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Some approximation properties in Orlicz-Sobolev spaces

by
JEAN-PIERRE GOSSEZ (Bruxelles)

Abstract. We prove that weak derivatives in general Orlicz spaces are globally
strong derivatives with respect to the modular convergence. Other approximation
theorems involving the modular convergence are presented, which improve known
density results of interest in the existence theory for strongly nonlinear boundary
value problems.

Statement of results. Let L, () be the Orlicz space on an open
subset 2 of RY corresponding to an N-function M and let By (2) be
the norm closure in L, (2) of the L(Q) functions with compaect support
in Q. The Sobolev space of functions % such that % and its distributional
derivatives up to order m lie in L, (R) (resp. By (Q)) is denoted by
W™hLy (2) (resp. W™H, (2)). Standard references about these spaces
include [11], [1], [12].

A well-known theorem of Meyers-Serrin [13] states that for 1<p
< oo, O®(Q)nW™?(Q) is norm dense in W™?(Q), i.e. weak derivatives
in LP(Q) are globally strong derivatives (the local version goes back to
Triedrichs and his mollifiers [7]). This was extended to the Orlicz spaces
setting by Donaldson-Trudinger [4] who proved that 0*(Q)NW™E, (Q)
is norm dense in W™H,,(£). The corresponding statement with ,, replaced
by Ly is notkt'rue, even locally, simply becanse an L (Q2) function may
not belong to By (2') for ' € Q (take 2 =]1—1, +1[, M(?) = ¢ —1
and u () = (log|o|™")"*). Our first result concerns the density of €*(Q)n
NW™Ly () in WMLy (L) with respect to a weaker convergence, the
so-called. modular convergence [14].

THEOREM 1. Leét w € W™Ly, (2). Then there exist A > 0 and a sequence
Uy, € 0°(Q)NW™Ly(2) such that for |a| < m,

fM((D“uk—-D"u)/l)——>0 as koo,
1]

As will be seen in the proof, it suffices to choose Asuch that 16/ D%u
€% 3, (2) for |a| = m, where £;,(£2) denotes the Orlicz class. Consequently,
when u e W"E,(2), A can be taken arbitrary small, and we recover
from Theorem 1 the result of [4] mentioned above. i

The space W™Ly,(£2) will be, asausual, identified with a subspace of
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the product J] Ly (Q) =[] L. Denoting by M the N-function conju-
aj<<m

gate to M, W|e| consider the weak topologies o ([T Ly, [T Bx) and o] Ly,

J] L) Density results involving the later play an important role in the

existence theory for strongly nonlinear boundary value problems (cf. [8],

[3]). Comparing the modular convergence with o([] Ly, ] Lzz) (Lemma 6

below), we obtain the following

OOROLLARY 2. 0°(Q)nW™L, () is o([] Ly, ] Ly) dense in
WL ().

We now turn to the approximation by functioms which are smooth
up to the boundary, assuming some regularity on 2. Recall that £ is
said to have the segment property if there exist an opem covering {U;}
of 2 and corresponding vectors {y, € B~} such that, for # € @n U, and
0<it<l, otiy; € 2; 2 has the cone property if there exists a finite
cone ¢ such that each # € Q is the vertex of a cone (, c £2 congruent
to . It was proved in [8] that if 2 has the segment property, then 2 ()
is o(]T Lys, [T Lz) dense in WLy, (L), where 2(2) denotes the restric-
tions to  of the functions in 2 (RY). This is improved in our next result
under the assumption that £ also has the come property.

TEEOREM 3. Suppose that £ satisfies both the segment and the cone
property. Let w € W™Ly, (2). Then there exist A > 0 and a sequence iy, € 2 (2)
such that for |a| < m,

[ M(D*u— D) [2) >0 as oo
Q

The proof will show that it suffices to choose A such that 16 (N +4-1)/1
Du € £4,(2) for |al < m. Moreover, the cone property is only used to
guarantee that an element v € W'L,(£2) with compact support in £
lies in Hy (2) (the imbedding theorem of [4] implies v € 0(R2)nL™(R2) or
v € Lyp (Q) with M* an N-function which, by Lemma 4.14 of [8], increases
essentially more rapidly than A, and so, in any case, v € B, (2)). This
fact probably holds under a weaker assumption on Q. Anywuwy, taking
again 1 arbitrary small, we recover from Theorem 3 the result of [4]
that if 2 has the segment property, then 2(2) is norm dense in W™H,,(Q).

Finally wo consider the analogue of the Wir? spaces. WLy (2}
is defined as the o([] Ly, [] Bx) closure of 2(R) in W"L,(Q) and
Wi E;,(£2) as the norm closure of 2(Q) in W™L, (2) (or equivalently
in W*H,,(£2)). When 02 is sufficiently regular, one can define the trace
on 902 of D*u for uw € W™Ly (2) and |a| < m—1, and prove that the func-
tions in WLy (Q) (vesp. Wi'Hy (L)) are precisely those in W™L,(Q)
(resp. W™Ey (L)) whose trace and normal derivatives up to order m —1
on 0f2 vanish (cf. [6], [9])-
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THEOREM 4. Suppose that 2 satisfies the segment property. Let u
€ Wit Ly (2). Then there ewist 2> 0 and a sequence u, € 2(2) such that
for la| < m,

fM((D“uk—D"u)/l)—>0 as koo,
2

The same estimate on A as in Theorem 3 holds here. Theorem 4 im-
proves our result of [8] that if Q has the segment property, then 2(Q)
i8 o([] Ly, [] L) dense in Wi Ly ().

The proofs of the W™E, () results of [4] referred to above as well
a8 those of the o ([T Ly, [] L) versions of Theorems 3 and 4 given in [8]
are rather simple modifications of the standard L” proofs. To get Corollary
2 or Theorems 1, 3 and 4 requires more involved calculations, although
the construction of the approximants is basically the same. An inequality
which will be used repeatedly is

M) <rt Y M)
7 B
where 7; € R and r is the maximum number of nomzero r’s. When the
7’8 originate from a partition of unity, a control on » can be obtained
from simple topological considerations (Lemma 7 below). )
Proofs. Given a function (), we denote by w, its translate u,(x)
= u(x—7vy), by u, its regularization u; = u*g, where p; e 2(RY), g,(x)
=0 for [#|> 6, 0520 and [ g, =1, and by u, the function w, = ¢,u
RN
where ¢,(x) = @(@/r) with ¢ € 2(RY), 0<p <1, ¢(®) = 1for |z| <1 and
@(x) = 0 for |x|> 2. The following lemma will be needed.

LevMA 5. If ue Ly (RY) with 2u € 2y (RY), then [ M{(u,—u)—>0
rN : :

as lyl~0 and [ M(u;—u)—0 as 6—0. If u € £, (R"), then [ I (u,—u)
By ny
=0 as r—oo.
Proof. We consider u;; the case of u, is treated similarly and that
of u, is immediate. Since u,—u in L}, (R"), one has, for a subsequence,
ws—>u a.e. and so M (u;—u)-—>0 a.e. Moreover,

M (g —w) < 3 (205) -+ 3 M (20) < H{M (20)), + 3 (2u)
where we have used Jensen’s integral inequality. Since (M (2%))5—>M (2u)
in I1(RY), we conclude by Vitali’s theorem that M (v, —u) —0in L' (RY). m
Thus wo see that for any u € Ly (RY), w,—>u with respect to the
modular convergence (i.e. there exists A>0 such that [ 2{(u; —u)/2)—0).
rN

In general, u, does not converge to « in the mean (i.e. the above with
A =1) and a fortiori in norm. If u e Hy (RY), then 2u/A € %, (RY) for
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all >0 and by taking A arbitrary small, we eventually derive from
TLemma 5 that 4, converges to « in norm, a result originally given in [2].
Similar remarks apply to u,.

Proof of Theorem 1. Let u € W™L,(Q) and choose 2> 0 guch
that 16/AD%u € L3,(2) for |a| =m. Let ¢ >0, e<<1l. We will prove
that there exists v € 0°(2) WL, (£2) such that

(1) [ M{(D*0—D*u)j2) <&
2
m. Define for ¢ =1,2,...,
0, =1{wel; 5] <i and dist(z, 00) > 1/i},

and also, for convenience, 2_, = 2_;, = 2, =@. Let {y;; ¢ =1,2,...}
be a (= partition of unity on £ such that suppy; = ,,N\82;_,. For

for |a| <

each ¢ =1,2,..., let g, = ¢; be a mollifier satisfying
@) 8 < 1/G+1)(E+2),

(8) (D ;. D" w) % 0;— DP9, D" ullpy,0 < £2 /a2
for all [f4+9y|<m with |y| <m, and

(4) { M(8((1: D*w)  g;— ; D°w) [A) < /2

for |a| = m. Here || |, denotes the Luxemburg norm in L, (2):

lWollz,0 = int {h > 05 [ M (w/h) <1}

and the number & is defined in terms of the coefficients which appear
in Leibniz formula:

(5) a =max{2(§); la|<m}.

b<ga

Condition (3) can be fulfilled because on a smooth bounded domain,
W™Ly is (compactly) imbedded into W™ 'H, (see the introduction)
and so D%u, |y| < m, lies in EYP(RQ). Condition (4) can be fulfilled by
applying Lemma 5. It follows from (2) that (y;u)#g; has support in
2, N0, ,. Thus the series

= 2 (i) * o
i=1

is trivially convergent and v e 0°(R). The fact that v e WL, (Q) wil
follow once (1) is proved.
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To verify (1), take j =1, 2,... and write

i1
f M((Dv—D)/2) = f M(Z (D (s *e¢~D“(wsu))/l}

2;

<2 fM(2§:1 2 ()@ ni0ruyse— D000 )+
2

i=1 f+y=a
Ivl<m

J+1

+27 fM( D) ((pa D*u)x o, — 9, D7) ) = I, +1,

i=1

where the term I, does not appear when |a| < m. We have

J+1
-1 — —i a i
I,< 2 lgz HZ_ (ﬂ) [ M (24 (DP9, D u) % 0, — D%y, D7 ) ed) < o2
= y=a 95‘ .
lvl<m :
by (3) and the definition of the Luxemburg norm. To study I, ‘Wwe ob-

serve that for a.e. z € Q;,
i+l

(2 3 ((wi D)% 0;—p: Dl /l)

J+1
3D M(8((psDu) x o — 9 D%u) 2)
T=] =1 :
since at most 4 terms of the sum are nonzero at z. Consequently, using (4),
we get I, < ¢/8. So )
[ M{(D*v—Du) ) < e
]
and letting j—occ, we obtain (1). m
By a simple modification of this proof one can show that the u.’s
in the statement of Theorem 1 can be taken so that D*wu,—>D°w in norm
for |a] < m.
Corollary 2 is a direct consequence of Theorem 1 and the following
LEMMA 6. Let uy, w € Ly (2). If up—>u with respect to the modular
convergence, then w,->u for o(Ly, L)
Proof. Let 2> 0 be such that [ M((u,—u)/4)—0. Thus, for a sub-
Q

sequence, u;— a.e. in Q. Take v & Lz (). Multiplying » by a suitable
constant, we can assume v € %3 (R2). By Young’s inequality,

M (v, — ) [2) + I (40),
which implies, by Vitali’s theorem, that f (% —w)v]—0. m

I, — )0 <

The proofs of Theorems 3 and 4 uses the fo]lowmg lemma from general
topology.

Lemwa 7. Let A be a closed subset of RY and let {U,} be an open covem‘ng
of A. Then {U;} cam be refined into a locally finite countable open covering
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{V;} of A with the property that at most N +1 distinet Vs have a nonempty
intersection.

Lemma 7 follows from the fact that the covering dimension of RY is
N (cf. [5]). All we need actually for our purposes is an estimate on the
maximum number of intersecting Vs which is independent of 4 and
of the covering {U,}. Such an estimate can be obtained directly by el-
ementary means.

Proof of Theorem 3. Let u € W™Ly(R2) and choose 4> 0 such
that 16(NV -+1)/2 D°u € £5,(Q) for |a| < m. We will show that for |a| < m,

(6) [ M(2(D*u—Du,)[2)>0
Q

a8 r->00 where %, = g, is the function involved in Lemma 5. We will
also show that for each r and for each % > 0, 7 < 1, there exists v € 2(2)
such that for |a| << m.

(7 [ M(2(D°u, —D0) [4) <7

Q

The conclusion of Theorem 3 then follows easily.
To verify (6), we write

[ M(2(D u—D,)j3) < 27 [ M(4(D*u— g, D"u)[3)+
Q 2
+o7gt ¥ (;) [ M{sar=19(D’g) (ajr) D" u[2).
Bty=a 2
181>0
Here a is the number defined by (5). Each term on the right hand side
goes to zero as r—co, the first one by Lemma 5 and the second one by
direct examination.

To verify (7) we use the covering {U;} of & given by the segment
property. Refining {U;} if necessary, we can assume that it satisfies the
properties stated in Lemma 7. In particular, ¢ =1, 2, ... Let v, be a ¢
partition of unity on £ subordinate to {U}. OIearly suppy; = U; for
some open set U; with compact closure U; c U,. Write I, = U;ndQ
and I'y, = I';—1y; where y, is the vector associated to U, by the segment
property. Extend u, outside Q by zero and note that y,u, vanishes iden-
tically for 4 > some 4,. Note also that the translate (w;u,),(®) = (p,%,)(® -
+1y;); 0 <1< 1, belongs to W’”LM(RN \TI};) and that, by the segment
property, dist(ly,, 2)>0. For each ¢ =1,2,...,4,, chooge 0 <t <1
and g,, = o, 6; < dist(l"“., ), such that
seanne ! L ’

@) - WD YD) g —DP oy, D7 ul e < Ay j2tEa
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for all |f+y| < m with |y] < m, and
(9) [ M4 +1)((9: D), % 0 — 9. D°0,) [2) < 2
Q2

for |a| =m. Condition (8) can be fulfilled because D”u.e Hy(Q) for
|yl < m (the cone property is used here, see the introduetion). Condition
(9) can be fulfilled by two consecutive applications of Lermma 5. Taking
t; and J; smaller if necessary, we can assume that SUpPP (91 )y, * 05 < U,.
Define

(10) v = > (piu)yxo; € 2(2)
i=1

and observe that by the property of Lemma 7, at each 2 € 2, the sum
above contains at most (N +1) nonzero terms. We have

f M(2(D*v—D"u,)[3) = f M2 2 (D (i) 0s— D (w1, 14)

<27 fM( Z 2 (;) (DP9 D7 uy )y e,-—DBwD”u,)/l)

i=1 f+y=a
I7l<m

i
+21 fM(42((1Pi-Duur)ti* Qi"'PiDa“r)/}v) =IL+1I,
P .

=1

where the term I, does not appear when |af < m. Now

i
<2 4—12 2™t 2 f ll.'[(2"+2 of(DP ;D" u,)y  0;— DF y, D7 u,)ln)

i=1 Bty=a Q :
Iyl<m :

<n/2
by (8) and the definition of the Luxemburg norm. Since at a.e. # € Q,

i |

M (4 Z ((wiD*w)y % 0; —y; D° u,) /1)
i=1
3

< ()7 D) M (N +1) (9D, x 0;— v D) [2),

we obtain from (9) that I,< #%/2, and so (7) is proved. m
Proof of Theorem 4. It ig essentially the same ags that of Theorem 3
except that one replaces in (10) ¢, by —%, and chooses §; with

8; < dist ((suppy; n2) +4,9;, RVN Q).
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One also uses the fact that by extending a Wi L, (2) function by zero
outside 2, one gets a W™L, (R") function. This allows us to avoid the

cone property for 2. m

We remark that when 2 is bounded, the above arguments can be
carried through without using Lemma 7. The coefficient 4 is then chosen
so that 8b/4 D*u € %4,(£2) for |a| = m, where b iz the number of picces
of the covering {U,;} needed to cover &2.

Ag for Theorem 1, one can show by a simple modification of the
proofs that the u,'s in the statement of Theorems 3 and 4 can bo taken
50 that D*u,—D%y in norm for |a| < m.
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A simple proof of the atomic decomposition for
HP(R"), 0<p<1
by
J. MICHAEL WILSON (Los Angeles, Calif.)

Abstract. A simple proof of the atomic decomposition for distributions in
HP(R"), 0 < p< 1,is given. The proof uses Green’s Theorem and a result of Fefferman
and Stein. It does not use their “grand” maximal function.

We define H?(R") to be the space of functions u,(z,y) harmonic
in R% = {(w,y) = e R" y >0} for which the maximal function
wp(e) = sup  [u(t,y)|
1] <1009V
is in ZP(R"). We can define an H® “norm” by
ltolp = llesgl -
Fefferman and Stein showed that for u, € H?, limu,(o, y) = f exists
Y0
in the sense of tempered distributions and that f uniquely determines
#y. We may thus define H? as a space of distributions with “norm”™
1F 1L = ltoll - See [31. .
We call a function b(x) a p-afom if:
(A) b is supported on a cube @ = R™
B) bl < 1Q17* (@] is the volume of @).
f b(s)o*do = 0 for all multi-indices a = (a, ay ..., a,) With
Ja| = a1+ A a, < [m(p—-1)], the integer part of n(p~'—1).
We prove the following:

TunoreM. A tempered distribution f is in H?(R™), 0 <p <1, if and
only if there ewist p-atoms a; and positive numbers A; such that

= i lid,;

C =1
in the sense of distributions. The A; satisfy:
1) Clf 1L, < D) < Ol

Oy and (O, only dépend on p and n. &
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