f <B(( )zk (sis )zc )w w>rlo..
= (B(t™, (] (s2a) 1),y
< (B, Ua, 2y (B (8] Fa0? iy, (sh e )y wyr T

tor each e X, % =0,1,2,...; 80, by Theorem 1, (17) holds true.

Case 3. I, = {i}. The assumptions of Theorem 2 immediately imply
the condition (17).

Summing up, we have U 8; = 8, by Theorem 1. This completes
the proof. e

The following theorem is a consequenco of Theorem 2 and Corollary 2.

THEEOREM 2'. Let 8 be a g.d. product of x- wlgebms (8;)ser+ Suppose
that B: 8 xS»Lg(X C) is a PD kernel satisfying (8). If for every s & 8 the
mapping B(8,"): 8 >ILy(X,C) is linear and for every i€l the Lernel
B; = Blg,«s, satisfies (BO), then B diself satisfies (BO).

4. This part of the paper deals with the question when a positive
definite operator function on a x-semigroup is simply a s-representation.

The following theorem is discussed under stronger wssumptlons
by Miak ([4], Prop. 2, p. 12). The first formulation in the context of U*-
algebras is due to Paschke (see [1], Th. 2, p. 414; [8]).

THEOREM 3. Let S be a *-semigroup (resp. a x-algebra) amd let H be
a complex Hilbert space. Suppose that B: 8—~CL(H) is an operator function
(resp. a linear operator fumetion) satisfying the following conditions:

(18) there ewists a positive real number q <1 such that

Himm <q 2

s, €8, hy, ...,hneﬂ,n sy 2y e,
B(s*) = B(s)*, sef.

34 8) by, h’j )

for each s,, ...,
(19)
Then the sets
8, = {s e8: B(s*s) = B(s)*B(s)}
and
={se8: s e} ("

(%) It is possible that 8, = @. If § has & unit ¢ then ¢ e §, it and only if B(e) i3
an orthogonal projection.
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are subsemigroups (resp. subalgebras) of 8§ and
(20) B (ssy) = B(s) B(s0),
(21) B(38) = B(30)B(s),

Proof. Let 8, be a unitization of 8. Denote by 1 the adjoined unit
(if § has a unit 6 then we require 1 5% ¢). Then by (18) and (19) B can be
extended to a PD funection(*) B,: 8y~ CL(H) such that B, (1) = I (see
[11], Prop. 1). Therefore without loss of gencrality we may assume that §
has a unit ¢ and B: S—CL(H) is a PD function such that B(e) = I.

Let (K, D) be a minimal factorization of B, and let C(s),seS,
be a propagator of D(s), s € §. Since B(s) e CL(H) = CL,(H, C),s€ 8,
we have D(s) e CL(H, K), s € §; 80

B(s)h = B(e*s)h = D(e)* D(s)h = D(e)*C(s)D(e)h, heH,sed.

In particular, Iy = B(¢) = D(e)*D(e). This means that V z Dfe) is an
isometry. If s, € 8, and k € H, then by (8) we have

VB (se)h —C(80) Vhlx = VB (s0) bl + I0(s0) VAl —

—2re(VB(so)h, O(s,) Vh)x
= IIB(sﬂ)h]ﬁg—}—(B(s;‘so)h, h)H—-2re(B(sﬂ)h, B(so) h)]i‘ =
Suppose that s,e8,, s and k€ H. Then, since VB(so)h = C(so) Vh,
we have
B(ssg)h = V*CQ(s80) Vh = V*C(s)C(s) Vh = V*O(s) VB(s0) b
= B(s)B(so)h.
To prove that §, is a subsemigroup we take s, s’ €8, and then, by the
previous property, we successively obtain
B((ss")*ss) = B(((ss")*s)s’) = B(ss")}*s)B(s")
= B((ss')*) B(s)B(s') = B(ss')*B(ss").

The equality (21) is a simple consequence of (20). This completes the pr oof

Remark 1. Notice that under the assumptions of Theorem 3 the
set §,NS% is a *-subsemigroup (vesp. a *-subalgebra) of S.

TumorEM 3'. Let 8 be a topological *-semigroup (°) (resp. a topological
x-algebra (%)) and let H be a compler Hilbert space. Suppose that B: 8§~ CL(H)
is o strongly comtinuous (resp. strongly continuous and linear) operator

Fumction satisfying (18) and (19). Then the sets 8, and 8 defined as in The-
orem 3 are closed subsemigroups (resp. closed subalgebras) of 8.

sel,s8,€8,,

se8,8¢e8;.

(4) Le. a kernel B; (s*s’), (s, 8") € §1 x 81 is PD.
(5) Le. § is a topological semigroup with a continuous involution.
(9 I.e. S is a topological algebra with a continuous involut onx.
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COROLIARY 3. Let S be a #-semigroup (resp. o %-alycbra) with a unit e.
Suppose that B: 8—~COL (H) is a PD operator _funot@'on (rosp. ‘i li’)’l,e'a/y- PD
operator function) such that |B(e)l] < 1. Then the sets 8y and S, defined as
in Theorem 3 are subsemigroups (resp. subalgebras) of S.

Proof. Let (K, D) bea minimal factorization of B. Then

Himmw;4mwfﬂwwm@wwmmnﬁw@mmmu
i=1 i=1

4,fmsl

n
= B(el ) (B(s] 8 bos Bylurs
D=1
Ty voey By €H 81y ey 8, €8, =1, 2, .0

b e 1
5o the condition (18) holds true. This completes the proof.

COROLLARY 4. Let § be a tpological w-semigroup (resp. & topological
w-algebra) and let H be a complex Hilbert space. Suppose that B: S—CL(H) is
a strongly continuous operator function (resp. o strongly comimaoug linear
operator function) satisfying (18) and (19). If there exists a subsct 8 of the
sat 8 with the following properties: ‘

(i) 8 4s the smallest closed subsemigroup (resp. the smallest closed
subalgebra) of § which includes 8,

(il) B(s*s) = B(s)*B(s),s &k,
then B is a s-represeniation, i.c. an involution preserving semigroup homo-
morphism (resp. an involution preserving algebra homomorphism).

Proof. By Theorem 3, §, = 8. This means that

B(s*s) = B(s)"B(s), sef;
s0 Oorollary 4 is a consequence of Theorem 3 of [6].

COROLLARY 5. Let § be an abelian topological x-semigroup (vesp. an
abelian topological s-algebra) and let H be a complex Hilbert space. Suppose
thet B: S—~CL(H) is a strongly continuous (resp. sirongly continuous,
linear) operator function satisfying (18) and (19). If there sxists o subset S of
the set 8 with the following properties:

(i) § is the smallest closed x-subsemigroup (rosp. the smallest closed
#-subalgebra) of 8, which includes §,
(ii) B(s*s) = B(s)*B(s),s §,

(iii) B(s) is a normal operator, s e §,
then B is a «-representation.

Proof. The conditions (i), (ii) and (iii) imply that § < §,n&%; s0 by
Theorem 8’, §,n8; = §, which completes the proof ([6], Th. 3).

Remark 2. Theorem 3 remains true after removing the condition (19)-

The proof will be published in another paper (we will use a new general
unbounded dilation theorem).
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5. The last theorem relates to Theorem B of [5]. We show that
the boundedness condition implicitly contained in its assumptions can be
omitted. ‘

THEEOREM 4. Let S be a g.d. product of +-semigroups (resp. a g.4. product
of #-algebras) 8y, < eI, and let H be a complex Hilbert space. Suppose that
B: S—~CL(H) is an operator funciion (resp. a linear operator function)
satisfying (18) and (19). If, for every i e I, the function B; = Blg, satisfies
the following condition :

(i) By(s*s) = By(s)"B;(s), s € 8;,
then B is a x-representation.

Remark 3. Notice that the condition (ii) in Corollary 4 (resp. the
condition (i) in Theorem 4) can be replaced by the following one:

B(ss*) = B(s)B(s)*, sef

(vesp. B;(ss*) = B;()B;(s)*, s €8;).

Remark 4. Theorem 4 can also be formulated for topological tensor
products of topological *-algebras.

Remark to Corollary 1. To prove that Sz is a #-subsémigroup of S,
we do not need Theorem 1. Indeed, if s € §p then €(s) e OL(K). Since
C(s)* & CL(K), we have, by (4), C(s)*D(t) = D(s*(1)}, for all ¢ eT. This
means that 0(s*) e OL(K) and s* € 8. i

Remark to Theorem 2. If X is a Banach space over F, 8 is a g.d.
product of *-semigroups S;,7 =1, 2, 8,8, and 8, have a common unit e
and B(s, 8') = B’(s*s’), where B': §— OL,(X, F), the proof of Theorem 2
can be simplified. Indeed, let (K, D) be a minimal factorization of B and
let s = 8,8, where s; €8;,% = 1,2, be a number of 8. Then, by Prop-
osition 1 of [10], we have

1B’ ()] = HB’((ST)*%)” = llD(ST)*D(Sz)l| < 1B (84812 |B (85 82}
< AjP AN (0131 (s1)¢eg, (32\))«”'2: )

where 4,, 4, are positive real numbej:s; Since 0z ®0p, i8 submultiplicative,
the kernel B satisfies (BO) (see [10], Prop. 1).
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